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Fiber-Cavity Optomechanics with Hexagonal Boron Nitride Drum Resonators

by David Jaeger

In an effort to overcome the limits imposed by the inherently weak radiation
pressure interaction, the field of optomechanics aims to miniaturize both the me-
chanical elements and the mode volume of the optical cavities involved. Like this,
the interaction can be boosted, and the quantum regime comes within reach. The
possibility of introducing additional elements into the system, such as quantum
emitters, offers alternative ways to move past current experimental limitations. This
calls for versatile experimental platforms with a small footprint that allow for the
integration and exploration of novel materials and experimental protocols.

Here we present a fiber based Fabry-Perot cavity that can be operated under at-
mospheric conditions, under vacuum, and at 4 K. We demonstrate our ability to sta-
bilize the cavity length within the cavity linewidth while maintaining full tunability
and a high finesse.

We fabricate mechanical drum resonators by suspending flakes of hexagonal
boron-nitride over holes in a high-stress Si3N4 membrane. By imaging their mo-
tion and measuring their thermal displacement spectra, we characterize these drums
and their hybridization with the underlying Si3N4 membrane. The observed mode
shapes are consistent with theoretical models and finite-element simulations of an
ideal drum, revealing that our fabrication procedure introduce little imperfections.
The analysis of the thermal spectra reveals that hybridization with the Si3N4 mem-
brane can shift the quality factor and effective mass of the drum modes by several
orders of magnitude. This could be an important tool in the endeavor to improve the
moderate mechanical quality factors of 2D material oscillators, and further enhance
their sensitivity.

Combining our cavity with our hBN drum resonator yields an optomechanical
platform with a single-photon coupling of up to g0 = 230 kHz, several orders of
magnitude higher than previous implementations employing mechanical resonators
made of 2D materials. This high value is made possible by the small mode volume
of our microscale cavity, as well as the low effective mass of our hBN drum res-
onator. Finally, the combination of the high stability of our system with this strong
interaction allowed us to measure the optomechanically induced transparency ef-
fect, highlighting the potential of our experimental platform.
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Chapter 1

Introduction

The radiation pressure force, experimentally demonstrated for the first time in 1901
[1, 2], allows to couple a mechanical oscillator to an electromagnetic field, creating
an optomechanical system. Such a system is an intriguing platform for many exper-
iments, including high precision sensing [3–7], cooling of the mechanical resonator
[8–10], laser cooling and trapping of atoms or ions [11, 12], or preparation of non-
classical states of motion and light [13–17]. However, the weak radiation pressure
force puts these experiments in a challenging parameter space, especially when try-
ing to reach the quantum regime [18]. To alleviate this issue, it is common to boost
the interaction by employing optical resonators, often referred to as optical cavities.
In the simple case of a Fabry-Perot cavity, this is achieved with two mirrors facing
each other [19]. Another way to improve the optomechanical coupling is to employ
mechanical oscillators that are highly sensitive, which is often achieved by pushing
these devices to the nanoscale.

With this in mind, we set out to build and characterize a cavity optomechanics
setup comprised of a sensitive hexagonal boron-nitride (hBN) drum resonator and a
fiber based Fabry-Perot cavity (FFPC). We will employ the membrane-in-the-middle
(MIM) configuration, in which the mechanical oscillator is placed in the middle of
the cavity [186, 20]. This design is in contrast to systems where one of the mir-
rors of the Fabry-Perot cavity acts as the mechanical element [16, 21, 22], or systems
based on other cavity designs, such as whispering-gallery mode resonators [23, 24]
or photonic crystal cavities [25–28]. Making a good cavity mirror requires suffi-
cient lateral dimensions and thickness, this makes it difficult to push these objects
towards the nanoscale when using them as mechanical oscillators [22]. In a MIM
system, where the mechanical and optical components are separated, each part of
the system can be optimized independently. Whispering-gallery mode resonators or
photonic crystal cavities can achieve small footprints and very high optomechanical
coupling strengths [18], but the mechanical element is usually the cavity body itself.
This limits the use of different mechanical elements with interesting properties, such
as the hBN drums we will present here. Compared to these devices, the advantage
of a MIM system employing an open Fabry-Perot cavity lies in its flexibility and tun-
ability. In the case of whispering-gallery mode resonators, the optical losses in the
medium of the device are an additional problem.

Beginning with the MIM aspect of our system, mechanical resonators have drawn
much attention in recent years. Not only do they achieve record breaking force [29–
31] and mass sensitivities [32, 33], but they can also be interfaced with a variety of
different systems, making them a prominent choice for hybrid systems [34, 35, 187,
188]. They have been successfully brought into the quantum regime by cooling their
motional state down to the quantum ground state [10, 36–38]. Considering their of-
ten macroscopic dimensions, this makes them an ideal platform to investigate the
quantum to classical crossover [36, 39].



2 Chapter 1. Introduction

Mechanical resonators that are good sensors and the ones that lead to high op-
tomechanical coupling strengths share many similarities [18, 40]. Since we in essence
need a device that reacts strongly to radiation pressure forces in optomechanics, this
is not surprising. For example, we can compare the force sensitivity SF and the zero
point motion xzpm of a mechanical resonator, the latter being directly linked to the
optomechanical coupling strength.

