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Measurement of statistical nuclear spin polarization in a nanoscale GaAs sample
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We measure the statistical polarization of quadrupolar nuclear spins in a submicrometer (0.6 μm3) particle
of GaAs using magnetic resonance force microscopy. The crystalline sample is cut out of a GaAs wafer and
attached to a micromechanical cantilever force sensor using a focused ion beam technique. Nuclear magnetic
resonance is demonstrated on ensembles containing less than 5 × 108 nuclear spins and occupying a volume of
around (300 nm)3 in GaAs with reduced volumes possible in future experiments. We discuss how the further
reduction of this detection volume will bring the spin ensembles into a regime where random spin fluctuations,
rather than Boltzmann polarization, dominate their dynamics. The detection of statistical polarization in GaAs
therefore represents an important first step toward 3D magnetic resonance imaging of III-V structures on the
nanometer scale.
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I. INTRODUCTION

Recent years have seen the development of a wide range
of semiconducting nanostructures including quantum wells
(QWs), nanowires (NWs), and quantum dots (QDs). Re-
searchers have devoted particular attention to making devices
from III-V materials such as GaAs, whose high electron
mobility and direct band gap make it a critical component
of today’s semiconductor technology. III-V systems are
extremely versatile in large part due to techniques such as
molecular-beam epitaxy (MBE) and metal-organic chemical
vapor deposition (MOCVD), which enable the growth of
complex heterostructures with nearly perfect crystalline inter-
faces. As a result, applications range from integrated circuits
operating at microwave frequencies to light-emitting and laser
diodes to quantum structures used for basic research.

While a variety of techniques exist to characterize and
image these nanostructures, including scanning electron mi-
croscopy (SEM), tunneling electron microscopy (TEM), and
x-ray crystallography, so far it has been impossible to mea-
sure single nanostructures using magnetic resonance imaging
(MRI). In larger structures, MRI is a powerful technique
allowing for the three-dimensional (3D), subsurface imaging
of the density of particular nuclear magnetic moments.
However, conventional nuclear magnetic resonance (NMR)
techniques, in which the spin signal is detected by an inductive
pickup coil, are limited to detection volumes of several μm
on a side or larger.1 A net polarization of at least 1012

nuclear spins is typically needed to generate a detectable
signal; nanometer-scale samples simply do not contain enough
spins to be detected. In the past few years, a more sensitive
force-detected version of MRI has been demonstrated on
nanometer-scale samples.2 Using magnetic resonance force
microscopy (MRFM) to measure the statistical polarization
of spin-1/2 1H, Degen et al. made 3D images of single-virus
particles with a resolution better than 10 nm.3

Here we take a step toward applying this technique to
quadrupolar (spin-3/2) nuclei, specifically Ga and As, in a
nanometer-scale particle. We demonstrate the detection of
statistical polarizations of 69Ga, 71Ga, and 75As in a 0.6
μm3 particle of crystalline GaAs. The mechanical detec-
tion of NMR in GaAs was first demonstrated in 2002 by

Verhagen et al. and Thurber et al.4,5 The smallest reported
detection volume of 600 μm3 contained more than 1012 nuclear
moments.6 In 2004, Garner et al. reported forced-detected
NMR signal from 1010 moments in a GaAs wafer.7 Those
experiments measured either the thermal equilibrium polariza-
tion or an optically enhanced polarization of Ga and As spins.
Our experiment has a detection volume of about 0.03 μm3 ≈
(300 nm)3 equivalent to less than 5 × 108 spins of any one of
the constituent isotopes. Such a volume is far too tiny to detect
via conventional, inductively detected magnetic resonance,
although the number of spins is not yet small enough that
its polarization is dominated by statistical fluctuations. Future
reductions in detection volume, however, will enter this regime
and will require techniques like the one demonstrated here.

II. BOLTZMANN VS STATISTICAL POLARIZATION

Conventional magnetic resonance signals originate from
the mean polarization of nuclear spins in an external magnetic
field—the so-called Boltzmann polarization. Although this
polarization is quite small, it dominates the spin signal for large
ensembles of nuclear spins. As the size of the spin ensemble
decreases, the amplitude of the polarization fluctuations
eventually exceeds the mean polarization.8 This variance,
sometimes called the statistical polarization, then becomes a
more useful signal for MRI than the mean polarization.

