
Measuring high field gradients of cobalt nanomagnets in a spin-mechanical setup

Felix Hahne,1, 2, a) Teresa Klara Pfau,1, 2, a) Liza Žaper,3, a) Lucio Stefan,1, 2 Thibault

Capelle,1, 2 Andrea Ranfagni,1, 2 Martino Poggio,3 and Albert Schliesser1, 2

1)Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen,

Denmark
2)Center for Hybrid Quantum Networks, Niels Bohr Institute,

University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen,

Denmark
3)Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel,

Switzerland

(Dated: 27 August 2025)

Hybrid systems composed of a single nitrogen-vacancy center spin magnetically coupled

to a macroscopic mechanical resonator constitute promising platforms for the realization of

quantum information protocols and for quantum sensing applications. The magnetic struc-

ture that mediates the interaction must ensure high field gradients while preserving the

spin and mechanical properties. We present a spin-mechanical setup built around a cobalt

nanomagnet grown with focused electron beam-induced deposition. The magnetic struc-

ture is fully characterized, and a maximum gradient of 170kTm−1 is directly measured

at a spin-oscillator distance of a few hundred nanometers. Spin coherence was preserved

at the value of 20µs up to a gradient of 25kTm−1. The effect of the mechanical motion

onto the spin dynamics was observed, thus signifying the presence of spin-mechanics cou-

pling. Given the noninvasive nature of the nanomagnet deposition process, we foresee the

adoption of such structures in hybrid platforms with high-quality factor resonators, in the

"magnet on oscillator" configuration.

a)These authors contributed equally to this work.
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Following the landmark experiment1 that revealed how a single electron spin can exert a mea-

surable force on a macroscopic cantilever, various hybrid platforms composed of two-level sys-

tems coupled to macroscopic oscillators have emerged by integrating mechanical resonators with

superconducting qubits2–5 and solid state defects6,7. Thanks to the mature technology of ultra-

high quality factor oscillators8, these platforms are appealing as testbeds for quantum information

processing experiments9 and also for pushing the boundaries of quantum sensing10.

The paradigmatic system of a single spin coupled to a mechanical resonator device has been

successfully implemented using NV defects in diamond11 coupled to the mechanics via strain12,13

or magnetically14–20.

When a magnetically-decorated oscillator is placed in the vicinity of an NV center21, the Zee-

man interaction results in a parametric single-phonon coupling strength g0 = 2πγNVGzzzpf, where

γNV ≃ 28GHzT−1 is the gyromagnetic ratio of the NV center, Gz = ∂BNV/∂ z is the gradient at

the NV rest position—along the oscillator’s motion direction (z)—of the magnetic field component

(BNV) parallel to the NV spin quantization axis, and zzpf =
√

h̄/2mΩm is the zero-point motion

amplitude, where h̄ is the reduced Planck constant, Ωm is the oscillator’s angular frequency, and

m is its mass.

A crucial requirement for implementing quantum protocols is achieving a quantum cooperativ-

ity greater than one, with the cooperativity defined15 as C = g2
0T2Γ−1, where Γ in the decoherence

rate of the oscillator, and T2 denotes the spin transverse relaxation time under a specific decoupling

sequence. When C > 1, the zero-point mechanical fluctuations could be resolved within a few shot

measurements15,22. In this regime, a hot mechanical resonator could be exploited to realize quan-

tum gates between two spins in a hybrid nano-electromechanical system23, or – when C > 4 – to

efficiently generate entanglement between two spin qubits24.

An important challenge currently faced by the community in this regard, is the research of a

suitable magnetic structure, which must achieve high magnetic field gradients while preserving

both the oscillator’s properties and the overall system coherence25. Different methods have been

explored, including the use of NdFeB magnetic structures14, a CoFe magnetic film evaporated

onto a quartz tip19, a CoCr layer deposited on a tip15, and NdFeB beads16,18.

Here, we harness the nanometric control of focused electron beam induced deposition (FEBID)26

to grow soft cobalt nanomagnets on a silicon chip. The nanomagnetic structure, which exhibits

strong magnetic gradients, is installed in a spin-mechanics setup based on a scanning NV mi-

croscopy configuration.
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FIG. 1. Schematic of the scanning setup. (a) Sample and NV probe are mounted on two x,y,z piezo

scanners. The nanomagnets are magnetized by a 4cm-diameter spherical permanent magnet at a distance of

a few millimeters. A 0.9NA and 1mm working distance objective focuses the collimated excitation beam

onto the NV attached to a quartz tuning fork. A piezo shaker mechanically excites the tuning fork motion.

(b) Depicted is a single nanomagnet in proximity of the microwave (MW) stripline and the NV probe in the

laboratory frame. The silicon chip is placed in the apparatus with a printed circuit board holder that also

provides the microwave contacts.

The scanning NV microscopy configuration we use for this work utilizes x,y,z piezoelectric

nanopositioners (attocube), allowing nanometer-resolution spatial positioning of the mounted tun-

ing fork with the NV center relative to a selected sample with the nanomagnets (Fig. 1(a)). The

nanomagnets are magnetized by a homogeneous external magnetic bias field of up to 140mT gen-

erated by a spherical magnet which is aligned to the NV quantization axis. Excitation with laser

light at a wavelength of 515nm and readout of the NV photoluminescence rate are carried out us-

ing a home-built confocal microscope with a 0.9NA objective (Olympus MPlanFL N 100x). The

scanning system is configured vertically to allow the insertion of a permanent magnet for magnetic

biasing on the backside of the sample chip.

The core of the system consists of a 100-cut diamond scanning probe (QZabre QST27), hosting

the NV center, and a Si chip with the Co nanomagnets plus an integrated microwave stripline for

spin control (Fig. 1(b)). The nanomagnet of this study is approximately 40µm away from the

stripline and has a cylindrical shape with 830nm height and 400nm diameter.

To grow these nanomagnets we employ FEBID with the geometry defined as a circular pattern
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and the following parameters: an acceleration voltage of 5 kV, a beam current of 100 pA, a dwell

time of 1 µs, and a precursor flux corresponding to a vacuum pressure varying in the range 1.1×

10−6 mbar to 1.2×10−6 mbar (see SI Appendix A 2).

