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SUPPLEMENTARY NOTE 1: FERROMAGNETIC TRANSITION

In the main text (Fig. 1), magnetic characterisation data for EuFe2(As1−xPx)2 samples S1 and S2 are presented. In the zero-
field cooled curve of S1 the superconducting transition is clearly visible, while the ferromagnetic transition exhibits an unusual
form. Figure 1 shows a field cooled measurement of S1 in a larger field, exhibiting a more typical form. The crossover from
paramagnetic to ferromagnetic behaviour is evident at T ≈ 19.3 K, while the superconducting transition at T ≈ 24.5 K is now
no longer visible.

SUPPLEMENTARY NOTE 2: COMPARISON OF REVERSIBLE MAGNETISATION IN SAMPLES S1 AND S2

In the main text we discuss the differences in the magnetic characterisation evident in the magnetic hysteresis loops of the
two samples S1 (TFM ≈ 19.3 K < Tc ≈ 24.5 K) and S2 (Tc ≈ 12.5 K < TFM ≈ 19.3 K). The two samples exhibit similar
temperature dependencies of their susceptibilities, but markedly different coercive fields. We argue that the measured magnetic
irreversibility is not caused by ferromagnetic domain pinning but by irreversible vortex dynamics that is a result of the presence
of both the superconducting and ferromagnetic orders.

Supplementary Figure 1. Ferromagnetic transition in sample S1. Field-cooled measurement of the magnetic susceptibility χ = M/H for
EuFe2(As1−xPx)2 sample S1 in an applied field of 500 Oe oriented parallel to the crystalline c-axis.
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The reversible component of the magnetisation is Mrev(H) = (Mupp(H)−Mlow(H))/2, where Mupp(H) and Mlow(H) are
the total magnetisation measured in the upper and lower branches of the hysteresis loop. Figure 2 shows a comparison of Mrev

between samples S1 and S2 at a different temperatures with the two samples in various magnetic phases: paramagnetic (PM),
superconducting (SC), ferromagnetic (FM), and simultaneously superconducting and ferromagnetic (SC+FM). The response of
either sample can be scaled onto the other with a single field-independent, weakly temperature-dependent scale factor. The scale
factor arises in part due to the different sample volumes and also their different aspect ratios, and these two contributions will
affect the ferromagnetic and superconducting portion of the sample response differently.

Given that the two samples exhibit the same reversible magnetic response across the whole temperature range examined, we
conclude that there is no significant difference in the paramagnetic and ferromagnetic states of the two samples. Furthermore,
in the region where S1 is both SC and FM, and S2 is only FM (i.e. Supplementary Figure 2, T = 16 K), S2 exhibits a very soft
form of ferromagnetism with Hc ∼ 0 until T < Tc while, contrastingly, Hc in S1 grows quickly as T is reduced (Fig. 1f). Since
we have argued that the reversible magnetic states of the two samples are very similar, this difference in irreversibility is then
precisely due to a combination of the superconducting and ferromagnetic states and not related to the intrinsic, highly-reversible
ferromagnetic state that the two samples share.

Supplementary Figure 2. Comparison of the reversible component of the magnetisation Mrev(H) between samples S1 and S2 at various
temperatures. The responses of the two samples scale very well with an H-independent, weakly T -dependent scale factor.

SUPPLEMENTARY NOTE 3: ESTABLISHING THE CRITICAL STATE

In order to make a valid analysis based on the critical state model it is necessary to ensure that the sample has reached full
magnetic flux penetration[1–3]. Supplementary Figure 3a shows magnetic hysteresis curves measured in sample S1 at T = 5
K with increasing maximum fields ±Hmax. The initial measurement, Hmax = 1 kOe, was made after zero-field cooling the
sample from above Tc to 5 K. The field was increased from zero to +Hmax, then reversed to −Hmax, and finally increased back
to Hmax once more. The subsequent loops were made by continuing the cycle of +Hmax to −Hmax and back again, using the
new, larger value of Hmax. Additionally, no further repeats of the zero-field cooled process were made. In doing so, we can see
how the irreversible state evolves with Hmax and at what point full flux penetration is achieved.