Statistical polarization arises from the incomplete cancel-
lation of randomly oriented spins. For any given direction,
the net polarization can be either positive or negative and will
fluctuate on a time scale that depends on the flip rate of the
spins. Several MRFM experiments have detected statistical
polarizations of spin-1/2 nuclear spins9–14 and demonstrated
their use for nanometer-scale nuclear MRI.3,15

In order to understand the regimes in which either Boltz-
mann or statistical polarization is important, consider an
ensemble of N spins with spin quantum number I . The
Hamiltonian of a single spin in the presence of a magnetic field
B along ẑ is Ĥ = −μ̂zB = −h̄γBÎz where μ̂z is the magnetic
dipole moment operator along ẑ, h̄ is Planck’s constant, γ

is the gyromagnetic ratio, and Îz is the nuclear spin angular
momentum operator along ẑ. Statistical mechanics predicts the
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equilibrium distribution at a temperature T to be a Boltzmann
distribution. The partition function Z = Tr{exp(− Ĥ

kBT
)} con-

tains all the information about the nuclear spin polarization in
the system, where kB is the Boltzmann constant.16 The density
matrix ρ̂ = 1

Z
exp(− Ĥ

kBT
) of the spin system can be used to

compute the mean Mz = NTr{μ̂zρ̂} and the variance σ 2
Mz

=
N (Tr{μ̂2

zρ̂} − (Tr{μ̂zρ̂})2) of the ensemble’s magnetization
along ẑ. Even at cryogenic temperatures (T ∼ 1 K) and high
magnetic fields (B ∼ 10 T), h̄γB � kBT . Therefore, keeping
terms only up to first order in h̄γB

kBT
, we find

Mz = N
I (I + 1)

3
h̄γ

(
h̄γB

kBT

)
, (1)

σ 2
Mz

= N
I (I + 1)

3
(h̄γ )2 . (2)

Since Nh̄γ I corresponds to 100% spin polarization, one can
define the statistical nuclear polarization as SNP = σMz

Nh̄γ I
=√

I+1
3I

1
N

and the Boltzmann nuclear polarization as BNP =
Mz

Nh̄γ I
= I+1

3
h̄γB

kBT
. Statistical polarization dominates the system

(SNP > BNP) when the number of spins in an ensemble is less
than the critical number,

Nc = 3

I (I + 1)

(
kB T

h̄γB

)2

. (3)

Equivalently, for a material with a nuclear spin density na,
where n is the number density of the nuclear element and
a is the natural abundance of the isotope of interest, one can
define a critical volume Vc = Nc

na
. For volumes smaller than Vc,

magnetic resonance experiments should be designed to detect
SNP rather than BNP.

III. MRFM TECHNIQUE AND APPARATUS

We measure the presence of a particular nuclear isotope
using a MRFM protocol which cyclically inverts statistical
spin polarization.15 In a magnetic field Btotal, the frequency of
a transverse RF magnetic field B1 is swept through the nuclear
resonance condition, fRF = γ

2π
Btotal. If done adiabatically, this

sweep induces the nuclear spins to invert—a process known
as adiabatic rapid passage. In the strong spatial magnetic
field gradient near a magnetic tip, these inversions produce
a time-dependent force. This force is in turn detected as the
displacement of an ultrasensitive cantilever.

Our MRFM experiment is carried out in a sample-on-
cantilever configuration in which the sample is affixed to the
end of a single-crystal Si cantilever17 as shown in Fig. 1. We
arrange the cantilever in a “pendulum” geometry such that the
sample is positioned above a FeCo magnetic tip, depicted in
Fig. 2. The magnetic tip, which is mounted on a separate chip,
is patterned on top of an Au microwire, which acts as an RF
magnetic field source and is shown in Fig. 3.10

The cantilever measures 120 μm × 4 μm × 0.1 μm and—
loaded with the GaAs sample—has a mechanical resonance
frequency fc = ωc/(2π ) = 3.7 kHz and an intrinsic quality
factor Q = 4.0 × 104 at T = 1 K. By measuring the cantilever’s
thermal motion, we determine its effective spring constant to
be k = 120 μN/m. The MRFM apparatus is isolated from

100 µm 

(a) 

1 µm 

(c) 

20 µm 

(b) 