We perform magnetometry measurements28–30 to characterize the stray field Bnm(x,y,z) ema-

nating from the nanomagnet. We measure the shift in the lower energy electron spin resonance of

the optical ground state spin triplet while performing a xy raster scans on planes above the magnetic

structure. The optically detected magnetic resonance (ODMR) is performed at each position (x,y)

by applying a continuous-wave microwave sweep and acquiring the NV center photoluminescence

rate31. The scans are performed on a single nanomagnet under ambient conditions, without feed-

back and hovering at a fixed height above the substrate. The spin resonance frequencies ν±
res, in

the relevant experimental configuration, reads:

ν
±
res ≃ |ν0 ± γNVBNV| . (1)

Here, ν0 ≃ 2.87 GHz is the ground state zero-field splitting parameter and the total magnetic field

is defined as BNV = Bnm · n̂NV +Bbias, where n̂NV is the spin quantization axis direction, and the

bias field is assumed to be aligned to the spin axis. We are neglecting the local off-axis strain

field contribution to the energy levels, and we assume to operate the system in the regime where

B⊥ ≪ |ν0/γNV −|BNV||, where B⊥ is the magnitude of the field component orthogonal to the

spin quantization axis. All acquired scanned maps display stray field patterns consistent with a

magnetic dipole field as confirmed by dipole model fits shown in Fig. 2(a).

Approximating the nanomagnet as a dipole, we can extract the magnitude of the magnetic

dipole moment mdip from the dipole model fits (see SI Appendix B). We acquire a set of four

scanned maps at different scanning heights to capture the stray field distribution at multiple dis-

tances from the nanomagnet. We increment the heights from 960nm to 1460nm above the nano-

magnet in steps of zstep = 166(5)nm. The maps of a set share the same experimental conditions

otherwise. A simultaneous fit across all four scanned maps as shown in Fig. 2(b), incorporating

the known height steps zstep, additionally constrains the fit parameters rz,0 (depth of the approxi-

mated point-like dipole within the nanomagnet) and mdip, which for individual maps can float in a

correlated manner. The fit then allows quantitative inference of the magnetic moment magnitude

mdip. We repeat this fit procedure for external bias fields Bbias between from 30 mT to 140 mT and

plot mdip(Bbias) in Fig. 2(c,d) (green stars). The estimated dipole moment magnitude mdip(Bbias)

increases linearly, indicating a soft magnetic nature of the FEBID grown nanomagnet as expected
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FIG. 2. Dipole fitting and stray field characterization. (a) A map of the measured BNV at an estimated

height of h = 1294(40)nm above the nanomagnet and with Bbias ∼ 120mT. The white contour lines from

a dipole model fit agree with the gray data contour lines of equal value. The indicated nanomagnet is

centered around the dipole (x,y) position. (b) Simultaneous dipole fitting of four stray-field maps acquired

at successive heights above the sample in increments of zstep = 166(5)nm. A global dipole depth rz,0 is

enforced across all maps, while the relative height offset is fixed by the known step size. (c) Plot of the fitted

dipole magnetic moment mdip (green stars), dipole fitted msim
dip (red dots) and simulated net magnetization

mnet (blue and brown lines) with increasing external biasing field. For the hysteresis curve of mnet the

external field is varied from 0mT → 750mT → −750mT → 750mT in increments of 25mT. The brown

line marks the initial upsweep from 0mT to 750mT, while the blue line corresponds to the remainder of the

sweep. Arrows on the lines indicate the sweep direction of the external field. The inset displays a zoomed-in

section of the boxed data region for improved visibility of the individual points.

from their typically amorphous structure32.

For comparison, we similarly perform the simultaneous fits on stray field maps generated by
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a simulation of the nanomagnet, that is based on the dipole fit and AFM topography (see SI Ap-

pendix C), extracting msim
dip (Bbias) (red circles in Fig. 2(c,d)) that agrees well with mdip(Bbias).

Furthermore, we can calculate the net magnetic moment magnitude of the simulated nanomagnet

via the volume integral of the magnetization mnet ≈ |∑i jk Mi jk∆V |, where Mi jk is the magneti-

zation in each simulation cell of volume ∆V . The moment magnitude mnet(Bbias) is depicted in

Fig. 2(c,d). The agreement between mdip, msim
dip , and mnet demonstrates mutual validation across of

the experimental measurements, the dipole model fit, and the simulation.

The simulation of the magnetic structure predicts that the nanomagnet—that is mdip(Bbias)—

approaches saturation33 at around Bbias ∼ 300mT. Supporting this prediction we find agree-

ment between the ratio of the bias fields 140mT/300mT = 0.47 and the magnetization ratio

M/Msat = 0.45, where M = mdip(Bbias = 140mT)/V with the nanomagnet volume V and satu-

ration magnetization Msat = 1.26MAm−1 used for the simulation34.

Foreseeing a future implementation of the experiment in which the magnetic structure is de-

posited on a high-Q resonator35, enabling coupling between the out-of-plane motion and the NV

center, we are interested in a direct measurement of the magnetic gradient along the z axis.

Under the applied Bbias we measured the gradient Gz directly by the Zeeman shift from ODMR

spectra as the NV center was scanned through the stray field near the nanomagnet. Guided by both

the dipole model fit and the simulation, we identified the region of highest projected field gradient

Gz, while minimizing magnetic field B⊥ that is transverse to n̂NV, ensuring that the conditions of

the Eq. (1) remains valid.

As shown in Fig. 3(a-c) we find this region—which is governed by the relative angles between

NV and magnetic dipole orientation—towards the edge of the nanomagnet. There, we approached

the nanomagnet in the z direction and acquired ODMR spectra of the lower energy spin resonance

at multiple positions to extract the projected magnetic field BNV(z) as a function of distance to the

nanomagnet surface ∆z.

