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Full Derivation of Model 

In order to interpret our data we begin by making the simplifying assumption that our nanotube 
behaves as a single-domain magnetic particle, i.e. its magnetization is uniform and rotates in unison. 
For high enough applied fields, the nanotube is magnetized to saturation, and thus this single-
domain assumption is valid. We therefore describe the nanotube's magnetic state by the orientation 
of its total magnetization vector M. More complex states deviating from this assumption will be 
addressed separately later. Since the Ni nanotube is polycrystalline and does not exhibit magneto-
crystalline anisotropy, we assume the nanotube to exhibit only shape anisotropy. The total energy of 
the system can be written as the sum of the cantilever energy, the Zeeman energy, and an effective 
anisotropy energy: 

 𝐸 = 1
2
𝑘0(𝑙𝑒𝜃)2 − 𝑀𝑉𝐻 cos(𝜃 − 𝜙) + 𝐾𝑉 sin2 𝜙, (S1) 

where 𝑉 is the volume of the nanotube, 𝐾 is its anisotropy in the plane of the cantilever oscillation 
and 𝜙 is the angle between M and �̂�′. In order to calculate 𝜙, we minimize the energy of the system 
with respect to this angle. The solutions must satisfy both 𝜕𝐸 𝜕𝜙⁄ = 0 and 𝜕2𝐸 𝜕𝜙2⁄ > 0, giving: 

 𝐻𝑀 sin(𝜃 − 𝜙) = 2𝐾 cos𝜙 sin𝜙, (S2) 

 𝐻𝑀 cos(𝜃 − 𝜙) + 2𝐾(cos2 𝜙 − sin2 𝜙) > 0. (S3) 

Solutions for 𝜙 are difficult to obtain exactly, however, since 𝜃 ≪ 1, we can expand 𝜙 as a function 
of 𝜃 to first order around 𝜃 = 0: 

 𝜙(𝜃) = 𝜙0 + �𝜕𝜙
𝜕𝜃
�
0
𝜃. (S4) 

Returning to (S2) we find for 𝜃 ≪ 1: 

 𝜃 = 2𝐾
𝐻𝑀

sin𝜙 + tan𝜙. (S5) 

Solving for 𝜙0 at 𝜃 = 0 and using �𝜕𝜙
𝜕𝜃
�
0

= 1 �𝜕𝜃
𝜕𝜙
�
𝜙=𝜙0

� we find solutions in the form of (S4). 

Applying (S3) for 𝜙0 and 𝜃 = 0, we find limits on the stability of each solution, 
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 𝜙 =
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⎨

⎪⎪
⎧� 𝐻

𝐻+2𝐾𝑀
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𝜋 + � 𝐻

𝐻−2𝐾𝑀
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± arccos �−𝑀𝐻
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� + � 𝐻2

�2𝐾𝑀�
2
−𝐻2

�𝜃             for 𝐾 < 0 and |𝐻| < �2𝐾
𝑀
�

   . (S6) 

We then substitute the expansion (S4) for 𝜙(𝜃) into the expression for the torque acting on the 
cantilever, 𝜏 = −𝜕𝐸 𝜕𝜃 = −𝑘0𝑙𝑒

2𝜃 − 𝐻𝑀𝑉 sin(𝜃 − 𝜙)⁄ . Using (S2) and keeping only terms up to 
first order in 𝜃, we find, 

 𝜏 = −𝐾𝑉 sin(2𝜙0) − �𝑘0𝑙𝑒
2 + 2𝐾𝑉 cos(2𝜙0) �𝜕𝜙

𝜕𝜃
�
0
� 𝜃. (S7) 

The left-most term in (S7) produces a constant deflection of the cantilever, while the term 
proportional to 𝜃 determines the cantilever's spring constant. Approximating the cantilever as a 
simple harmonic oscillator, we have: 

 𝑚𝑒�̈� + Γ�̇� = 𝜏
𝑙𝑒

, (S8) 

where 𝑚𝑒 is the effective mass of the cantilever and Γ is the cantilever's dissipation. Therefore, 

 𝑚𝑒�̈� + Γ�̇� + �𝑘0 + 2𝐾𝑉
𝑙𝑒2

cos(2𝜙0) �𝜕𝜙
𝜕𝜃
�
0
� 𝑥 = −𝐾𝑉

𝑙𝑒
sin(2𝜙0). (S9) 

Solving this equation of motion we find the angular resonance frequency of the cantilever: 

 𝜔 = �𝑘0
𝑚𝑒

+ 2𝐾𝑉
𝑚𝑒𝑙𝑒2

cos(2𝜙0) �𝜕𝜙
𝜕𝜃
�
0
− Γ2

4𝑚𝑒2
. (S10) 

We define 𝜔0 = �𝑘0
𝑚𝑒

 and solve for the angular frequency shift Δ𝜔 = 𝜔 − 𝜔0: 

 Δ𝜔 = 𝜔0 ��1 + 2𝐾𝑉
𝑚𝑒𝜔02𝑙𝑒2

cos(2𝜙0) �𝜕𝜙
𝜕𝜃
�
0
− Γ2

4𝑚𝑒2𝜔02
− 1�. (S11) 