FIG. 1. SEM micrograph of the Si cantilever with a GaAs
sample attached. (A) shows the cantilever protruding from a Si chip.
(B) clarifies the geometry showing the paddle and mass-loaded end of
the cantilever, and (C) is a detailed view of the tip of the mass-loaded
cantilever with the GaAs sample attached. A layer of Pt is visible at
the very tip of the GaAs particle.

vibrational noise and is mounted in a vacuum chamber with
a pressure below 10−6 mbar at the bottom of a 3He cryostat.
The motion of the lever is detected using 100 nW of 1550 nm
laser light focused onto a 12-μm-wide paddle and reflected
back into an optical fiber interferometer. The microwire used
to produce the transverse RF magnetic field is 2.5 μm long,
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FIG. 2. (Color) Representation of the MRFM apparatus at the
bottom of the cryostat. The microwire is shown in yellow, the FeCo
tip in blue, and the GaAs sample in red, with a Pt layer on its end in
white. The green region above the FeCo tip depicts the resonant slice
during measurement. B, the cantilever shaft, and the magnetization of
the FeCo tip are aligned along ẑ. Near the FeCo tip, current flows in
the wire along ŷ, while the lever displacement and B1 at the position
of the sample are directed along x̂.
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FIG. 3. SEM micrograph of the Au microwire with integrated
FeCo tip. The structure is patterned on a Si chip.

1 μm wide, and 0.2 μm thick. The FeCo tip is shaped like a bar,
sits on top of the microwire, and produces a spatially dependent
field Btip(�r). It has a top width of 270 nm, a bottom width of
510 nm, a length of 1.2 μm, and a height of 265 nm, as shown
in Fig. 3. To make sure that the FeCo tip is fully magnetized
along ẑ, an external magnetic field B = Bẑ is applied with
B = 2.65 T. During measurements, the distance between the
FeCo tip and the closest point on the sample is typically 100 nm
such that the static magnetic field gradient ∂Btotal

∂x
relevant to

MRFM is on the order of 5 × 105 T/m, where Btotal = B + Btip

and x̂ is the direction of cantilever oscillation. The maximum
|Btip| for this spacing is about 0.1 T. Smaller spacings can
result in larger ∂Btotal

∂x
and |Btip|, although they also result in

larger measurement noise. Interactions between the magnetic
tip and the sample at such small gaps, known as noncontact
friction, lead to mechanical dissipation in the cantilever.18,19

In our experiments, these effects reduce the quality factor
Q of the cantilever to 1.0 × 104. In addition, we damp Q

down to ∼400 using active electronic feedback.20 Given the
narrow natural bandwidth of our high-Q cantilever, damping is
used to increase the bandwidth of our force detection without
sacrificing signal-to-noise ratio (SNR).21

If the rate of the RF frequency sweeps used to invert
the nuclear spins is slow enough and the amplitude of
B1 large enough, the initial population distribution among
the nuclear spin energy levels is completely inverted. As
a result, net magnetization is made to flip along the ẑ.
For spin-1/2 nuclei, the criterion for adiabatic inversion is
given by α = 2πγ 2B2

1/(ωc	RF) � 1, where 	RF/(2π ) is the
amplitude of the frequency modulation around the center
frequency fRF of the transverse RF field B1.16 The criterion for
quadrupolar nuclei, in general, is more complex.22 However,
a complete inversion of the initial population distribution over
the quadrupolar energy levels can be achieved in the limit of
both α � 1 and β = γB1/	Q � 1, where 	Q/(2π ) is the
quadrupolar frequency. The frequency sweeps used here are
designed to meet these conditions and follow the form used
in Poggio et al.10 Therefore, by sweeping through fRF at a
frequency 2fc, we are able to modulate the spin polarization
at fc. The resulting spin inversions produce a force that drives
the cantilever at its resonance frequency. An ensemble of spins
at position �r with a statistical variance in its magnetization σ 2

Mz

produces a force on the cantilever with variance,

σ 2
F =

(
∂Btotal

∂x
(�r)

)2

σ 2
Mz

. (4)

Using our knowledge of the spring constant k, we determine
σ 2

F by measuring the variance of the cantilever’s oscillations
on resonance. The correlation time τm of σ 2

F is limited by the
relaxation rate of the spins in the rotating frame.