In Fig. 3(d), we present the measured stray fields BNV(z) for the two approach trajectories

exhibiting the highest field gradients, recorded at a bias field Bbias ∼ 120mT. The corresponding

field gradients Gz(z) are shown in Fig. 3(e), with maximum measured values of BNV = 40mT+

Bbias and Gz = 170kTm−1 obtained ∼ 250nm above the nanomagnet. Acquiring ODMR spectra

closer to the surface is hindered by the reduced ODMR signal contrast, which lowers the signal-

to-noise ratio below unity (see SI Appendix D). We attribute this to mechanical drifts in the setup

in the high-gradient field, primarily caused by microwave-induced heating.
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FIG. 3. Optimal approach region from simulations for measurement of the vertical gradient. (a-c) Simu-

lation maps of BNV, B⊥ and Gz with the same x,y-axes as Fig. 2(a), but at a height h = 200nm above the

nanomagnet. The white dotted circles mark the position and width of the simulated nanomagnet, the red star

highlight the approach location. (d) Plots of the measured magnetic field BNV(z)+Bbias and (e) the gradient

Gz(z) from two approaches as a function of the distance to the nanomagnet ∆z. The zero points on the

abscissa mark the AFM contact with the surface which was measured before each approach. ∆x = 111nm

and ∆y = 108nm correspond to the width of the vertically approached region. A description of the error

bars are in SI Appendix D.

After characterizing the DC behavior of the spin-mechanical system, we study the dynamics

of the NV center using coherent spin control. We measured the spin decay time under spin-echo

sequence, T2E, while the NV probe was positioned above the nanomagnet (Fig. 4(a)). The π-

pulse time was first characterized with a Rabi measurement, from which we extract the π-pulse

durations of ∼ 55ns. The spin-echo scheme shown in the inset of Fig. 4(a) was applied in two

different variations, where the rotation axis of the final π/2-pulse is either along the X or the −X

axis as defined in the Bloch sphere in the inset of Fig. 4(b). Defining IX and I−X as the measured
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FIG. 4. Controlling the NV center’s spin in a gradient field. (a) T2E measurement in the gradient field of

the nanomagnet. The inset shows the used pulse scheme. Visibility is calculated following36 from two

separate spin echo measurements where the last π/2 pulse is either applied along the +X or −X axis.

This measurement was done at Gz = 4.4(1.6)kTm−1 and gives T2E = 34.0(5.3)µs. The shaded area shows

the standard deviation. (b) Multiple T2E measurements at different positions in the gradient field Gz of a

nanomagnet. The measurements were done at distances between approximately 1587 nm and 540 nm. The

Bloch sphere in the inset defines the axis of the rotation.

photoluminescence rate at the end of a spin-echo sequence for the two readout configurations, we

compute the visibility Vecho = (IX − I−X)/(IX + I−X), which rejects the common-mode noise36.

The visibility Vecho is then fitted with an exponential decay to extract T2E. This measurement was

repeated at different positions in the gradient field Gz. In Fig. 4(b) the dependency of T2E on Gz

is shown. The shift due to instabilities during T2E measurements are indicated by horizontal error-

bars. Applying a MW drive in the vicinity of the NV and the nanomagnet causes heating leading

to a shift of ODMR resonance. Therefore it is not possible to apply accurate on-resonance pulses

at gradients higher than 30kT/m. The vertical error-bars are extracted from the fit of T2E.

Starting from a value T2E = 56(6)µs for a measurement far away from the nanomagnet, T2E

in Fig. 4(b) shows a significant decrease in value towards higher gradients. This trend can be

attributed to either magnetic field noise from the magnetic nano-structure, or thermal drifts of the

system, which translates into fluctuations in the frequency of the NV center causing dephasing25.

To show that the presented setup is suitable for performing a spin-mechanical experiment, we

further measure the effect of the tuning fork mechanical oscillation on the spin dynamics. As the
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FIG. 5. Impact of mechanical oscillation of the tuning fork on the NV center. Blue curve shows a spin-echo

measurement for an undriven tuning fork. The red and green curves show the measurement with a driven

tuning fork at Ωm ≈ 32kHz with 3mV and 9mV driving amplitude, receptively. Data (dotted lines) can be

fitted with a Bessel function of 0th order (full line).

tuning fork is driven at its resonance frequency and vibrates along the x direction, we measure a

series of unsynchronized spin-echo sequences (Fig. 5) with the NV center moving in a gradient

Gx = ∂BNV/∂x ≃ 540Tm−1.

When the tuning fork is not driven, we see undisturbed decay of the visibility with a T2E =

42(3)µs (blue curve). In contrast to that, a driven tuning fork results in a modulated decay (red

and green curves). It can be fitted to a zeroth order Bessel function,18

Vecho =

CJ0

(
4πγNVx0Gx

Ωm
(cos(Ωmτ)−1)

)
2−C

exp
[
−
(

2τ

T2E

)n]
, (2)

clearly indicating spin mechanical coupling, where C is the contrast of our measurement and x0 is

the motional amplitude of the NV center (see SI Appendix E).

The oscillation amplitude values extracted from the fit are x0 = 3(1)nm (red curve) for a piezo

drive amplitude of the tuning fork of 3 mV, and x0 = 11(1)nm (green curve) for a drive amplitude

of 9 mV. In the two configurations, the mechanical motion maps into an oscillating magnetic field

with amplitude 2.0(6)µT and 6.1(8)µT at the position of the NV center, respectively.

In conclusion, we have demonstrated the generation of strong magnetic field gradients—up to

170kTm−1—using a soft cobalt nanostructure integrated into a spin-mechanics platform based on
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a scanning NV microscopy configuration. Spin coherence measurements performed in magnetic

field gradients up to 25kTm−1 revealed a coherence time T2E of at least 20µs. Considering that

the experiments were conducted under open-loop mechanical conditions, we expect that, with

cryogenic operation and active stabilization, spin manipulation at even higher field gradients could

be achievable. Moreover, we observed a clear influence of the tuning fork motion on the NV spin

coherence, indicating the presence of measurable spin-mechanical coupling in our setup.

Crucially, the non-invasive nature of the nanomagnet deposition via FEBID allowed us to suc-

cessfully decorate a silicon nitride membrane37 with the magnetic structure (see SI Appendix A 2).

This opens the path for further studies, including the investigation of potential changes in the me-

chanical quality factor resulting from the deposition—an essential step for future quantum spin-

mechanics applications. If the membranes degradation is negligible, and we consider a typical res-

onance frequency of 1.5MHz, an effective mass of 2ng and an ultra-high quality factor38 Q = 109

at 4K, then with a spin coherence time of 1ms and a magnetic gradient of 170kTm−1 we obtain a

single-phonon coupling strength g0/2π = 8Hz. This corresponds to a cooperativity C = 5×10−3,

which is four orders magnitude higher than current state-of-the-art setups18. Remarkably, the force

sensitivity of such a device—limited by the thermal contribution Sth = 4kBT mΩ/Q = 4aN2/Hz

(with kB the Boltzmann constant)—would be comparable to the amplitude of the force produced

by the oscillating spin F = µBG = 1.6aN, thus making it possible to detect the force exerted by

the single spin within a few seconds averaging time, during which the spin can be re-polarized as

necessary.

