Time-resolved nonlinear coupling between orthogonal flexural modes of a pristine GaAs nanowire - Supplementary Information

D. Cadeddu¹, F. R. Braakman¹,* G. Tütüncüoglu², F.

Matteini², D. Rüffer², A. Fontcuberta i Morral², and M. Poggio¹

2: École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland and

1: University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland

(Dated: January 22, 2016)

I. EQUATIONS OF MOTION

To derive the equations of motion for the two modes we treat the nanowire as an isotropic inextensible singly clamped Euler-Bernoulli beam. Following the approach used by Crespo da Silva and Glynn ^{1,2} we obtain two nonlinear equations describing the flexural vibrations of the beam, for the displacement \tilde{u} :

$$\begin{split} m\ddot{\tilde{u}} &+ \tilde{\eta_1}\dot{\tilde{u}} + D_1\tilde{u}'''' + D_1\left(\tilde{u}'\left(\tilde{u}'\tilde{u}'' + \tilde{w}'\tilde{w}''\right)'\right)' \\ &+ \left((D_1 - D_2)\left[\tilde{w}''\int_L^s \tilde{u}''\tilde{w}''\,ds - \tilde{w}'''\int_0^s \tilde{u}''\tilde{w}'\,ds\right] \\ &- \frac{(D_1 - D_2)^2}{D_k}\left[\tilde{w}''\int_0^s \int_L^s \tilde{u}''\tilde{w}''\,ds\,ds\right]'\right)' \\ &+ \frac{1}{2}m\left[\tilde{u}'\int_L^s \frac{\partial^2}{\partial\tilde{t}^2}\int_0^s \left(\tilde{u}'^2 + \tilde{w}'^2\right)\,ds\,ds\right]' = \tilde{Q_1} - \left(\tilde{u}'\int_L^s \tilde{Q_2}\,ds\right)' \end{split}$$
(1)

and a symmetric one for the displacement \tilde{w} . Here the dots and primes stand for derivative in time \tilde{t} and in arc length s respectively, m is the mass per unit length (= $\rho d_1 d_2$ with d_1 and d_2 dimensions of the cross section and ρ the density), $\tilde{\eta}_{1,2}$ the damping coefficient, $D_{1,2}$ the bending, and D_k the torsional stiffnesses of the beam, and $\tilde{Q}_{1,2}$ the generalized forces along the two directions. We define $\tilde{F}_1 = \tilde{Q}_1 - \left(\tilde{u}'\int_L^s \tilde{Q}_2 ds\right)'$. Eq. 1 can be rewritten in a dimensionless form ³ substituting $u = \tilde{u}/d_1, w = \tilde{w}/d_1, x =$

Eq. 1 can be rewritten in a dimensionless form ³ substituting $u = \tilde{u}/d_1, w = \tilde{w}/d_1, x = s/L, \eta_1 = \tilde{\eta}_1 L^4/(D_1 \tau)$ and scaling time with $\tau = L^2 \sqrt{m/D_1}$.

Applying the Galerkin method for the first mode in the two directions $u(x,t) = a(t)\xi(x)$ and $w(x,t) = b(t)\xi(x)$ with $\xi(x)$ the first flexural mode shape, equal in both directions, we obtain:

$$\ddot{a} + \omega_1^2 a + \eta_1 \dot{a} + \alpha \left(\frac{d_1}{L}\right)^2 a^3 + \left(\alpha + \left(1 - \frac{D_2}{D_1}\right)\beta_1 - \frac{D_1}{D_k}\left(1 - \frac{D_2}{D_1}\right)^2\beta_2\right) \left(\frac{d_1}{L}\right)^2 ab^2 + \gamma \left(\frac{d_1}{L}\right)^2 a(\dot{a}^2 + a\ddot{a} + \dot{b}^2 + b\ddot{b}) = \varepsilon F_1$$
(2)

where F_1 is the scaled dimensionless version of \tilde{F}_1 , and

$$\alpha = \int_{0}^{1} \xi(x) \left(\xi'(x) \left(\xi'(x) \xi''(x) \right)' \right)' dx = 40.41$$

$$\beta_{1} = \left[\int_{0}^{1} \xi(x) \left(\xi''(x) \int_{0}^{x_{1}} \left(\xi''(x) \right)^{2} dx_{1} \right)' dx \right]$$
(3)