IV. RECEPTIVITY IN MRFM OF STATISTICALLY
POLARIZED ENSEMBLES

Due to differences in magnetic moment and statistical
polarization, two ensembles containing the same number
of nuclei but each of a different isotope, produce different
magnetization variances. This difference is contained within
the concept of receptivity. Receptivity is a value defined for the
purpose of comparing the expected NMR signal magnitudes
for equal numbers of different nuclear isotopes. For MRFM
of statistically polarized ensembles, we define a receptivity
RN,MRFM ∝ γ 2I (I + 1), where RN,MRFM is normalized to 1 for
1H. The factor γ 2I (I + 1) is proportional to the magnetization
variance expected from an ensemble of spins as defined in (2).
From (4), the variance multiplied by the square of the magnetic
field gradient results in the resonant force variance measured
in MRFM.

On the other hand, conventional NMR collects an inductive
signal due to a Boltzmann polarization. In this case, receptivity
can be defined as RN,conv ∝ γ 3I (I + 1), where RN,conv is
similarly normalized to 1 for 1H. Here the factor γ 2I (I + 1)
is proportional to the Boltzmann polarization as defined
in (1). The remaining factor of γ results from the fact
that conventional NMR measures the inductive response of
a pickup coil to magnetization precessing at a frequency
proportional to γ .23

As can be noted in Table I, MRFM receptivity scales more
favorably than conventional receptivity for low-γ nuclei such
as those found in GaAs. In real experiments, comparisons
are often made between signals from two different isotopes
contained in the same volume. In the comparison of volumes
rather than number of nuclei, one must also take into account
the number density n of each element in the material and
its natural isotopic abundance a. Volume receptivity therefore
also includes the factors of n and a: RV,MRFM ∝ naRN,MRFM

and RV,conv ∝ naRN,conv.

V. MRFM MEASUREMENTS

Here we study a submicron-sized particle cut from the
surface of a GaAs wafer. The GaAs sample is affixed to
the cantilever tip using a focused ion beam (FIB) technique.
First, a thin layer of Pt is deposited over a small area of a
GaAs wafer to protect the sample from potential ion damage.
Then, a lamella measuring 3 μm × 2 μm × 0.3 μm is cut
out from this area of the wafer. Next, the lamella is welded
with Pt to a nearby micromanipulator and transferred to the
tip of an ultrasensitive Si cantilever. Finally, the particle is
Pt-welded to the cantilever tip and cut to its final dimensions:
2.4 μm × 0.8 μm × 0.3 μm = 0.6 μm3 (Fig. 1). The side of
the sample which formerly was part of the wafer surface is
oriented such that it faces away from the cantilever. A roughly
200-nm-thick layer of the original Pt protection layer remains
on this surface of the particle.24 Throughout this process, only
the mass-loaded end of the cantilever is exposed to either the
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TABLE I. Properties relevant for a statistically polarized MRFM measurement.

1H 69Ga 71Ga 75As
(hydrocarbon layer) (GaAs) (GaAs) (GaAs)

I 1/2 3/2 3/2 3/2
γ

2π
(MHz/T) 42.57 10.3 13.0 7.3

a 1.000 0.601 0.399 1.000
n (m−3) 7 × 1028 2.2 × 1028 2.2 × 1028 2.2 × 1028

Nc (B = 2.65 T, T = 1 K) 1.4 × 105 4.7 × 105 2.9 × 105 9.3 × 105

Vc (B = 2.65 T, T = 1 K) (12 nm)3 (33 nm)3 (32 nm)3 (35 nm)3

RN,MRFM 1 0.293 0.466 0.147
RN,conv 1 0.071 0.142 0.025
RV,MRFM 1 0.056 0.058 0.046
RV,conv 1 0.013 0.018 0.008

ion or electron beams. Special care is taken never to expose
the cantilever shaft in order to avoid structural damage or
deposition of material on its surface. Even short exposure can
lead to the permanent bending of the cantilever and a reduction
of its mechanical Q.