Reaching the milestone of C ∼ 1 requires technical advances, and appears feasible with the

optimistic value36 of T2 = 10ms, and a gradient of 1MTm−1, predicted at a feasible distance of

150nm from the magnetic structure at saturation.

Furthermore, the demonstrated ability to grow nanomagnets directly on membranes provides

a promising platform for implementing quantum sensing experiments. While membranes have

recently been integrated into scanning force microscopy setups39,40 and adopted in sample-on-

resonator configurations for magnetic resonance force detection41, we foresee their use in magnetic

resonance force microscopy experiments in the practical "magnet-on-resonator" configuration42,

as well as for advancing nanoscale magnetic resonance imaging techniques10.

Finally, the high degree of control offered by the FEBID technique enables the tailoring of

nanomagnet geometry to suit specific experimental requirements of the magnetic field, making it

a versatile tool for future developments in hybrid quantum systems.
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Appendix A: Experimental Setup

1. Microwave Antenna Fabrication

Microwave striplines for the experiments are fabricated on high-resistivity (>20000 Ωcm) 4-

inch silicon wafers, polished on one side and 500(25) µm thick. A >1.5 µm layer of AZ 701 MIR

photoresist is spin-coated, soft-baked, exposed with a maskless aligner, post-baked, and devel-

oped in TMAH. After surface cleaning with an ion gun in an electron beam evaporator, a 5 nm

chromium adhesion layer and 100 nm gold layer are deposited. Lift-off is performed in 1165 re-

mover, followed by cleaning in IPA, deionized water, and spin drying. To protect the structures,

another photoresist layer is applied and baked and the wafer is diced with a diamond saw. Individ-

ual chips are cleaned in acetone and IPA and wirebonded to the printed circuit board before use.

25 μm

Nanomagnets

FIG. 6. Micrograph of the tapered down region of the MW stripline. Individual nanomagnets are deposited

near the stripline as highlighted.

2. FEBID Growth of Nanomagnet

The nanomagnets are positioned at distances ranging from 30µm to 210µm from the stripline

and are laterally separated from each other by 60µm in a grid pattern—sufficient to prevent mutual

interaction via stray fields. The deposition starts by releasing the precursor molecule Co2(CO)8 in

the vacuum chamber through a gas injection system (GIS, see Fig. 7). The desired geometry is de-

fined as a circular pattern in the computer-aided interface, where the irradiated precursor molecule

adsorbs on the surface as the focused electron beam follows the circular raster pattern from the

11



center outward. Initially, we deposited arrays of 4 by 4 circular geometry nanomagnets with de-

fined pattern diameters and heights: 250nm, 200nm, 150nm, 100nm and 50nm. With the goal in

mind to deposit Co nanomagnets on thin, insulating SiN membranes, which exhibit high charging

when exposed to an electron beam43, we opt for the following FEBID parameters: acceleration

voltage of 5kV, beam current of 100pA, dwell time of 1 µs, and precursor flux corresponding

to a vacuum pressure varying in the range of (1.72− 2.78)× 10−6 mbar. We note the deposited

structures show a systematic offset from the defined deposit diameter, ranging between 20nm and

100nm. The offset may come from the charging effect which is commonly referred to as the halo,

and it is produced through a dissociation of the adsorbed precursor by a cascade of secondary elec-

trons generated through backscattering of electrons off the substrate and the grown deposit34,44.

Further, we note that the defined pattern influences the charging effect. In a circularly defined pat-

tern the beam irradiation time per area is maximum in the center of the structure, causing higher

charging over time, while for a raster-scanned rectangular pattern the deposition is more uniform.

For our purpose of growing test nanomagnets on silicon chip this effect is seen as an increase in

the diameter. Conversely, in the growth of nanomagnets on silicon membranes (Fig. 8), where the

substrate is an insulating material SiN, and has a thickness of 50nm, we used a rectangular pattern

that combined with the scattering of electrons at the edges results in a circular-shaped structure.

GIS

Electron
Beam

Co2(CO)8

FIG. 7. Schematic of a FEBID process where a rectangular beam pattern is employed to create a structure

from precursor molecules injected by the gas injection system (GIS).
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Co nano-

magnet

FIG. 8. (a) Top view of a SiN membrane, indicating the position of deposited area. Inset: an SEM image of

a Co nanomagnet grown on a SiN membrane using a rectangular beam pattern, resulting in a circular-shape

structure with a diameter of 100nm.

3. External Bias Field

A 4cm diameter spherical NdFeB magnet (Supermagnete, K-40-C) with Br = 1.26T to 1.29T

residual field density is used. The magnet is inserted into a 3D printed cage which secures it in

place while allowing manual rotation. Combined with translation stages, a rotator and a goniome-

ter, the magnet can be freely aligned. The alignment is performed by centering the frequency

splitting of the spin resonances ν±
res from Eq. (1) symmetrically around ν0. According to45 we

calculate the norm |∇Bbias(r,θ)| ≃ 10T/m of the magnetic field produced by a spherical perma-

nent magnet at a distance r(Bbias = 120mT,θ = 30◦) that matches the scanning plane position.

A Comsol simulation of such a permanent magnet verifies this estimation. With this at hand, the

variation of ∆Bbias across the scanned map shown in Fig. 2 (a) is expected to be 30µT, which low

compared variation of the nanomagnetic stray field of a couple of mT.

4. Characterization of the Nanopositioners

z - Characterization

Long-lasting PL oscillations are observable when moving the NV probes in the z direction in

the vicinity (∼ 5µm) to the sample surface, that correspond to fluctuations in the excitation of the
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NV due to self-interference of the excitation laser with its back-reflection at the sample surface46.

These fringes occur with the laser wavelength λL = 515nm and by comparing them with measured

fringe period, we can estimate the voltage-to-distance ratio Cz of the z-scanner. Analyzing 47 PL

traces with such oscillations, acquired equivalently with the same sample and NV probe over

multiple weeks, we did not observe a systematic change in Cz over time that exceeds statistical

fluctuations.