$$= \left[\int_{0}^{1} \xi(x) \left(\xi''(x) \int_{1}^{x} \left(\xi''(x) \int_{0}^{x_{1}} \xi''(x) \xi'(x) dx_{1} \right)' dx \right] - \left[\int_{0}^{1} \xi(x) \left(\xi'''(x) \int_{0}^{x_{1}} \xi''(x) \xi'(x) dx_{1} \right)' dx \right] = -20.11$$
(4)

$$\beta_2 = \int_0^1 \xi(x) \left(\left(\xi''(x) \int_0^x \int_1^{x_1} \left(\xi''(x) \right)^2 dx_2 dx_1 \right)' \right)' dx = 16.60$$
(5)

$$\gamma = \int_0^1 \xi(x) \left(\xi'(x) \int_0^x \int_1^{x_1} \left(\xi'(x_2)\right)^2 dx_2 dx_1\right)' dx = 4.60 \tag{6}$$

$$\varepsilon = \int_0^1 \xi(x) \, dx = 0.78 \tag{7}$$

From our COMSOL simulations, the ~ 0.5 % difference in the cross section of the nanowire is already enough to produce a frequency splitting of the two perpendicular modes similar to what is observed, such that $D_1/D_2 \simeq 1.01$. We also consider the beam to have high torsional rigidity compared to the flexural rigidity, such that $D_k \gg D_{1,2}$. Finally, we find that nonlinear damping is negligible by evaluating the critical frequency at which the bistability of the Duffing regime starts to occur. As a result, we obtain the final simplified equation of motion in one direction:

$$\ddot{a} + \omega_1^2 a + \eta_1 \dot{a} + \alpha \left(\frac{d_1}{L}\right)^2 a^3 + \alpha \left(\frac{d_1}{L}\right)^2 a b^2 = \varepsilon F_1 \tag{8}$$

Note that, from equation 1 the coupling coefficient with dimensions would be defined as:

$$\tilde{\alpha}_1 \equiv \frac{D_1}{mL} \int_0^L \xi(s) \Big(\xi'(s) \big(\xi'(s) \xi''(s) \big)' \Big)' \, ds \tag{9}$$

II. MECHANICAL LOGIC

Due to the Duffing nonlinearity, when sweeping the driving amplitude at fixed frequency f_2 , we observe a high jump between two levels in the response amplitude of mode 2, at a critical driving amplitude. These two levels in the response are used to encode logical 0 and 1 output states^{4,5}. The two inputs correspond to two signal voltages which are summed and subsequently applied to the driving PZT. Logical 0 and 1 input states are defined by low

and high driving voltages, respectively (See Fig. 1a). As shown in Fig. 1b (upper panel), we obtain a high response when one or both inputs are high (01, 10, or 11) and a low response when both input signals are low (00). This is therefore a realization of a logical OR gate. This OR gate is converted into a NOR gate by taking as output the response amplitude of mode 1 at f_1 (lower panel Fig. 1b). When mode 2 is at the low level (for input 00) there is almost no interaction between the two modes and we have the maximum response (logical 1) of mode 1 at the readout frequency. When instead the amplitude of mode 2 is high (for 01, 10, and 11), mode 1 shifts to a higher frequency and the logical output is 0.

FIG. 1: (a) Simulated amplitude response curve of a Duffing oscillator, displaying its bistable regime of motion. Dashed black lines highlight the driving amplitudes needed to created OR and NOR gates. (b) Top panel: response amplitude of mode 2 as a function of time, for the four combinations of two logical inputs, as indicated by the numbers on top. Bottom panel: response amplitude of mode 1 as a function of time, for the same logical inputs.

* Author to whom correspondence should be addressed. Electronic mail: floris.braakman@unibas.ch.

- ¹ Crespo da Silva, M. R. M.; Glynn, C.C. J. Struct. Mech. **1978**, 6(4), 437-448.
- ² Crespo da Silva, M. R. M.; Glynn, C.C. J. Struct. Mech. 1978, 6(4), 449-461.

- ³ Venstra, W. J.; Westra, H. J. R.; Van der Zant, H. S. J. Nat. Commun. 2013, 2624.
- ⁴ Mahboob, I.; Yamaguchi, H. *Nature Nanotech.* **2008**, *3*, 275-279.
- ⁵ Yao, A.; Hikihara, T. Appl. Phys. Lett. **2014**, 105, 123104.