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We report nonlinear behavior in the motion of driven nanowire cantilevers. The nonlinearity can be

described by the Duffing equation and is used to demonstrate mechanical mixing of two distinct

excitation frequencies. Furthermore, we demonstrate that the nonlinearity can be used to amplify a

signal at a frequency close to the mechanical resonance of the nanowire oscillator. Up to 26 dB of

amplitude gain is demonstrated in this way. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4900928]

Due to their favorable geometry and potentially defect-

free growth, nanowire cantilevers are promising as ultrasen-

sitive force transducers for scanning probe microscopy.1–4

Additionally, their relatively high mechanical resonance fre-

quencies decouple their motion to a large degree from exter-

nal noise sources and should permit improved sensitivity in

mass-sensing and scanning probe applications. Furthermore,

the wide choice of nanowire growth material and the possi-

bility to grow nanowire heterostructures could allow access

to different measurement modalities, such as sensing of local

electric or magnetic fields. In recent experiments,5,6 coupling

of optical transitions of a self-assembled quantum dot em-

bedded in a nanowire to the motion of the nanowire through

strain was demonstrated, opening the way to investigation of

hybrid devices with nanowires as their main building blocks.

Nanowire heterostructures are attractive as hybrid systems,

as they can combine multiple functionalities in one inte-

grated structure.

Conventionally, in scanning probe experiments, oscilla-

tory motion of the cantilever is driven with amplitudes small

enough to remain in the linear dynamical regime. Due to a

number of reasons,7,8 including the oscillator geometry, non-

linear damping,9,10 the presence of external potentials, and

nonlinear boundary conditions,11,12 this linear dynamic range

is often quite limited in nanoscale oscillators.13–15 The non-

linear dynamics occurring when this range is exceeded com-

plicate the analysis of sensing experiments and are therefore

generally avoided or compensated for.16 However, nonli-

nearities in general can also give rise to a host of useful

effects, such as signal amplification,17,18 noise squeezing,19

and frequency mixing.20 The nonlinear dynamics of nano-

wire cantilevers can enable these effects at the nanoscale in

mechanical form and have the potential to enhance the per-

formance of cantilever-based sensors.

In this letter, we study the motion of several GaAs nano-

wires attached to their GaAs growth substrate (Fig. 1(a)). We

observe that upon driving the periodic bending motion of a

nanowire with sufficiently large amplitudes, it can no longer

be described by a linear equation of motion. Instead, the

nanowire follows the, qualitatively different, nonlinear

dynamics of a Duffing oscillator.21 A Duffing nonlinearity

can give rise to complex motion of an oscillator, such as hys-

teresis, cascades of period-doubling, and chaotic motion.22

In the quantum regime, Duffing nonlinearities have recently

been studied in the context of mechanical squeezing.23

Furthermore, we find that when applying two driving fre-

quencies, the nanowire motion in the nonlinear regime con-

tains components at frequencies other than the two driving

frequencies, as a result of mechanical mixing.

The nanowires under investigation here were grown per-

pendicularly to their GaAs growth substrate and are still

attached to this substrate (see Fig. 1(a)). Using the nanowires

as they are grown minimizes the introduction of defects and

maintains good clamping of the nanowires to the substrate.

Both these factors should decrease damping of the mechani-

cal resonance of the nanowires. The nanowires were grown

on a 4 nm SiOx coated (111)B GaAs substrate by the

catalyst-free gallium-assisted method24 in a DCA P600 solid

source molecular beam epitaxy system. Growth has been

done under a rotation of 7 rpm, with a growth rate of 0.5 Å/s

and a substrate temperature of 630 �C. These GaAs nano-

wires are of particular interest, since the same structures are

straightforwardly coated by subsequent growth steps with a

AlGaAs/GaAs shell hosting self-assembled optical quantum

dots.25

The nanowires mostly exhibit zinc-blende crystal struc-

ture and therefore have hexagonal cross-sections, with typi-

cal diameters of 100 nm and lengths up to 25 lm. The

diameter of individual nanowires is constant, except for the

tip where a gallium droplet is formed during growth and the

base, where small anomalous structures can be present. The

nanowires have their fundamental mechanical resonances at

frequencies of f0 ¼ 1:25� 1:35 MHz (some nanowires show

two closely spaced resonances, which we attribute to two

transverse flexural modes that are non-degenerate due to a

slight asymmetry of the nanowire cross-section). Numerical

calculations following the same method as used in Ref. 6

confirm that these resonances indeed correspond to the fun-

damental flexural modes of the singly clamped nanowires.

Furthermore, these resonances exhibit quality factors of

up to 37 000 (at a temperature of 4.2 K and pressure below

10�6 mbar), as determined from the width of the resonance

as well as from the ringdown measurements (ringdown
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measurements sometimes show beating patterns, which we

again ascribe to the presence of two transverse modes).