An angle α between the reflection plane and the normal plane (see Fig. 9(a)) increases the

interference fringe spacing to

Cz,gen(α) =
2Cz

1+ cos(2α)
. (A1)

We probe the angle α by measuring individual AFM contact points on the sample. In a fixed-point

numerical iteration we find the fixed points

Cz,gen = 1214(39)nm/V , α = 19.42(24)◦ . (A2)

We verify Cz,gen by comparing the topographic heights of the nanomagnet measured with the

presented scanning NV platform and with a commercial calibrated AFM (Bruker, Dimension Icon

PT) and find good agreement using Cz,gen as the conversion factor for the scanner voltages. All

shown z-scanning distances in the main text are obtained from Cz,gen including a NV depth inside

the diamond probe apex of dNV = 70(20)nm.

x,y - Characterization

We use a checker pattern grid (Anfatec, UMG01B) with well defined trench separations

(∆xp,∆yp) to characterize the x,y-scanning axes of the nanopositioner under the assumption that

the two scanning axes are independent of each other. By measuring the voltage position Vx,p of

the pillars we can approximate the local piezo gain

gx(Vx) =
dx
dVx

≃
∆xp

∆Vx,p
, (A3)

by fitting a polynomial of second order to the measured distribution of pillar separations ∆xp/∆Vx,p.

Integrating the piezo gain g(Vx) in the scanned voltage region [V 1
x ,V

2
x ] yields the actual scanned

spatial distance ∆x

∆x =
∫ V 2

x

V 1
x

gx(Vx)dVx . (A4)

For the scanning y-axis, gy(Vy) and ∆y are calculated analogously.
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FIG. 9. Geometric overview. (a) Illustration of the sample tilt. Then green arrow is the back-reflected plane

wave from the excitation laser (b) Summary of the NV and magnetic dipole angles.

Appendix B: Dipole Fit

Individual Dipole Fit

We use the model of a magnetic dipole Bdip projected on to the axis of the NV center

n̂NV(φNV,θNV),

BNV(R) = Bdip(R) · n̂NV +Bbias

=
µ0

4π

(
3R(mdip ·R)

R5 −
mdip

R3

)
· n̂NV +Bbias ,

(B1)

to fit the measured stray field of the nanomagnet in the main text (Fig. 2). We are scanning in

planes at heights from 960nm to 1460nm above the nanomagnet. This includes the constant

offset from the NV-to-sample distance which we measured independently in AFM contact to be

70(20)nm. We define the scanning plane as R(x,y) = (x− x0,y− y0,0− z0), with dipole position

(x0,y0,z0), dipole magnetic moment mdip and vacuum magnetic permeability µ0. We approxi-

mate
(
n̂NV(φNV,θNV) ∥ mdip(φdip,θdip)

)
(see Fig. 9(b)), which reduces the fit parameter space to

{x0,y0,z0,φNV,θNV,mdip,Bbias}.

Simultaneous Dipole Fit

Incorporating the known height steps zstep in a simultaneous fit across the scanned maps of a

set enforces consistency with the vertical decay trend of a dipolar field, BNV ∝ mdip/r3
z,0, thereby
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FIG. 10. Cross section of the simulated nanomagnet in the scanning frame scanning frame denoted in

Fig. 1(b). The dashed line indicates the center of the approach region for the gradients measured in the

main text with width ∆x,y. The angle α resembles the plane tilt. The colorbar is linear within ±100mT and

logarithmic beyond that.

naturally constraining the strongly correlated rz,0 and the magnetic moment mdip parameters. The

individual scanned maps can spatially vary in the xy-plane from each other. Pre-computation of

the x0,y0 dipole positions of each map with the individual dipole fit allows further constrains. The

global fit parameter space is then reduced to a {z0,φNV,θNV,mdip,Bbias}.

Appendix C: Micromagnetic Simulation of the Nanomagnet

We use the finite-difference micromagnetic simulation software MuMax347,48 to simulate the

stray field of the FEBID grown nanomagnet using the parameters reported in34,49: exchange stiff-

ness constant Aex = 14× 10−12 Jm−1, zero magnetocrystalline anisotropy and a saturation mag-

netization Msat = 1.26Am−1 which is 90% of the bulk value based on comparable literature on

non-annealed structures26,34.

The geometry of the simulated nanomagnet is based on the AFM topography acquired with a

commercial AFM (Bruker, Dimension Icon PT). The simulation voxel size is (36.83,30,25)nm

with a grid size of (120,100,110)cells. We include an external bias field parallel to n̂NV with

angles given by the dipole fit Fig. 2 (a) from the main text. To match the sample plane tilt α
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from Appendix A 4, we rotate the nanomagnet accordingly. A cross section of the simulated

nanomagnet is shown in Fig. 10. In the hysteresis the external bias field is varied from 0mT →

750mT →−750mT → 750mT in increments of 25mT.

Appendix D: Gradient Measurement

To estimate the stray field BNV we use a Lorentzian model28 to evaluate the ODMR spectra. As

mentioned in the main text, every data point in Fig. 3 is evaluated from the average spectrum of

three ODMR spectra taken consecutively. A first Lorentzian fit is used to define an ODMR window

as twice the FWHM around the center frequency ν0 of the ODMR dip. We assume gaussian noise

as our base noise and calculate the standard deviation σ = kgauss ·MAD of the PL outside the

defined ODMR window, where MAD is the median absolute deviation and kgauss a scale factor for

normally distributed noise. We have observed that our data acquisition card (National Instruments

X Series) can induce single data point spikes in the measured PL. We attribute these outliers to a

buffer overflow of the card. To exclude these outliers in a second fitting step, data points inside as

well as outside the window that deviate by more than 3σ to the first Lorentzian fit are excluded.

From the outlier-free second Lorentzian fit we estimate stray field of the nanomagnet via Eq. (1).

Only ODMR measurements are considered that fulfill the two conditions:

• The frequency window of the full spectrum ∆ν > 4Γ.

• The ODMR contrast C > 1σ .

We argue that the first condition ensures to have enough statistical data to estimate a tangible

MAD and to differentiate the ODMR signal from slow PL drifts. The second condition ensures

SNR > 1. We give Γ as a conservative uncertainty for the stray field estimation ∆BNV. The data

acquisition time was set to 47ms per MHz bandwidth resulting in a 10s to 20s of continuous wave

MW emission for each data point - depending on the frequency range of the ODMR spectrum.