MRFM signal measured from this GaAs particle at B =
2.65 T and temperature T = 1 K is plotted as a function
of the RF center frequency in Fig. 4. Resonances from all
three isotopes (69Ga, 71Ga, and 75As) in GaAs are visible.
In addition, a strong 1H resonance appears in the spectrum
due to the thin layer of adsorbed hydrocarbons and water that
coats surfaces which have been exposed to ordinary laboratory
air.3,15 Each resonance is measured with the GaAs particle

positioned at slightly different x and y positions in the vicinity
of the FeCo tip. In each case, however, the spacing along ẑ

between the end of the particle and the top of the FeCo tip
is 100 nm. Similar magnitudes of B1 are used in each case,
which we quantify in the discussion of Fig. 5. The frequency
modulation amplitude 	RF/(2π ) is 400 kHz for 1H, 100 kHz
for 69Ga and 71Ga, and 50 kHz for 75As. Each data point
represents 300 s of averaging for 1H, 600 s for 69Ga and
71Ga, and 1400 s for 75As. While the SNR for some peaks is
small—75As and 69Ga in particular—each peak is confirmed
by at least one other experiment performed at a different
magnetic field B. The appropriate shift in carrier frequency
is observed in each case.

fRF (MHz)

(a
N

2 )

71Ga69Ga75As

B = 2.65 T

1H

20 25 30 35 115 120

0

50

100

150

200

19.5 20 27 27.5 28

0

2

4

6

8

10

12

34.5 35 35.5

FIG. 4. (Color online) MRFM signal from the statistical polarization of 1H, 69Ga, 71Ga, and 75As. Black dots show the resonant force
variance σ 2

F as a function of the center frequency fRF. Solid red lines represent adjacent-averaging of the data as a guide to the eye. Inset is a
zoomed-in view of the spin-3/2 nuclear resonances: 69Ga, 71Ga, and 75As. Error bars represent the standard error of σ 2

F calculated as in Degen
et al. (Ref. 11). Data points represent 1400 s of averaging for 75As, 600 s for 69Ga, 600 s for 71Ga, and 300 s for 1H.
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FIG. 5. (Color online) Nutation measurement for 71Ga at T =
1 K. σ 2

F from 71Ga spins is measured as a function of pulse length. A
rotating-frame RF magnetic field amplitude B1 of 16 mT is obtained
from a decaying sinusoidal fit (shown in red) to the Rabi oscillations.
Error bars represent the standard error of σ 2

F calculated as in Degen
et al. (Ref. 11).

The rotating-frame spin correlation time τm observed for
1H is on the order of 100 ms, which is consistent with
spin correlation times measured in similar experiments on
surface hydrocarbon layers.3,15 For the quadrupolar isotopes
in GaAs, we measure τm to be around 500 ms. Thurber
et al. report τm on the order of several seconds in MRFM
measurements of Boltzmann polarized quadrupolar spins in
a GaAs wafer.6 Given that the adiabaticity parameter α is
similar to that used in our experiments, the difference in τm is
likely due to the large difference in magnetic field gradient in
the two cases. Gradients in our experiments exceed 105 T/m
while gradients used by Thurber et al. are 100 times smaller.
High magnetic field gradients on this order have been shown
to limit τm in similar MRFM experiments.12 In particular,
mechanical noise originating from the thermal motion of the
cantilever couples through strong magnetic field gradients to
produce nuclear spin relaxation in the statistically polarized
ensemble.

The central frequency, amplitude, and width of the
resonance peaks depend on the various experimental
parameters including γ , B, the spatial dependence of Btip,
the shape of the sample, its position relative to the FeCo tip,
and the form of the adiabatic sweep wave form. Roughly,
however, one can say that the low-frequency onset of each
resonance should occur at γ

2π
B. Note that the peak magnitudes

in Fig. 4 do not scale with RV,MRFM since both the volume of
the material detected and the magnetic field gradient in that
volume are different for each measured peak. The striking
difference in signal amplitude between the hydrocarbon layer
and the quadrupolar nuclei in the GaAs particle is mostly
due to the smaller gradients present inside the GaAs particle
compared to those present at the hydrocarbon layer. Due to
the 200 nm Pt layer covering the tip of the GaAs particle,
the 1H-containing layer is 200 nm closer to the FeCo tip than
any of the isotopes in GaAs. As a result, for the same sample
tip-sample spacing, the 1H nuclei experience about ten times
higher ∂Btotal

∂x
than the quadrupolar isotopes—resulting in force

variances 100 times larger from the same magnetization. We

discuss the effect of each parameter on the resonances in more
detail in Sec. VII.