Many factors contribute to limiting the quality factor of

nanomechanical resonators, including lattice defects, which

would at this scale likely be dominated by surface defects,

surface oxides, clamping losses, and coupling to other me-

chanical modes.26,27 Mechanical damping rates in grown

nanowires have been demonstrated to be much lower than

for the best cantilevers produced in a top-down manner.2

The quality factors observed for the as-grown nanowires

studied here are up to an order of magnitude larger than for

similar GaAs-based nanowires,5 which is a possible indica-

tion of the degrading effect of post-processing on the me-

chanical quality factor.

A schematic overview of the measurement setup is

shown in Figure 1(b). The displacement of a nanowire is

measured via a fiber-based interferometric method.28 In this

setup, the nanowire forms one reflecting interface of a low-

finesse Fabry-P�erot interferometer, while the cleaved surface

of a single-mode fiber forms the other interface. The sample

is mounted on a stack of positioning stages for three-axis

translation control, allowing the nanowire of choice to be

positioned in the focal plane of an objective placed in front

of the single-mode fiber. A voltage-controlled piezoelectric

transducer (PZT) attached to the sample holder is used to

drive oscillatory bending motion of the nanowires along the

optical axis of the interferometer. A fiber coupler is used to

inject light from a laser with a wavelength of 1550 nm into

the interferometer. This wavelength is chosen in order to

avoid spurious heating of the GaAs nanowires through

absorption. The coupler diverts 5% of the laser power

towards the nanowire, resulting in a maximum power

incident on the nanowire of �5 lW. Varying the laser power

slightly did not qualitatively change the measurements,

ensuring that no significant heating of the nanowire is taking

place. The light reflected by the interferometer is collected

by a photodiode with a dynamic range of 5 MHz. The oscil-

lator of a lock-in amplifier actuates the PZT and the same

lock-in amplifier demodulates the response of the photo-

diode. Sample and microscope are placed inside a vacuum

can, which in turn is mounted inside a liquid helium bath

cryostat.

Figure 2(a) shows the measured displacement of a nano-

wire for various driving amplitudes. As the driving ampli-

tude is increased, the resonance becomes broader and

assumes a characteristic shark-fin shape when entering

the nonlinear regime, where the frequency associated with

maximum displacement increases and moves away from the

resonator eigenfrequency f0. Such behavior is typical for a

Duffing oscillator and can be described by the Duffing equa-

tion of motion (including nonlinear damping)

x
::ðtÞ þ l _xðtÞ þ g _xðtÞx2ðtÞ þ f0

2xðtÞ þ ax3ðtÞ ¼ FðtÞ: (1)

Here, x is the displacement, l and g are the linear and nonlin-

ear damping constants, and F(t) is the time-dependent driv-

ing force, here taken to be sinusoidal. The coefficient a
parametrizes the strength of the cubic Duffing nonlinearity.

When a is positive, as it is in our case, the Duffing nonlinear-

ity increases the effective spring constant with increasing

driving amplitude, thus stiffening the motion. The observed

lineshape at higher driving amplitudes is a consequence of

Eq. (1) having two stable solutions within a certain fre-

quency range. This bistability leads to the switching

FIG. 1. (a) Scanning electron micrograph of a substrate containing multiple GaAs nanowires, taken at a different section of the same wafer that was used in

the experiments. Inset: close-up of a single nanowire, showing a faceted structure due to its hexagonal cross-section. (b) Schematic diagram of the measure-

ment setup.

FIG. 2. (a) Response amplitude as a function of driving frequency, for various driving amplitudes. Note that the slight depression around the maximum

response for the highest driving amplitude is caused by the limited linear range of the interferometer. (b) Response amplitude as a function of driving frequency

(at a driving amplitude of 17 mV), for two sweep directions (as indicated by arrows). (c) Response amplitude as a function of driving amplitude (at a driving

frequency of 1 326 770 Hz), for two sweep directions.
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phenomena seen at the right flank of the response peak

(Fig. 2(a)). Which of the two solutions is realized, is determined

by the initial conditions, and mechanical hysteresis can be

observed when adiabatically sweeping the driving frequency or

driving amplitude up and down (Figures 2(b) and 2(c)). The

strength of the nonlinearity a can be estimated from the shift of

the frequency fmax at which the maximum response amplitude

occurs, using the relation:21 a ¼ 32
3

p2f0ðfmax � f0Þ=x2. Our in-

terferometer becomes nonlinear for larger driving amplitudes

(see Fig. 2(a)), since then the displacement becomes compara-

ble to the width of the interferometer fringes. We use this to

infer29 a value for the displacement x of �250 nm, for a driving

amplitude of 19 mV (Fig. 2(a)). We can then estimate a to be

of order 1023m�2 s�2 for this nanowire.

Nonlinear damping could arise in the presence of a

Duffing nonlinearity and linear damping.9 We briefly discuss

this and show that in our case nonlinear damping does not

play a significant role. The nonlinear damping term has the

effect of decreasing the shift of the frequency of maximum

response amplitude due to the Duffing nonlinearity, as well

as decreasing the size of the hysteresis loop. The coefficient

for nonlinear damping g can be estimated from the critical

frequency, which is the frequency at which the system, with

sufficient driving strength, turns from being monostable to

being bistable. This critical frequency has a minimum when

nonlinear damping is absent, which corresponds toffiffiffi
3
p

f0=2Q.17 This yields �52 Hz in our case, agreeing very

well to the value of 49 Hz determined from the measure-

ments, indicating that here g is negligible.

