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Note S1. Nanowire magnetic force microscopy

We describe the motion of the nanowire (NW) tip in each of the two fundamental flexural 

modes as an independent driven damped harmonic oscillator:68

, (1)𝑚�̈�(𝑡) + Γ�̇�(𝑡) + 𝑘𝑥(𝑡) = 𝐹𝑥(𝑡)

where the mode is characterized by the effective mass , the dissipation , the spring 𝑚 Γ

constant , and is driven by the force component  along the mode oscillation direction. The 𝑘 𝐹𝑥

Fourier transform of this equation of motion yields the response of the flexural motion to the 

driving force:

, (2)‒ 𝑚𝜔2�̃�(𝜔) + 𝑖Γ𝜔�̃�(𝜔) + 𝑘�̃�(𝜔) = �̃�𝑥(𝜔)
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, (3)
�̃�(𝜔) = ( 1

𝑚(𝜔0
2 ‒ 𝜔2) + 𝑖Γ𝜔)�̃�𝑥(𝜔)

where  is the angular resonance frequency. 𝜔0 = 𝑘 𝑚

The response of each mode can be changed by the interaction of the tip with the 

sample. For a NW with a magnetic tip, the dominant interactions are with the stray magnetic 

fields produced by the sample below. In particular, any response in-phase or in quadrature 

with the NW displacement  results in changes of the resonant frequency or the 𝑥(𝑡)

dissipation. Separating the Fourier transform of the driving force into forces in-phase and in 

quadrature with the displacement, as well as a force not proportional to the NW motion, we 

have:

, (4)‒ 𝑚𝜔2�̃�(𝜔) + 𝑖Γ𝜔�̃�(𝜔) + 𝑘�̃�(𝜔) = 𝛼𝐼�̃�(𝜔) + 𝑖𝛼𝑄�̃�(𝜔) + �̃�𝑥,0(𝜔)

, (5)

�̃�(𝜔) = ( 1

𝑚(𝜔0
2 ‒

𝛼𝐼

𝑚
‒ 𝜔2) + 𝑖(Γ𝜔 ‒ 𝛼𝑄)

)�̃�𝑥,0(𝜔)

where  and  are the proportionality constants of the in-phase and quadrature forces with 𝛼𝐼 𝛼𝑄

respect to the displacement, respectively.

This transfer function results in a modified angular resonance frequency 

 and a modified dissipation . In the limit , changes 
𝜔0

' = 𝜔0
2 ‒

𝛼𝐼

𝑚 Γ' = Γ ‒
𝛼𝑄

𝜔 𝛼𝐼 ≪ 𝑚𝜔0
2 = 𝑘

in this angular resonance frequency and dissipation are given by:

, (6)
Δ𝜔0 =‒

𝛼𝐼

2𝑚𝜔0

. (7)
ΔΓ =‒

𝛼𝑄

𝜔

Using an approach similar to that used to calibrate MFM tips, we model the force 

exerted on the tip by a magnetic field by using the so-called point-probe approximation. This 

approximation models the magnetization distribution of the tip as an effective magnetic 

monopole moment , ignoring the higher moments.60 This approximation can be made 𝑞0
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because the magnetic tip is magnetized along its axis and because the decay length of the 

magnetic field from our sample is much shorter than the tip length. In this case, the sample 

fields only interact with the monopole-like magnetic charge distribution at the closest end of 

the magnetic tip and not with the opposite charge distribution at the other end. We therefore 

approximate the force on the NW tip along the NW oscillation direction as:

, (8)𝐹𝑥 = 𝑞0𝐵𝑥

where  is the component of the stray magnetic field produced by the sample at the position 𝐵𝑥

of the magnetic tip and along the mode oscillation direction. For small oscillations of the NW 

flexural mode, the tip moves only slightly around its equilibrium position. In this case, we 

linearly expand  as a function of this oscillation around the equilibrium position :𝐵𝑥 𝑥 = 0

. (9)
𝐹𝑥 = 𝑞0𝐵𝑥,0 + 𝑞0 �𝑑𝐵𝑥

𝑑𝑥 |0 𝑥

Since the magnetic stray field produced by the magnetization is, in general, not homogenous, 

 contains a term that reflects the spatial gradient of the field . In addition, if the field �𝑑𝐵𝑥

𝑑𝑥 |0 𝐺0

produced by the NW MFM tip is strong enough, it can induce the sample magnetization to 

change below it as it oscillates. As the magnetic tip moves above the sample, it modulates the 

local magnetic field in the sample below, driving changes in its magnetization. In the Fourier 

domain, these changes will depend on the local magnetic susceptibility of the sample 

, which has in general an in-phase  and out-of-phase  component.  indicates 𝜒 = 𝜒' + 𝑖𝜒'' 𝜒' 𝜒'' 𝜒'

the linear response of the sample magnetization to a change in the local field, while  is 𝜒''

related to dissipative processes in the sample magnetization caused by the changing field. 