In Supplementary Figure 3a, the initial diamagnetic response of the sample can be seen in the first loop, though this fairly
quickly gives over to the ferromagnetic response as Hp, the field of first flux penetration, is exceeded. After the completion
of the first curve, all the subsequent curves to increasingly larger values of Hmax can be seen to trace out approximately the
same upper and lower branches that are centred on a shared reversible magnetisation Mrev. As noted in the main text, the form
of the magnetic irreversibility is superconducting in nature which is evident due to the jump in M at the point of field-sweep
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reversal at ±Hmax[4]. This contrasts to ferromagnetic irreversibility where the magnitude of M does not increase under the
same circumstances, only remaining or decreasing smoothly from its maximum achieved at ±Hmax[5].

Supplementary Figure 3. Magnetic hysteresis loops with increasing maximum field. (a) Total magnetisation M of sample S1 measured at
T = 5 K. (b) The irreversible portion of the total magnetisation from the curves in (a). The grey arrows indicate the direction of the change in
Mirr once Hmax is reached and subsequently |H| is reduced.

Supplementary Figure 3b shows the isolated, irreversible portion of the magnetisation Mirr = M −Mrev from the hysteresis
loops in Supplementary Figure 3a. On closer inspection, while there is good overlap of the loops starting from the initial
measurement with Hmax = 1 kOe, there is a slight discrepancy around H = 0. It is not until the curve with Hmax = 4 kOe
that near-perfect overlap with all subsequent curves (i.e. 6 and 8 kOe) is established, indicating that the critical state is fully
realised within the sample. Therefore, the field excursions of ±10 kOe in the magnetic hysteresis loops presented in Fig. 1e
are more than sufficient to establish the critical state, leading to the analysis and presentation of Jc(T ) in Fig. 2c. Finally, in
Supplementary Figure 3b, we also see the clear jumps in magnetisation at the extremes of the loops, as emphasised by the grey
arrows. This reversal of the critical state requires a finite window ∆H <∼ 1 kOe to fully complete, and therefore the calculation
of Jc ∝ ∆M should also be avoided in this region (see main text Methods).

SUPPLEMENTARY NOTE 4: EXAMPLE MAGNETIC RELAXATION MEASUREMENTS

Supplementary Figure 4. Example relaxation measurement data. Relaxation measurement data for sample S1 measured in a final field
Hf = −76 Oe, taken at a selection of temperatures. Left column: the irreversible component of the total magnetisation, Mirr(t), shows a
characteristic logarithmic decay. Right column: the normalised relaxation rate, S, is determined as the slope of a linear fit to lnMirr vs. ln t.

Supplementary Figure 4 shows example magnetic relaxation data taken in a final measurement field of Hf = −76 Oe.
The selection of temperatures includes the very lowest temperature measured as well as the range of temperature for which
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Supplementary Figure 5. Vortex polaron model and calculations. (a) Sketch of the vortex polaron formation and example of the vortex
polaron clustering. (b) Energy of two interacting vortices Etot(ρ) [Eq. (S.10)] with (ℓ/λ = 0.2) and without (ℓ/λ ≫ 1) polaron effect. (c)
Bound energy per one vortex minEtot [Eq. (S.12)] in the isolated cluster of Nv vortices. For both plots ξ/λ = 0.01.

anomalous S(T ) behaviour was observed (Fig. 2, attributed to vortex polaron dynamics). The time dependence of the irreversible
magnetisation, Mirr(t), displays a very clear, characteristic logarithmic decay for all temperatures. The normalised relaxation
rate, S, is determined as the slope of a linear fit to lnMirr vs ln t[6].

SUPPLEMENTARY NOTE 5: THEORETICAL MODEL FOR VORTEX POLARONS IN FERROMAGNETIC
SUPERCONDUCTORS

Here we present a theoretical model of the vortex polaron (VP) formation in the domains of a ferromagnetic superconductor.
We give a qualitative explanation of the physical origin of the VP, followed by the corresponding calculations.