To probe and locate the region for the approaches shown in Fig. 3(d,e), we vertically approach

the surface along the indicated line in Fig. 10 using the nanopositioners while monitoring the PL.

Error Bars

The gradient is calculated via the gradient function of the Python package Numpy which uses

central differences and forward/backwards difference for the boundary points. Therefore, we prop-
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agate ∆BNV into the vertical error bars ∆Gz of Fig. 3 for interior and boundary points separately.

The error ∆Cz,gen from Eq. (A2) translates into the horizontal error bars quadratically combined

with the ∆dNV.

Appendix E: Pulse measurements

T2E vs gradient

At every position in the gradient field the π- pulse time was first characterized with a standard

Rabi measurement Fig. 11(a). A π-pulse is a resonant microwave pulse that inverts the population

of the two level system. When applied around the X-axis, it can effectively flip the state from |0⟩

to |1⟩.

Fitting the Rabi oscillations with

Asin(2πvrt +Φ)exp(−ΓRabit)+C , (E1)

we extract π- pulse durations of 55ns (bright blue line in Fig. 11(a)). In Fig. 11 (b) we show

the two different T2E measurements for the readout pulse around the X and -X axis on the Bloch

sphere. The two measurement are used to calculate the visibility as mentioned in the main text.

The horizontal error bars in Fig. 4 (main text) are calculated by measuring the gradient before

the spin echo measurement and after the measurement was done. The first two datapoints in Fig. 4

(main text) do not have a horizontal error bars because we did not measure the gradient before and

after the spin-echo sequence.

Modeling of the NV signal in presence of a mechanical drive

The mechanical oscillation, actuated by a piezo shaker driven at the mechanical resonance

frequency, can be written as x(t) = x0 cos(Ωmt +φ0), where Ωm,x0 and φ0 are the resonator fre-

quency, amplitude and phase respectively.

The semi-classical parametric spin-mechanics interaction Hamiltonian is:

H int/h̄ = πγNVGxx(t)σ3, (E2)

where Gx = ∂BNV/∂x is the gradient - along the oscillator’s motion direction (x) - of the magnetic

field component (BNV) parallel to the NV spin quantization axis. Here, σ3 is the Pauli matrix.
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(a) (b)

FIG. 11. (a) Rabi oscillations used to calibrate the π- and π/2-pulses. Usual π- pulse times of ca. 55ns are

extracted from the fit. The shaded area represents the standard deviation observed across multiple runs of

the measurement. (b) Spin-echo measurements, for calculating visibility in the main text. The shaded area

represents the standard deviation observed across multiple runs of the measurement. The red line indicates

the baseline of the background counts.

Starting from the initial |0⟩ state, the system evolves under the following spin echo pulse scheme:

[π/2− τ − π − τ − π/2] where τ is the time between the pulses. The first π/2 pulse creates a

superposition on the equator of the Bloch sphere which, up to a global phase, can be written as

|Ψ0⟩=
1√
2
(|0⟩− i |1⟩) , (E3)

in the frame rotating with the spin resonance frequency. At the end of the free evolution on the

equatorial plane, the spin state can be written as

|Ψ2τ⟩=
1√
2

(
|0⟩− ie−iφ |1⟩

)
, (E4)

where the accumulated relative phase reads18

φ(τ) =
2πγNVGxx0

Ωm
[sin(2Ωmτ +φ0)−2sin(Ωmτ +φ0)+ sin(φ0)] . (E5)

Lastly, after the final read-out π/2 pulse, the probability to find the system in the |0⟩ level is15

P0 = |⟨Ψ0|Ψ2τ⟩|2 =
1
2
(1∓ cos(φ)) , (E6)

where the sign ∓ depends on whether the readout pulse is around the X or the −X axis of the

Bloch sphere. Assuming a uniformly distributed φ0 during the pulse measurements, we get an

average contrast:

⟨cos(φ(τ))⟩φ0 = J0

(
4πγNVGxx0

Ωm
(cos(Ωmτ)−1)

)
. (E7)
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The visibility Vecho, as defined in the main text, reads:

Vecho =
CJ0

(
4πγNVGxx0

Ωm
(cos(Ωmτ)−1)

)
2−C

exp
[
−
(

2τ

T2E

)n]
, (E8)

where we have added the exponential decay which accounts for the spin decoherence.

REFERENCES

1D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic

resonance force microscopy,” Nature 430, 329–332 (2004).
2M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and M. L. Roukes, “Nanomechanical

measurements of a superconducting qubit,” Nature 459, 960–964 (2009).
3A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Nee-

ley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum

ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
4J.-M. Pirkkalainen, S. U. Cho, J. Li, G. S. Paraoanu, P. J. Hakonen, and M. A. Sillanpää,

“Hybrid circuit cavity quantum electrodynamics with a micromechanical resonator,” Nature 494,

211–215 (2013).
5S. Etaki, M. Poot, I. Mahboob, K. Onomitsu, H. Yamaguchi, and H. S. J. van der Zant, “Motion

detection of a micromechanical resonator embedded in a d.c. squid,” Nature Physics 4, 785–788

(2008).
6M. Montinaro, G. Wüst, M. Munsch, Y. Fontana, E. Russo-Averchi, M. Heiss, A. Fontcu-

berta i Morral, R. J. Warburton, and M. Poggio, “Quantum dot opto-mechanics in a fully self-

assembled nanowire,” Nano Letters 14, 4454–4460 (2014).
7D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart, and H. Wang, “Optomechanical quantum

control of a nitrogen-vacancy center in diamond,” Phys. Rev. Lett. 116, 143602 (2016).
8A. Bachtold, J. Moser, and M. I. Dykman, “Mesoscopic physics of nanomechanical systems,”

Rev. Mod. Phys. 94, 045005 (2022).
9U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, and A. Furusawa, “Hybrid discrete- and

continuous-variable quantum information,” Nature Physics 11, 713–719 (2015).
10A. Eichler, “Ultra-high-q nanomechanical resonators for force sensing,” Materials for Quantum

Technology 2, 043001 (2022).
11M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The