VI. NUTATION MEASUREMENTS

Using the method described in Poggio et al.,10 we also
measure the rotating-frame amplitude of B1. Pulses of variable
length are inserted in the adiabatic sweep wave form every
500 cantilever cycles (135 ms). The measured force variance
in spin nutation experiments of 71Ga is plotted in Fig. 5
for a spacing along ẑ between sample and FeCo tip of
100 nm. The amplitude of the rotating RF magnetic field
is inferred by fitting the data to a decaying sinusoid. The
frequency of the sinusoid corresponds to the Rabi frequency
γB1 of the isotope in question and the decay rate is related
to the spatial inhomogeneity of Btip within the detection
volume. The measured Rabi frequency of 208 kHz for 71Ga
corresponds to B1 = 16 mT. This measurement represents the
rotating-frame amplitude B1 in the region of the GaAs particle
closest to the FeCo tip, where the gradients and the resulting
contribution to the MRFM signal are largest. Similar nutation
measurements done using the 1H containing layer, which is
200 nm closer to the the FeCo tip, result in B1 = 17 mT.
This larger measured value results from the small increase
in B1 experienced as one approaches the RF microwire
source.

We calculate the Rabi frequencies at B1 = 16 mT for the
remaining isotopes to be 680 kHz for 1H, 165 kHz for 69Ga,
and 117 kHz for 75As. All isotopes satisfy the adiabaticity
condition α � 1. Due to cubic symmetry, no quadrupolar
splitting should be present in crystalline GaAs. A small
amount of strain due to the mounting process can result in
a nonzero quadrupolar frequency 	Q, though this splitting
is likely to be on the order of 10 kHz for all isotopes.26,27

In addition, for nuclear sites near the surface of the particle
where symmetry is broken, electric field gradients can result in
large quadrupolar splittings. Nevertheless, the large majority
of the nuclear spins detected in our experiments satisfy
β � 1. These two conditions should allow our frequency
sweep wave forms to adiabatically invert all four nuclear
species.

VII. MODEL AND ESTIMATES

Modeling the magnitude and shape of the resonance peaks
shown in Fig. 4 requires both knowledge of the spatial depen-
dence of Btotal(�r) and knowledge of the shape and position of
the sample. Since Btotal(�r) is strongly inhomogeneous, there
is a specific region in space at which the magnetic resonance
condition is met for each fRF. Only spins near these positions
are adiabatically inverted and therefore included in the MRFM
detection volume. This so-called “resonant slice” is a shell-like
region in space above the magnetic tip whose thickness is
determined by the magnetic field gradient and the modulation
amplitude 	RF/(2π ) of the frequency sweeps. We can model
this region more exactly using an effective field model for
adiabatic rapid passage in the manner of Sec. IV of the
supporting information in Degen et al.3 This model shows
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that the spatial extent of the resonant slice can be described
using a simple function:

η(�r) = 1 −
(

γBtotal(�r) − 2πfRF

	RF

)2

for γBtotal(�r) − 2πfRF < 	RF,

η(�r) = 0 for γBtotal(�r) − 2πfRF � 	RF. (5)

η(�r) is normalized to 1 for a nuclear spin positioned exactly
in the middle of the resonant slice [γBtotal(�r) = 2πfRF],
signifying that this spin is fully flipped by the adiabatic passage
waveform and contributes its full force to the MRFM signal. A
slightly off-resonant spin with 1 > η(�r) > 0 is partially flipped
and contributes a fraction of its full force to the MRFM signal.
Spins outside the resonant slice with η(�r) = 0 contribute no
signal.

In order to calculate the σ 2
F , we must therefore determine the

intersection of the resonant slice with the sample for each fRF.
In addition, since the gradient varies throughout the resonant
slice, equal numbers of nuclei at different positions in the slice
contribute different forces to the final signal. Using (2), (4),
and (5) we can then integrate over the volume of the sample
to find the total MRFM force variance:

σ 2
F =

∫
S

Aη(�r)

(
∂Btotal(�r)

∂x

)2

na
I (I + 1)

3
(h̄γ )2dV, (6)

where S is the sample volume and A is a constant—usually
close to 1—which depends on the correlation time of the
statistical spin polarization and the measurement detection
bandwidth.