A. Summary

The system we study is a superconducting ferromagnet with a domain wall (DW) structure of period ℓ. Suppose that an
applied external magnetic field induces a single Abrikosov vortex with a size of the order of the London penetration depth λ in
a domain of the same orientation (see Supplementary Figure 5a). If the domain width is smaller than λ, which is the case at
T <∼ TSC (Fig. 3c), then the vortex magnetic field will locally expand the hosting magnetic domain. This perturbation, in turn,
reduces the electromagnetic energy of the entire system with the only controlling parameter ℓ/λ. In fact, this is a prerequisite
for the emergence of a vortex-generated magnetic polaron effect. The VPs can move along the domain and notably interact with
each other. As we will show, the magnetic domain is able to mediate the long-range attraction between the vortices, giving rise
to the molecule-like few-VPs clusters (Nv ∼ 2 − 3) with the inner size ℓ <∼ ρ0 <∼ λ. With the decrease of the domain size ℓ
the attraction strength grows and multi-VP clusters (Nv ≫ 1) can appear, resembling the vortex “bubbles” in the experimental
images (see Figs. 4d and e) due to their small inner size.

B. Physical model

Consider a ferromagnet film with the equilibrium domain structure M0(x) = ±M̄0z0 (M̄0 = const) with the period ℓ. The
thickness of the film is assumed to be large enough (dF > λ) so that one can neglect any stray fields and treat the system as
homogeneous in the z-direction. Thus, the corresponding magnetic field generated by the domains reads as[7]

B0(x) =
16πM̄0

ℓ

∑
k

q

q2 + λ−2
sin(q(x+ ℓ/2))z0, (S.1)

where q = (2k + 1)π/ℓ and k is integer. The Abrikosov vortex is situated at the origin and has a magnetic field distribution
Bv(r) = (Φ0/2πλ

2)K0(|r|/λ), where Φ0 = hc/2e is the magnetic flux quantum[8]. Within the framework of the London
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approximation the total electromagnetic energy of the system per unit length Lz is

F =
1

8π

∫
d2r

(
B− 4πM

)2

+ λ2
(
∇× (B− 4πM)

)2

. (S.2)

The appearance of the polaron effect can be obtained within the perturbation approach. Let us introduce a local distortion of
the domain created by the vortex as M0(r) +M1(r), assuming divM1(r) = 0. The perturbation of the magnetic field B1(r)
should be found independently using the linear London equation ∇2

(
B1 − 4πM1

)
= λ−2B1. Corresponding change in the

free energy caused by domain expansion simply reads as

∆E =
1

4π

∫
d2r H1(H0 +Bv) + λ2(∇×H1)(∇× (H0 +Bv)) +H2

1 + λ2(∇×H1)
2. (S.3)

For the illustrative purposes we will use a simple phenomenological model of the vortex-domain interaction, which will provide
us with the intuitive results and estimations. We determine the deformation of the domain wall as

M1(x, y) =M̄0

∑
n

sgn (xn − ℓ/2)− sgn (xn − ℓ/2− δℓ(y, n))

+ sgn (xn + ℓ/2 + δℓ(y, n))− sgn (xn + ℓ/2) ,

(S.4)

where xn = x− 2nℓ, and n = 0,±1, . . . is the number of the domain co-directed with the vortex field, starting from the vortex
position. The domain profile in the y-direction is approximated by the Gaussian function

δℓ(y, n) = δℓ0 exp
(
− y2

λ2 − (2nℓ)2

)
fn. (S.5)

The amplitude of the deformation of the n-th domain fn can be connected to the vortex field as fn ≈ K0

(
2|n|ℓ/λ

)
/K0(ξ) with

a standard truncation at ξ. Here δℓ0 is a variational parameter of the problem. The naturally emerged parameter ℓ/λ determines
both the intensity and the spatial distribution of the DW deformation. In order to find the solution of the London equation with
M1 we utilize the adiabatic approximation taking into account the slow y-dependence of the fields, which is justified by the
condition δℓ ≪ λ. This gives:

B1(x, y) = 4πM̄0

∑
n

sgn
(
xn − ℓ/2

)
e−

|xn−ℓ/2|
λ − sgn

(
xn − ℓ/2− δℓ(y, n)

)
e−

|xn−ℓ/2−δℓ(y,n)|
λ

+ sgn
(
xn + ℓ/2 + δℓ(y, n)

)
e−

|xn+ℓ/2+δℓ(y,n)|
λ − sgn

(
xn + ℓ/2

)
e−

|xn+ℓ/2|
λ ,

(S.6)

and consequently H1(x, y) = B1(x, y)− 4πM1(x, y).

