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I. EQUATIONS OF MOTION

To derive the equations of motion for the two modes we treat the nanowire as an isotropic

inextensible singly clamped Euler-Bernoulli beam. Following the approach used by Crespo

da Silva and Glynn 1,2 we obtain two nonlinear equations describing the flexural vibrations

of the beam, for the displacement ũ:
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and a symmetric one for the displacement w̃. Here the dots and primes stand for derivative

in time t̃ and in arc length s respectively, m is the mass per unit length (= ρd1d2 with d1

and d2 dimensions of the cross section and ρ the density), η̃1,2 the damping coefficient, D1,2

the bending, and Dk the torsional stiffnesses of the beam, and Q̃1,2 the generalized forces

along the two directions. We define F̃1 = Q̃1 −
(
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)′
.

Eq. 1 can be rewritten in a dimensionless form 3 substituting u = ũ/d1, w = w̃/d1, x =

s/L, η1 = η̃1L
4/(D1τ) and scaling time with τ = L2

√
m/D1.

Applying the Galerkin method for the first mode in the two directions u(x, t) = a(t)ξ(x)

and w(x, t) = b(t)ξ(x) with ξ(x) the first flexural mode shape, equal in both directions, we

obtain:
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where F1 is the scaled dimensionless version of F̃1, and
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From our COMSOL simulations, the ∼ 0.5 % difference in the cross section of the

nanowire is already enough to produce a frequency splitting of the two perpendicular modes

similar to what is observed, such that D1/D2 ' 1.01. We also consider the beam to have

high torsional rigidity compared to the flexural rigidity, such that Dk � D1,2. Finally, we

find that nonlinear damping is negligible by evaluating the critical frequency at which the

bistability of the Duffing regime starts to occur. As a result, we obtain the final simplified

equation of motion in one direction:
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Note that, from equation 1 the coupling coefficient with dimensions would be defined as:
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II. MECHANICAL LOGIC

Due to the Duffing nonlinearity, when sweeping the driving amplitude at fixed frequency

f2, we observe a high jump between two levels in the response amplitude of mode 2, at a

critical driving amplitude. These two levels in the response are used to encode logical 0 and

1 output states4,5. The two inputs correspond to two signal voltages which are summed and

subsequently applied to the driving PZT. Logical 0 and 1 input states are defined by low
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and high driving voltages, respectively (See Fig. 1a). As shown in Fig. 1b (upper panel), we

obtain a high response when one or both inputs are high (01, 10, or 11) and a low response

when both input signals are low (00). This is therefore a realization of a logical OR gate.

This OR gate is converted into a NOR gate by taking as output the response amplitude of

mode 1 at f1 (lower panel Fig. 1b). When mode 2 is at the low level (for input 00) there is

almost no interaction between the two modes and we have the maximum response (logical

1) of mode 1 at the readout frequency. When instead the amplitude of mode 2 is high (for

01, 10, and 11), mode 1 shifts to a higher frequency and the logical output is 0.
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FIG. 1: (a) Simulated amplitude response curve of a Duffing oscillator, displaying its bistable

regime of motion. Dashed black lines highlight the driving amplitudes needed to created OR and

NOR gates. (b) Top panel: response amplitude of mode 2 as a function of time, for the four

combinations of two logical inputs, as indicated by the numbers on top. Bottom panel: response

amplitude of mode 1 as a function of time, for the same logical inputs.
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