We determine Btotal(�r) using a method employed in other
recent MRFM experiments.3,25 First, we measure Btotal at
several different positions above the FeCo tip. The maximum
value of fRF for which a 1H signal is obtained corresponds
to the frequency where the resonant slice barely intersects
the hydrocarbon surface layer closest to the FeCo tip. At
this frequency fRF,max, Btotal(�r0) = 2π

γ
fRF,max where �r0 is the

position of the hydrocarbon layer closest to the FeCo tip.
Several such measurements of Btotal at different �r0 are then
used to calibrate a magnetostatic model of the FeCo tip. We
infer the shape of the FeCo tip from SEM images and we
assume a magnetization of 106 A/m as in previous works.3,25

The geometrical parameters are fine-tuned in order to produce
a field profile Btip(�r) which agrees with the measured values of
Btotal(�r0) = ∣∣B + Btip(�r0)

∣∣ for our known applied field B. Our
approximate model then gives us the ability to calculate both
Btotal(�r) and ∂Btotal

∂x
(�r) at any position �r .

Given our approximate knowledge of the shape of the
sample from SEM images such as Fig. 1, we can only
estimate the sample volume S. The GaAs particle is modeled
as a 2.4 μm × 0.6 μm × 0.1 μm rectangular solid with a
200-nm-thick layer of Pt on the end face. The hydrocarbon
layer is modeled as a thin film on the surface of this solid.
The dimensions of this sample are meant to match the
cross-sectional size of the particle closest to the FeCo tip since
this part of the sample contributes nearly all of the observed σ 2

F .
The back part of the sample, with larger cross-sectional area,
contributes a vanishingly small σ 2

F due to the rapid decrease
in ∂Btotal

∂x
as a function of distance from the FeCo tip.

We then use our models for Btotal(�r) and S together in
a numerical integration of (6) to calculate the dependence
of σ 2

F on fRF. As shown in Fig. 6, the model reproduces
the experimental data despite the approximate knowledge
of the sample shape. Detailed structure within the peaks,
however, is impossible to reproduce as it is often due to the
nanometer-scale morphology not included in our idealized
geometries. In fact, we can reproduce such large variations
in the resonance peak shape by altering the details of the
sample geometry used in our calculation. Prominent structure
is particularly evident in resonances measured with small
tip-sample spacings, where the magnetic field gradients are
largest and small volumes of spins can contribute large force
variances.

A thickness of 2 nm is chosen for the hydrocarbon
layer in our model in order to produce a resonant σ 2

F

approximating our measurements. This thickness is con-
sistent with previous measurements of such layers which
estimated a thickness of approximately 1 nm.3,15 The small
discrepancy could be due to differences in the surface
properties of our sample including roughness and affin-
ity to adsorption of hydrocarbons compared to previous
samples.

Despite the approximate nature of our model for σ 2
F , we

can use it to make an order of magnitude estimate of the
detection volume in our experiments. Using the parameters
of each measurement, we can estimate the detection volume
Vd as the sample volume intersecting the resonant slice, i.e.,
the volume in which γBtotal(�r) − 2πfRF < 	RF. The number
of spins contained therein is then Nd = naVd . In the case
of the peak σ 2

F from the hydrocarbon layer at fRF = 115.5
MHz in Fig. 6, we calculate a Vd = (40 nm)3 and Nd =
6 × 106. For this spin ensemble the ratio of SNP to BNP
is 0.20. Furthermore, we can estimate the sensitivity of this
measurement since we know that SNR of our measurement
increases with the square root of the averaging time. We
calculated the SNR at each fRF by dividing the measured
σ 2

F by the standard error of this measurement calculated as
in Degen et al.11 This error takes into account both the noise
due to fluctuations in the cantilever motion, i.e., thermal noise
and noncontact friction, and the noise due to the statistically
polarized spin ensemble itself. Given the SNR of 14.4 achieved
after 300 s of averaging, we estimate a measurement sensitivity
equivalent to 7 × 106 1H spins/

√
Hz. In general, the sensitivity

of these measurements is limited by the mechanical fluctua-
tions of the cantilever due to thermal noise and noncontact
friction.

We can make similar calculations for the quadrupolar
nuclei. The peak values of σ 2

F shown in Fig. 4, however, do
not represent the maximum attainable signal for each isotope.
Due to the long averaging times required for these isotopes,
position scans used to optimize the signal amplitude were not
performed before these measurements. Approximate measure-
ment positions were estimated based on the 1H experiments
resulting in smaller than optimal σ 2

F . For 71Ga, however, an
x and y position scan was performed in order to find the
optimal σ 2