C. Vortex polaron energy

The energy decrease associated with the DWs distortion (S.3) can be calculated straightforwardly using Eqs. (S.4-S.6). To
facilitate this step we assume ℓ <∼ λ and build up a perturbation theory using the length scale ratio ℓ/λ as a small parameter.
After some derivation we obtain the function ∆E(δℓ0), with the minimal (optimal) value

∆E = − Φ2
0

32πλ2

C2
2

C1
, (S.7)

where we have defined C1 =

√
π

2

λ/2ℓ∑
n=0

f2
n

√
1− (2nℓ/λ)2 and C2 =

λ/2ℓ∑
n=0

fne
−2nℓ/λ.

Note that C2
2/C1 can be roughly estimated as the number of the domain walls on the scale of the vortex, e.g. C2

2/C1 ≈ λ/2ℓ.
Thus, the correction (S.7) renormalizes the single vortex energy Ev ∝ ln(λ/ξ) as

EVP =
Φ2

0

16π2λ2

[
ln

(
λ

ξ

)
− π

2

C2
2

C1

]
. (S.8)

which we refer as the vortex polaron energy. As we already mentioned, the strength of the polaron effect is determined in
fact only by the ratio ℓ/λ. One may notice that there is a critical regime at roughly ℓ < πλ/4 ln(λ/ξ), where the VP energy
becomes negative, which means the possibility of VP self-generation. We do not discuss this regime since this was not observed
experimentally (see Fig. 4), and instead focus on the VP clustering.



6

D. Interaction of two vortex polarons

Let us now examine the system of two interacting vortices situated at the distance ρ in the same domain (Supplementary Figure
5a). The mutual perturbation of the domain walls M1(x, y) = M

(1)
1 (x, y) +M

(2)
2 (x, y + ρ) creates an effective force between

the vortices, which can be extracted directly from Eq. (S.2) using the phenomenological model (S.4-S.6). The corresponding
potential

∆Eint(ρ) = 4∆E
1

C 2

λ/2ℓ∑
n=0

fne
−2nℓ/λe

− ρ2

λ2(1−(2nℓ/λ)2)

− 2∆E

√
π/2

C1

λ/2ℓ∑
n=0

f2
n

√
1− (2nℓ/λ)

2
e
− ρ2

2λ2(1−(2nℓ/λ)2) . (S.9)

alters the standard vortex-vortex repulsion potential Ev−v , and the total energy of two VP becomes:

Etot(ρ) = 2EVP + Ev−v(ρ) + ∆Eint(ρ)

=
Φ2

0

8π2λ2

[
ln

(
λ

ξ

)
+K0

(ρ

λ

)]
− 2

Φ2
0

32πλ2

C2
2

C1
×1 + 2

1

C 2

λ/2ℓ∑
n=0

fne
−2nℓ/λe

− ρ2

λ2(1−(2nℓ/λ)2) −
√
π/2

C1

λ/2ℓ∑
n=0

f2
n

√
1− (2nℓ/λ)2e

− ρ2

2λ2(1−(2nℓ/λ)2)

 .

(S.10)

The profile of the function (S.10) is shown in Supplementary Figure 5b. One can easily estimate the equilibrium distance between
the vortices at ℓ <∼ λ as

ρ0 ≈ λ

√
2

3π

C1

C2
2

≈
√

4λℓ

3π
. (S.11)

This means that for ℓ <∼ λ the inter-VP distance is ρ0 ≪ λ, what makes this bound (molecule-like) structure almost indistin-
guishable from a two-quanta vortex. We note that VPs from different domains can also interact in the x-direction. This question,
however, appears to be less relevant and is therefore omitted here.

