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A cylindrical dielectric wire in a uniform electric field produces an internal depolarization

field. This effect is shown in Figure S1. Under the hypothesis of a uniform polarization of

the dielectric parallel to the external field, the electric field at a point h along the long

axis of the wire is reduced by a depolarization field anti-parallel to the external field. This

reduction is substantially different for external fields parallel and perpendicular to the wire

axis.
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FIG. S1: Simulated values of Ez for a 11 µm long GaAs wire between two planar electrodes 20 µm

apart. Plots show the xz-plane, which cuts through the center of the wire. A cylindrical wire with

its axis (a) parallel and (b) perpendicular to the external field and a tapered wire with its axis (c)

parallel and (d) perpendicular to the field.
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In order to calculate this effect, we define the angles φ1,2(h) as shown in Fig S2 a):

cos(φ1) =
h√

(b/2)2 + h2
, cos(φ2) =

L− h√
(D/2)2 + (L− h)2

(1)

where b and D are the diameter of the bottom and top facets, respectively. By integrating

over the entire surface of the wire, we obtain a compact formula for the reduced electric field

~E along the axis of the wire as a function of the position h along the axis:

~E(φ1,2) =
1

γ(φ1, φ2)(εr − 1) + 1
~E0 (2)

where εr = 12.9 is the dielectric constant of the wire, γ(φ1, φ2) = 1
4

(
cos(φ1) + cos(φ2)

)
≡ γ⊥

for the external field perpendicular to the axis of the cylinder and γ(φ1, φ2) = sin2
(
φ1
2

)
+

sin2
(
φ2
2

)
≡ γ‖ for the field parallel to the axis.

In a real system, however, the hypothesis of the uniform and unidirectional polarization

does not hold. As a result, the solution deviates from the analytical description of Equa-

tion 2. A finite element simulation (COMSOL) can produce a more realistic result without

this simplifying assumption (Figure S2 b,c). The simulated (solid lines) and theoretical

(dashed lines) values of the electric field inside a cylindrical and tapered wire are plotted

as a function of h in the case of the external field parallel (blue) and perpendicular (orange

and red) to the wire axis.

In the case of our experimental setup, the field is also not uniform along z. In a first

approximation, however, the electric field inside the wire is obtained by just replacing the

uniform field ~E0 in Eq. 2 with a space decaying form, resulting in a curve similar to the one

simulated and shown in Fig. 4b in the main text.
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FIG. S2: (a) geometry of the wire and definition of the angles φ1,2. (b),(c) Normalized values of

the electric field inside a cylindrical wire (b) with L = 11 µm and D = 1.5 µm, and tapered wire

(c) with b = 250 nm, as a function of position along the axis of the wire. The solid lines correspond

to exact simulations, while dashed lines are values given by Equation 2. Red and orange curves

correspond to the perpendicular configuration and blue lines correspond to the parallel one.
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