Next, we show that the nonlinearity can be used to turn

a nanowire into a mechanical mixer.19,20 Upon excitation

with two driving frequencies, FðtÞ ¼ F1 cosðf1tþ /1Þ þ F2

cosðf2tþ /2Þ, the response shows sidebands additional to

the motion at the driving frequencies, as shown in Figure

3(a). We observe up to twelve such sidebands, spaced around

the driving frequencies with splittings equal to the detuning

between the two driving frequencies, Df ¼ f2 � f1. Note that

the results shown in Fig. 3 were obtained by measuring on a

second nanowire. Measurements on both nanowires were

very similar, but the signal to noise ratio is varied.

This response can be understood from Eq. (1) by taking

the cubic term to be a perturbation to the driving force and

solving the equation iteratively.21,30 One then obtains

new terms in the response at the intermodulation frequencies

f1 � nDf and f2 þ nDf (where n is an integer) for each itera-

tion. The amplitudes of these new intermodulation terms

have coefficients proportional to
P

n ðf 2
0 � f 2

1 Þ
�kðf 2

0 � f 2
2 Þ
�l

,

with k and l positive integers and kþ l¼ n. Hence, intermo-

dulation terms are smaller for driving frequencies that are

more detuned from resonance. Since the mixing occurs due

to the cubic term in Eq. (1), for the intermodulation terms to

be present, at least one of the driving amplitudes needs to be

large enough to have an appreciable nonlinear response.

It is evident from Fig. 3 that the energy that is injected

into the nanowire oscillator by the driving is distributed

among the various intermodulation terms. This redistribution

also occurs when one drive (signal) is much smaller than the

other (pump), in which case amplification of the signal can

take place.17 The signal here is formed by a driving voltage

supplied to the PZT, but it could be any force driving the

nanowire with a frequency close to the resonance. Fig. 3(b)

shows the spectral response of the nanowire motion with the

signal drive always on, but with the pump excitation off in

one case and on in the other. It is clear that amplification of

the signal takes place when the pump excitation is switched

on in the form of an increase in amplitude of the response at

the signal frequency. Additionally, the appearance of the

intermodulation terms, which is conditional on the presence

of a signal, provides extra amplification. The total gain can

be defined to be the ratio between the summed response

amplitudes of all peaks present with pump drive, excluding

the peak at the pump frequency itself, and the response am-

plitude with no pump drive. We observe a maximum gain of

26 dB. Although higher gain might be expected17 in the limit

of vanishing detuning between pump and signal frequencies,

detection of the signal then becomes impractical. The obser-

vation of mechanical frequency mixing is furthermore lim-

ited by the onset of nonlinearity of the detection

interferometer for high displacement amplitudes. If the inter-

ferometer response becomes significantly nonlinear, multiple

frequencies in the mechanical response can also lead to new

frequency components in the detected signal. However, we

already observe intermodulation frequency components for

small excitation amplitudes, large enough to reach the

FIG. 3. (a) Spectral response amplitudes of the nanowire motion upon application of two driving frequencies, for various values of the detuning of the signal

frequency from the pump frequency. The curves have been offset for clarity. The spectral response is given as a function of the detuning from the pump fre-

quency, which is 1 287 890 Hz. The pump and signal amplitudes are 250 mV and 50 mV, respectively. The first mechanical mode of this nanowire has a reso-

nant frequency of this nanowire at 1 287 780 Hz. (b) Spectral response with pump excitation (1 287 913 Hz, 250 mV) off (lower curve) and on (upper curve) for

a signal detuned from the pump frequency by 7 Hz and with amplitude 35 mV. The curves have been offset for clarity.
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mechanical nonlinear regime, but small enough to generate

mechanical displacements of up to only 10 nm. For these dis-

placements, the second- and third-order terms in the optical

response are smaller than 2% and 0.02% of the first-order

term, respectively. The amplitude of any optically generated

sidebands is therefore very small, indicating the mechanical

origin of the observed sidebands.

In summary, we have observed and characterized non-

linear motion of as-grown GaAs nanowires. The nonlinear-

ity is already observable for modest driving amplitudes.

Furthermore, we have demonstrated that this nonlinearity

allows for mechanical mixing of two excitations and ampli-

fication of a signal excitation through this mixing. This

amplification could be utilized in several scanning probe

techniques. For example, in the case where these nanowires

act as mechanical force transducers, the observed gain of

26 dB could make force sensitivities of �100 zN=
ffiffiffiffiffiffi
Hz
p

in a

narrow bandwidth feasible. These results indicate that

although nonlinear motion can be non-negligible for nano-

wires, the nonlinearity can also be turned into an advantage

using simple measurement schemes. The nonlinearity

could, in addition, lead to coupling of different flexural

modes. Such nonlinear mode coupling could have several

applications, including tuning the resonance frequency31

and quality factor32 of one mode through driving of the

other mode, and implementing quantum non-demolition

measurements of mechanical excitation.33
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