F = 25 aN2 at fRF = 34.95 MHz. From this scan it
was found that changes in position of less than only 50 nm
resulted in signal loss of over a factor of 2, emphasizing the
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FIG. 6. (Color online) MRFM signal from the statistical polarization of (A) 71Ga in the (B) 1H from Fig. 4 along with the corresponding
calculated signal from the our MRFM model. The sample position used in the model was matched to the experimentally set position within an
error of 50 nm, likely due to experimental position drift during these long time scans. The position was fine-tuned within this error range to
best match the measured signal.

importance of optimal alignment. This signal is in reasonable
agreement with the maximum signal σ 2

F = 20 aN2 calculated
for the same parameters in our model. Using our model we
can calculate Vd = (260 nm)3 and Nd = 2 × 108 for the 71Ga
signal plotted in Figs. 4 and 6, which is slightly shifted from
the optimal position. In this case, we find SNP/BNP = 0.14
(see Table II). The corresponding sensitivity is estimated from
the SNR of 15.4 after 600 s of averaging to be 2 × 108 71Ga
spins/

√
Hz. Similar calculations are not carried out for 69Ga

and 75As, though sensitivity for these isotopes should be of
the same order after a scaling factor equivalent to appropriate
MRFM receptivity.

As discussed in Sec. V, the large difference in the sensitivity
between 1H and the quadrupolar nuclei is mostly due to the
200 nm Pt layer which forces the Ga and As moments into

TABLE II. Detection and sensitivity estimates for the 1H and 71Ga
resonances plotted in Figs. 4 and 6 at B = 2.65 T and T = 1 K.

1H 71Ga
(hydrocarbon layer) (GaAs)

Sample-tip distance (nm) 100 300
Maximal ∂Btotal

∂x
at sample (T/m) 5 × 105 8 × 104

Maximal
∣∣Btip

∣∣ at sample (T) 0.10 0.03
fRF (MHz) 115.5 34.95
	RF/(2π ) (kHz) 400 100
Nd 6 × 106 2 × 108

Vd (40 nm)3 (260 nm)3

SNP/BNP 0.29 0.14
Averaging time (s) 300 600
Sensitivity (spins/

√
Hz) 7 × 106 3 × 108

a region of far smaller magnetic field gradient than at the
hydrocarbon layer. Future experiments should be designed
such that this Pt layer, which is an artifact of the FIB mounting
process, is not present. Without this intermediate layer, far
better sensitivities should be achieved for the quadrupolar
nuclei. Table III shows predicted sensitivities for 69Ga, 71Ga,
and 75Ga for a 100 nm spacing between the sample and
the FeCo tip—without any intermediate layer. All other
parameters are identical to those of the actual experiments.
These extrapolations are based on positioning the Ga and As
in the same position as the 1H nuclei in our experiment. We
make the assumption that the noise would be the same as that
measured in the 1H experiment.

TABLE III. Extrapolated detection and sensitivity estimates for
the quadrupolar nuclei based on parameters achieved for 1H at B =
2.65 T and T = 1 K in Table II.

69Ga 71Ga 75As
(GaAs) (GaAs) (GaAs)

Sample-tip distance (nm) 100 100 100
Maximal ∂Btotal

∂x
at sample (T/m) 5 × 105 5 × 105 5 × 105

Maximal
∣∣Btip

∣∣ at sample (T) 0.10 0.10 0.10
fRF (MHz) 27.9 35.1 19.8
	RF/(2π ) (kHz) 100 100 50
Nd 1 × 108 9 × 107 2 × 108

Vd (210 nm)3 (210 nm)3 (200 nm)3

SNP/BNP 0.20 0.19 0.23
Calculated σ 2

F (aN2) 250 210 150
Sensitivity (spins/

√
Hz) 1 × 108 9 × 107 3 × 108
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VIII. CONCLUSION

The results presented here demonstrate our ability to detect
nanometer-scale volumes of Ga and As nuclei using MRFM.
Given the spin sensitivity extrapolated from our data and
our model, the detection of III-V nanostructures such as
nanowires or subsurface self-assembled InAs QDs should
be possible. Self-assembled InAs QDs, for example, contain
105–107 nuclear spins, lie as close as 50 nm from the wafer
surface, and could be attached to a cantilever using the FIB
technique demonstrated here. Further improvements to the
force sensitivity—most importantly for reducing measurement
times—will be required in order to realize MRI in III-V
materials with better than 100 nm resolution. The potential for
subsurface, isotopically selective imaging on the nanometer

scale in III-V materials is a particularly exciting prospect since
conventional methods such as SEM and TEM lack isotopic
contrast.
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