These induced changes in local magnetization, in turn, result in -dependent changes in the 𝑥

stray magnetic field experienced by the MFM tip. As a result, the Fourier transform of the 

force on the NW tip is:

, (10)�̃�𝑥 = 𝑞0�̃�𝑥,0 + 𝑞0𝐺0�̃� + 𝑞0𝛾𝜒' �̃� + 𝑖𝑞0𝛾𝜒'' �̃�

where  is a constant depending on the details of the tip interaction. The first term on the 𝛾

right-hand side of (10) describes the force acting on the MFM tip from an externally applied 
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magnetic field with Fourier transform . The second term quantifies the force acting in-�̃�𝑥,0

phase with the NW oscillation due to the gradient of the sample’s time-independent stray 

field, quantified by the spatial derivative along , . The terms involving  and  account 𝑥 𝐺0 𝜒' 𝜒''

for in- and out-of-phase forces produced by local magnetization dynamics, driven by the 

MFM tip itself. By comparing the right-hand side of (10) and (4), we see that:

, (11)𝛼𝐼 = 𝑞0(𝐺0 + 𝛾𝜒')

, (12)𝛼𝑄 = 𝑞0𝛾𝜒''

, (13)
Δ𝜔0 =‒

𝑞0(𝐺0 + 𝛾𝜒')
2𝑚𝜔0

. (14)
ΔΓ =‒

𝑞0𝛾𝜒''

𝜔

If as in Fig. 4 of the main text, the sample is magnetized by a large applied field, then the 

static magnetic field gradient produced by the sample is much larger than the dynamic effect 

of the tip on the sample, i.e. . In this case,  and the measured 𝐺0 ≫ 𝛾𝜒' Δ𝜔0 ≈‒
𝑞0𝐺0

2𝑚𝜔0

frequency shift is proportional to the gradient of the static stray magnetic field produced by 

the sample. If, on the other hand, as in Fig. 5 of the main text, there is no applied field and the 

sample is not strongly magnetized, the dynamic effect of the tip on the sample can dominate, 

i.e. . Then,  In this case, as shown in Fig. 5 of the main text,  𝛾𝜒' ≫ 𝐺0
Δ𝜔0 ≈‒

𝑞0𝛾𝜒'

2𝑚𝜔0
. 

Δ𝜔0

and  reveal information about the in-phase and out-of-phase magnetic susceptibility of the ΔΓ

part of the sample in immediate proximity to the NW MFM tip.

Note S2. Fourier analysis of feature size

In order to analyze the spatial extent of the magnetic structure inhomogeneities present in 

both the Δf and ΔΓ images, the data points from a 1.7 × 1.7 µm2 window were subjected to a 

2D Fourier transform. Subsequently the data were high-pass filtered and different spatial 
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frequency components extracted by integrating over all directions with fixed spatial 

frequency in reciprocal space.

The results are plotted in Fig. S2 for Δf and ΔΓ as a function of the spatial frequency 

and temperature. Focusing on Δf, the characteristic feature size is roughly between 250 and 

500 nm for the whole temperature range although smaller features are also present below 

12 K. Focusing on ΔΓ, at the onset of the transition many different spatial frequency 

components are present, ranging from 120 to 900 nm. However, the low spatial frequency 

components at 580 and 900 nm, exhibit a maximum during the onset of the transition. At the 

peak in ΔΓ near 10 K, the intensity gradually shifts to higher spatial frequencies with this 

trend continuing down to lower temperatures.

This analysis is limited by a scan resolution of about 50 nm per pixel. However, it 

demonstrates the clear differences between the two measurement channels – Δf and ΔΓ – 

peaked at different temperatures and exhibiting features of different sizes, which are 

independent of each other.
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Fig. S1. Top row: EuGe2 bilayer sample imaged at zero field and at T = 7.3 K before and 

after switching the tip magnetization by applying a small reverse field. Bottom row: Au-

mircrowire loop with a constant DC current passing through, also imaged before and after 

switching the tip magnetization. In the second case the contrast is inverted as is expected 

when imaging the gradient of a static stray magnetic field. However, on the EuGe2 bilayer 

sample no contrast inversion is observed, making the case for the contrast in Fig. 5a being 

dominated by the in-phase AC magnetic susceptibility (see Eq. 13).
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Fig. S2. Fourier analysis of the Δf and ΔΓ images of the inner part of the EuGe2 bilayer 

sample shown in Figs. 5a and b measured at zero field. Fourier transform of a) the combined 

frequency shift Δf and b) the dissipation ΔΓ, plotted as a function of spatial frequency and 

temperature. Please note the non-linear color bars that highlight the tails at higher spatial 

frequencies.