20

http://dx.doi.org/10.1038/nature02658
http://dx.doi.org/10.1038/nature08093
http://dx.doi.org/ 10.1038/nature08967
http://dx.doi.org/10.1038/nature11821
http://dx.doi.org/10.1038/nature11821
http://dx.doi.org/10.1038/nphys1057
http://dx.doi.org/10.1038/nphys1057
http://dx.doi.org/10.1021/nl501413t
http://dx.doi.org/10.1103/PhysRevLett.116.143602
http://dx.doi.org/10.1103/RevModPhys.94.045005
http://dx.doi.org/10.1038/nphys3410
http://dx.doi.org/10.1088/2633-4356/acaba4
http://dx.doi.org/10.1088/2633-4356/acaba4


nitrogen-vacancy colour centre in diamond,” Physics Reports 528, 1–45 (2013), the nitrogen-

vacancy colour centre in diamond.
12A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp, and P. Maletinsky, “Strong mechanical driving

of a single electron spin,” Nature Physics 11, 820–824 (2015).
13P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, “Dynamic strain-mediated

coupling of a single diamond spin to a mechanical resonator,” Nature Communications 5, 4429

(2014).
14O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-

vacancy defect coupled to a nanomechanical oscillator,” Nature Physics 7, 879–883 (2011).
15S. Kolkowitz, A. C. Bleszynski Jayich, Q. P. Unterreithmeier, S. D. Bennett, P. Rabl, J. Harris,

and M. D. Lukin, “Coherent sensing of a mechanical resonator with a single-spin qubit,” Science

335, 1603–1606 (2012).
16B. Pigeau, S. Rohr, L. Mercier de Lépinay, A. Gloppe, V. Jacques, and O. Arcizet, “Observa-

tion of a phononic mollow triplet in a multimode hybrid spin-nanomechanical system,” Nature

Communications 6, 8603 (2015).
17T. Oeckinghaus, S. A. Momenzadeh, P. Scheiger, T. Shalomayeva, A. Finkler,

D. Dasari, R. Stöhr, and J. Wrachtrup, “Spin–phonon interfaces in coupled

nanomechanical cantilevers,” Nano Letters 20, 463–469 (2020), pMID: 31820999,

https://doi.org/10.1021/acs.nanolett.9b04198.
18F. Fung, E. Rosenfeld, J. D. Schaefer, A. Kabcenell, J. Gieseler, T. X. Zhou, T. Madhavan,

N. Aslam, A. Yacoby, and M. D. Lukin, “Toward programmable quantum processors based on

spin qubits with mechanically mediated interactions and transport,” Phys. Rev. Lett. 132, 263602

(2024).
19S. Hong, M. S. Grinolds, P. Maletinsky, R. L. Walsworth, M. D. Lukin, and A. Yacoby, “Coher-

ent, mechanical control of a single electronic spin,” Nano Letters 12, 3920–3924 (2012), pMID:

22800099, https://doi.org/10.1021/nl300775c.
20J. Gieseler, A. Kabcenell, E. Rosenfeld, J. D. Schaefer, A. Safira, M. J. A. Schuetz, C. Gonzalez-

Ballestero, C. C. Rusconi, O. Romero-Isart, and M. D. Lukin, “Single-spin magnetomechanics

with levitated micromagnets,” Phys. Rev. Lett. 124, 163604 (2020).
21P. Rabl, P. Cappellaro, M. V. G. Dutt, L. Jiang, J. R. Maze, and M. D. Lukin, “Strong magnetic

coupling between an electronic spin qubit and a mechanical resonator,” Phys. Rev. B 79, 041302

(2009).

21

http://dx.doi.org/https://doi.org/10.1016/j.physrep.2013.02.001
http://dx.doi.org/10.1038/ncomms5429
http://dx.doi.org/10.1038/ncomms5429
http://dx.doi.org/10.1038/nphys2070
http://dx.doi.org/10.1038/ncomms9603
http://dx.doi.org/10.1038/ncomms9603
http://dx.doi.org/10.1021/acs.nanolett.9b04198
http://arxiv.org/abs/https://doi.org/10.1021/acs.nanolett.9b04198
http://dx.doi.org/10.1103/PhysRevLett.132.263602
http://dx.doi.org/10.1103/PhysRevLett.132.263602
http://dx.doi.org/10.1021/nl300775c
http://arxiv.org/abs/https://doi.org/10.1021/nl300775c
http://dx.doi.org/10.1103/PhysRevLett.124.163604
http://dx.doi.org/10.1103/PhysRevB.79.041302
http://dx.doi.org/10.1103/PhysRevB.79.041302


22S. D. Bennett, S. Kolkowitz, Q. P. Unterreithmeier, P. Rabl, A. C. Bleszynski Jayich, J. G. E.

Harris, and M. D. Lukin, “Measuring mechanical motion with a single spin,” New Journal of

Physics 14, 125004 (2012).
23P. Rabl, S. J. Kolkowitz, F. H. L. Koppens, J. G. E. Harris, P. Zoller, and M. D. Lukin, “A

quantum spin transducer based on nanoelectromechanical resonator arrays,” Nature Physics 6,

602–608 (2010).
24E. Rosenfeld, R. Riedinger, J. Gieseler, M. Schuetz, and M. D. Lukin, “Efficient entanglement

of spin qubits mediated by a hot mechanical oscillator,” Phys. Rev. Lett. 126, 250505 (2021).
25D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong, and A. C. B. Jayich, “Topical review: spins

and mechanics in diamond,” Journal of Optics 19, 033001 (2017).
26J. M. De Teresa, A. Fernández-Pacheco, R. Córdoba, L. Serrano-Ramón, S. Sangiao, and M. R.

Ibarra, “Review of magnetic nanostructures grown by focused electron beam induced deposition

(febid),” Journal of Physics D: Applied Physics 49, 243003 (2016).
27QZabre Ltd, “Qzabre quantum scanning tips,” (2025), accessed: 2025-08-07.
28G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wo-

jcik, P. R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and

J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient condi-

tions,” Nature 455, 648–651 (2008).
29P. Maletinsky, S. Hong, M. S. Grinolds, B. Hausmann, M. D. Lukin, R. L. Walsworth, M. Loncar,

and A. Yacoby, “A robust scanning diamond sensor for nanoscale imaging with single nitrogen-

vacancy centres,” Nature nanotechnology 7, 320–324 (2012).
30L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry

with nitrogen-vacancy defects in diamond,” Reports on progress in physics 77, 056503 (2014).
31A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. von Borczyskowski, “Scan-

ning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276,

2012–2014 (1997), https://www.science.org/doi/pdf/10.1126/science.276.5321.2012.
32A. Fernández-Pacheco, L. Skoric, J. M. De Teresa, J. Pablo-Navarro, M. Huth, and O. V.