E. Chain of vortex polarons

Now let us consider a finite chain of vortex polarons Nv , oriented along the y axis with a period ρ. The total energy of this
chain per one vortex, accounting for all mutual interactions, can be written as

Etot/1v(ρ) = Ev +∆E +

Nv−1∑
k=1

Nv − k

Nv

[
Ev−v(ρk) + ∆Eint(ρk)

]
. (S.12)

The energy minimum minρEtot/1v determines the equilibrium period ρ0 of the bound state, and is shown in Supplementary
Figure 5c for different Nv . One can clearly observe that the vortex attraction becomes stronger for larger clusters. For a
moderate regime (ℓ <∼ λ) the system prefers the formation of groups with small VP number Nv . Namely, at ℓ/λ = 0.25, the
most favourable are three-VP clusters with a small internal size ρ0 ≪ λ. This generally means that a long vortex chain is
unstable with respect to the decay into small clusters separated by a large (>∼ λ) distance from each other (see Supplementary
Figure 5a). Since the real material contains impurities and other types of mesoscopic inhomogeneities, the pinning of the VP
and, consequently, the coexistence of clusters of different sizes are expected. Noteworthy, the same kind of effect has been
predicted for completely different system of tilted vortices in thin anisotropic superconductors [9–11].

We believe this to be a reasonable interpretation of the results observed in the experiment (see Fig. 4). One can understand the
appearance of the magnetic bubbles as a “fine-tuning effect”: there is a specific range of ℓ <∼ λ (controlled by the temperature)
at which the stable multi-VP structures exist. At ℓ ≫ λ the polaron effect is almost absent, while at ℓ ≪ λ it may lead to the
vortex generation instability, which requires additional investigation both from theory and experiment.
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Supplementary Figure 6. Example MFM vortex profile and fit result. A profile of a single vortex taken from an MFM measurement at
T = 19.8 K (blue circles). The data are fitted to equation S.15 (green line) yielding a scan height of z = 49 nm. The corresponding Bz of the
vortex is plotted in comparison (purple dashed line).

SUPPLEMENTARY NOTE 6: MODELLING VORTEX PROFILES

The magnetic force microscopy (MFM) vortex profiles were modelled using the Clem variational model[12] modified to
account for surface screening effects following an approach due to Kirtley et al. [13] assuming a variational coherence length
ξv(0) = 4.604 nm. A Gorter-Casimir two fluid model temperature dependence has been assumed for the penetration depth,
λ(T ) = λ(0)/

√
1− (T/Tc)4, with λ(0) = 350 nm[14]. The model provides the following description of the z-component of

the B field due to a vortex:

Bz(x, y, z) =
ϕ0

2πλ

∫ ∞

0

K1(
√
q2 + λ−2ξv)

(
√

q2 + λ−2 + q)K1(ξv/λ)
J0(q

√
x2 + y2) exp(−qz)q dq , (S.13)

where z is the scan height of the MFM sensor above the surface of the superconductor and has been treated here as a fit parameter.
As discussed in the Methods section of the manuscript, the measured MFM frequency shifts (∆f = ∆fx+∆fy) are proportional
to ∂Bx/∂x+ ∂By/∂y = −∂Bz/∂z, and described in our model by

−dBz

dz
(x, y, z) =

ϕ0

2πλ

∫ ∞

0

K1(
√
q2 + λ−2ξv)

(
√
q2 + λ−2 + q)K1(ξv/λ)

J0(q
√

x2 + y2) exp(−qz)q2 dq . (S.14)

In practice, due to the way the MFM data were recorded, the fits shown in the manuscript were made utilising three free
parameters: the scan height z, a proportionality constant α and an arbitrary offset β, i.e. :

∆fx +∆fy = α
dBz

dz
(x, y, z) + β . (S.15)

An example of the result of fitting a single vortex to S.15 at 19.8 K is shown in Supplementary Figure 6 with fit parameters
z = 49 nm, α = 0.072 kHz/G and β = 0.862 kHz (assuming values of λ(19.8K) = 462 nm and ξv(19.8K) = 10.5 nm). Also
plotted is an arbitrarily scaled version of Bz(x, 0, z) for the same scan height. Note how the MFM technique renders a much
narrower version of the vortex than if one measured the vortex magnetic fields directly, in this case by almost a factor of three.

The profiles of double vortices that are bound together by vortex polarons (i.e. those shown in Fig. 4), have been fitted to

∆fx +∆fy = α

(
dBz

dz
(x, y +

w

2
, z) +

dBz

dz
(x, y − w

2
, z)

)
+ β , (S.16)

where the additional fit parameter w is the lateral separation between the two vortex cores.
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