Since the last two terms in the square-root are small compared to 1, we expand (S11) to first order 
in these small parameters: 

 Δ𝜔 = 𝜔0
2𝑘0

�2𝐾𝑉
𝑙𝑒2

cos(2𝜙0) �𝜕𝜙
𝜕𝜃
�
0
− Γ2

4𝑚𝑒
�. (S12) 

In practice, the cantilevers used in these experiments show a small enough dissipation that the last 
term in (S12) is negligible, resulting in: 

 Δ𝜔 = 𝜔0
2𝑘0𝑙𝑒2

�2𝐾𝑉 cos(2𝜙0) �𝜕𝜙
𝜕𝜃
�
0
�. (S13) 

Combining (S6), (S13), and Δ𝑓 = Δ𝜔 (2π)⁄ , we calculate the expected frequency shifts as a 
function of 𝐻: 
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   . (S14) 

Singularities at 𝐻 = ± 2𝐾
𝑀

 reflect the break-down of the small angle approximation and the solutions 
become invalid near this field. The first two solutions correspond to 𝐌 pointing along ±�̂� 
respectively. The third solution, valid only for 𝐾 < 0, corresponds to 𝐌 along an easy axis 
perpendicular to �̂� (the implication of a negative 𝐾) and rotating toward �̂� with increasing 𝐻. 
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Fabrication 

 

Fig. S1: Motion picture of the sample fabrication, from optical micrographs. Two main steps are involved in 
the process, first, glueing of the cantilever tip, and second, attachment of the Ni nanotube. In preparation, a 
glass rod has been pulled to form a sharp tip and inserted into a micromanipulator setup. 
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Samples 

 

Fig. S2: Scanning electron microscopy (SEM) images 
showing the three configurations of the Ni nanotubes 
N1, N2, and N3. Each nanotube is affixed to the end of 
an ultrasensitive Si cantilever. The liquid-like material 
visible on the cantilevers is likely due to hydrocarbon 
adsorption during the long periods in the cryogenic 
measurement system. This material is non-magnetic 
and has not been seen to affect the magnetic response 
of our measurements. Three schematic diagrams (1, 2, 
and 3) show the corresponding plane of the cantilevers 
oscillation, with the nanotube’s symmetry axis aligned 
along ẑ , x̂ , and ŷ , respectively (see also main article, 
Fig. 1). 
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Step-like Structures in Configuration 1 

 

Fig. S3: Cantilever magnetometry measurements in 
configuration 1 (the nanotube’s symmetry axis is 
aligned along ẑ ). Red (blue) points represent data 
taken while sweeping H in the positive (negative) 
direction. Averaging times and step sizes taken vary 
with each measurement. 

At low fields between 150 and 250 mT the data show 
step-like structures, the field positions of the steps vary 
slightly with each measurement. These steps cannot be 
described by a uniform magnetization model. The 
presence of discrete steps indicates three to four multi 
domain states (MDSs), intermediate between two 
uniform axial states (UASs). Behavior asymmetric 
with respect to the sweep direction may be due to 
actual geometrical asymmetries of the Ni nanotube. 
Steps around ∆f = 0 (for non-zero fields) may suggest a 
preference for a global vortex state (GVS). 
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Minor Hysteresis Loops 

 

Fig. S4: Cantilever magnetometry measurements in minor sweep ranges for the three major orientations. 
Each column shows measurements from one of the major orientations as indicated by the schematic 
diagrams at the top (configurations 1, 2, and 3). The lower two rows show measurements of ∆f as a function 
of H in different ranges for each configuration. Red (blue) points represent data taken while sweeping H in 
the positive (negative) direction. For the measurements, the nanotubes were magnetized to saturation 
(|H| > 1.0 T), then starting at field I, the field was swept as illustrated by arrow II. At III, the sweeps were 
stopped and resumed in the opposite direction along arrow IV. The closer the reversal point III is towards the 
opposite saturated magnetization (i.e. the longer the field is swept along arrow II), the closer the final sweep 
resembles the measurements taken during a full sweep (black points). 
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Sample Specifications 
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1 150 105.4 2808.5 
(2801.9)* 70±10 25000 N1 21.0±0.5 360±8 303±5 44±9 0.83±0.18 

2 150 105.4 2093.8† 50±10 42000 N2 19.8±0.5 381±6 270±4 44±9 0.77±0.16 

3 150 105.4 2782.6 
(2781.0) 50±15 22000 

(15000) N3 18.2±0.5 349±5 274±5 44±9 0.67±0.14 

Table S1: Properties of the Si cantilever and Ni nanotube sample for each configuration. *Numbers in 
parentheses reflect the change in mass of the cantilever after one cool-down/warm-up cycle, likely due to 
adsorption of hydrocarbons or water present in the air. †Here the frequency is significantly lower compared 
to the other cantilevers of the same type. This frequency shift can be explained by an additional drop of 
glue unintentionally put on the cantilever. ‡The volume of the nanotube is calculated as a shallow, truncated 
cone: 
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