Dobrovolskiy, “Writing 3d nanomagnets using focused electron beams,” Materials 13 (2020),

10.3390/ma13173774.
33J. M. Coey, Magnetism and magnetic materials (Cambridge university press, 2010).
34L. Žaper, P. Rickhaus, M. Wyss, B. Gross, K. Wagner, M. Poggio, and F. Braakman, “Scan-

ning nitrogen-vacancy magnetometry of focused-electron-beam-deposited cobalt nanomagnets,”

22

http://dx.doi.org/10.1088/1367-2630/14/12/125004
http://dx.doi.org/10.1088/1367-2630/14/12/125004
http://dx.doi.org/10.1038/nphys1679
http://dx.doi.org/10.1038/nphys1679
http://dx.doi.org/10.1103/PhysRevLett.126.250505
http://dx.doi.org/10.1088/2040-8986/aa52cd
http://dx.doi.org/10.1088/0022-3727/49/24/243003
https://qzabre.com/en/products/scanning-tips
http://dx.doi.org/10.1038/nature07278
http://dx.doi.org/10.1126/science.276.5321.2012
http://dx.doi.org/10.1126/science.276.5321.2012
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.276.5321.2012
http://dx.doi.org/10.3390/ma13173774
http://dx.doi.org/10.3390/ma13173774


ACS Applied Nano Materials 7, 3854–3860 (2024), https://doi.org/10.1021/acsanm.3c05470.
35Y. Tsaturyan, A. Barg, E. S. Polzik, and A. Schliesser, “Ultracoherent nanomechanical res-

onators via soft clamping and dissipation dilution,” Nature Nanotechnology 12, 776–783 (2017).
36N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic

spin coherence time approaching one second,” Nature communications 4, 1743 (2013).
37L. Catalini, Y. Tsaturyan, and A. Schliesser, “Soft-clamped phononic dimers for mechanical

sensing and transduction,” Phys. Rev. Appl. 14, 014041 (2020).
38M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser, “Measurement-based quantum

control of mechanical motion,” Nature 563, 53–58 (2018).
39D. Hälg, T. Gisler, Y. Tsaturyan, L. Catalini, U. Grob, M.-D. Krass, M. Héritier, H. Mattiat, A.-K.

Thamm, R. Schirhagl, E. C. Langman, A. Schliesser, C. L. Degen, and A. Eichler, “Membrane-

based scanning force microscopy,” Phys. Rev. Appl. 15, L021001 (2021).
40T. Gisler, D. Hälg, V. Dumont, S. Misra, L. Catalini, E. C. Langman, A. Schliesser, C. L. De-

gen, and A. Eichler, “Enhancing membrane-based scanning force microscopy through an optical

cavity,” Phys. Rev. Appl. 22, 044001 (2024).
41N. Scozzaro, W. Ruchotzke, A. Belding, J. Cardellino, E. C. Blomberg, B. A. McCullian, V. P.

Bhallamudi, D. V. Pelekhov, and P. C. Hammel, “Magnetic resonance force detection using a

membrane resonator,” Journal of Magnetic Resonance 271, 15–20 (2016).
42J. G. Longenecker, H. J. Mamin, A. W. Senko, L. Chen, C. T. Rettner, D. Rugar, and J. A.

Marohn, “High-gradient nanomagnets on cantilevers for sensitive detection of nuclear magnetic

resonance,” ACS Nano 6, 9637–9645 (2012).
43S. K. de Boer, W. F. van Dorp, and J. T. M. De Hosson, “Charging effects during focused

electron beam induced deposition of silicon oxide,” Journal of Vacuum Science & Technology

B 29 (2011).
44C. Magén, J. Pablo-Navarro, and J. M. De Teresa, “Focused-electron-beam engineering of 3d

magnetic nanowires,” Nanomaterials 11, 402 (2021).
45J. M. Camacho and V. Sosa, “Alternative method to calculate the magnetic field of permanent

magnets with azimuthal symmetry,” Revista mexicana de física E 59, 8–17 (2013).
46N. M. Israelsen, S. Kumar, M. Tawfieq, J. S. Neergaard-Nielsen, A. Huck, and U. L. Andersen,

“Increasing the photon collection rate from a single nv center with a silver mirror,” Journal of

optics 16, 114017 (2014).
47A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyen-

23

http://dx.doi.org/10.1021/acsanm.3c05470
http://arxiv.org/abs/https://doi.org/10.1021/acsanm.3c05470
http://dx.doi.org/10.1038/nnano.2017.101
http://dx.doi.org/10.1103/PhysRevApplied.14.014041
http://dx.doi.org/10.1038/s41586-018-0643-8
http://dx.doi.org/10.1103/PhysRevApplied.15.L021001
http://dx.doi.org/10.1103/PhysRevApplied.22.044001
http://dx.doi.org/10.1021/nn3030628


berge, “The design and verification of mumax3,” AIP advances 4 (2014).
48L. Exl, S. Bance, F. Reichel, T. Schrefl, H. Peter Stimming, and N. J. Mauser, “Labonte’s method

revisited: An effective steepest descent method for micromagnetic energy minimization,” Jour-

nal of Applied Physics 115 (2014).
49R. Cheenikundil and R. Hertel, “Switchable magnetic frustration in buckyball nanoarchitec-

tures,” Applied Physics Letters 118 (2021).

24


	Measuring high field gradients of cobalt nanomagnets in a spin-mechanical setup
	Abstract
	Experimental Setup
	Microwave Antenna Fabrication
	FEBID Growth of Nanomagnet
	External Bias Field
	Characterization of the Nanopositioners
	z - Characterization
	x,y - Characterization


	Dipole Fit
	Individual Dipole Fit
	Simultaneous Dipole Fit


	Micromagnetic Simulation of the Nanomagnet
	Gradient Measurement
	Error Bars

	Pulse measurements
	T2E measurement
	Modeling of the NV signal in presence of a mechanical drive

	References