√︁
SF =

√︁
4kBTΓm, xzpm =

√︃
h̄

2ωm
(1.1)

From these expression we can see that reducing the mass m is a key for both applica-
tions, while a low dissipation Γ additionally benefits the sensitivity and the optome-
chanical coupling further relies on a small resonance frequency ω. New fabrication
techniques and the discovery of low-dimensional mechanical objects, such as 1D
nanowires [41], carbon nanotubes [42], as well as 2D membranes made of graphene
[43], hBN [44, 45] or other Van-der-Waals materials [46–48], have pushed the bound-
aries towards the nanoscale [48]. This not only results in a very low mass, but the ex-
treme aspect ratios found in these lower dimensional objects can also help to reduce
their resonance frequency, as is for example the case in nanowire resonators [31].
But also highly optimized and much larger silicon nitride (Si3N4) structures have
achieved great success due to incredibly low dissipation and thus high mechani-
cal quality factors [49, 50]. Si3N4 membranes in particular have been the standard
device for MIM optomechanics in the past [51–57].

Efforts to integrate low-dimensional mechanical resonators with cavities have
only just begun. Among the first successful implementations are carbon nanotubes
[58], nanowires [59], as well as hBN [60] and graphene resonators [61–64]. Due to
their extremely small size, integrating carbon nanotubes into optomechanical de-
vices is a challenge, even the detection of their motion is not a simple task [58, 65].
In the case of larger nanowires, the extreme mechanical properties and aspect ra-
tios could be utilized to achieve a strong optomechanical interaction, but the nature
of the Mie-scattering interaction puts strict constraints on the system. In particu-
lar, it requires a rather modest cavity finesse due to strong scattering losses [59, 66,
197]. While a membranes, and thus 2D materials, do not share this issue, most Van-
der-Waals materials tend to have significant optical absorption, leading to similar
problems in optical cavities [67]. Among the vast variety of different 2D materials,
hBN stands out as a large band-gap (6 eV [68]) insulator that is largely transparent
and offers low absorption in the visibile to near infra-red (NIR) parts of the electro-
magnetic spectrum [69]. This makes hBN uniquely suitable for MIM optomechanics,
especially when employing high finesse optical cavities. Indeed, a very recent im-
plementation has demonstrated such a system, combining a hBN drum resonators
with a very high finesse cavity (2 × 105) [70].

Aside from these advantages, there are further reasons that motivated us to em-
ploy hBN as our material of choice. 2D materials are known to have outstanding
mechanical properties , and with a predicted Young’s modulus of 780 GPa and a
fracture strength of 12.5% [71, 72], hBN is even comparable to graphene [73]. Un-
like graphene however, hBN is known to preserve these extreme properties even
beyond the monolayer limit, where inter-layer interactions become important [71].
hBN is often employed to encapsulate other 2D materials or heterostructures [74–
77], making hBN resonators a promising platform for functionalized 2D mechanical
resonators. This can give access to the incredible variety of magnetic [78, 79], elec-
tronic [80–82] and optical [83, 84] features that 2D materials have to offer. Even hBN
itself has been shown to host stable quantum emitters [85] that are strain coupled
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to the host crystal lattice [86, 87]. This makes hBN a candidate for a hybrid system
on its own, or, in conjunction with an optical cavity, it could even form a hybrid
optomechanical system [88–92].

A big challenge regarding mechanical resonators made of 2D materials is the low
Q factor across many different implementations, especially at room temperature [43,
45, 46, 93–95]. The reasons for this poor performance is still under investigation [47].
In addition, the modes of such resonators appear to react strongly to small imper-
fections in the resonator, leading to devices that are difficult to model [44, 96, 97].
Here we show our efforts to fabricate higher quality resonators that match simple
theoretical models. We will also explore the hybridization between a hBN drum and
a high stress Si3N4 membrane, showcasing a potential avenue to circumvent the low
mechanical quality factors of 2D material resonators while still having access to the
special properties of 2D materials.

The second constituent of our optomechanical system is the fiber based Fabry-
Perot cavity. Such a FFPC is made by using the gap between the end facets of two
cleaved optical fibers as cavity [98]. These end facets serve as mirrors of the cavity,
and the quality and shape of these mirrors critically determine its performance. The
desired concave shape is realized through laser ablation [99, 100], while the high re-
flectivity is achieved by employing a highly reflective dielectric coating. Fiber Fabry-
Perot cavities can achieve high finesse and have the key advantage of a small foot-
print, leading to a small mode volume [101]. This property is critical to increase the
coupling to nanoscale systems, making the FFPC a natural choice in cavity quantum
electrodynamics experiments [102–113], but also when coupling to nano or micro-
scale mechanical oscillators [58, 59, 114–118]. In the case of mechanical oscillators,
the small mode volume not only increases the coupling but also helps to avoid clip-
ping losses at the boundaries of the small devices. As such, the miniaturization of
optical cavities naturally follows the push towards the nanoscale in the field of me-
chanics. The fiber based design also lends itself to integration in vacuum systems
or cryostats [116, 119–123] since additional optical components to couple into the
cavity [124, 125] can be avoided.

We will first discuss the hBN drum resonator and the FFPC separately; after-
wards, we will combine the system and characterize the optomechanical interaction
of the fully assembled MIM-FFPC system. An overview of the chapters that can be
found in this manuscript is given in the following:

1.1 Thesis Outline

In chapter 2, we will discuss the necessary theoret-
ical background. Regarding our mechanical sys-
tem, we will develop models that allow us to char-
acterize and identify our mechanical modes based
on their thermal motion and spatial mode shape.
For both the FFPC and the complete optomechani-
cal system, we will employ the transfer matrix for-
malism to describe and understand the optically
measured signals.
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Chapter 3 will cover the experimental measurement
and control setups. Aside from the probe that hosts the
MIM-FFPC system, we will present a room tempera-
ture interferometer used to characterize the hBN drum
resonators. In addition, we will give an overview of
the involved optical setups and the cratered optical
fibers making up the FFPC.

Chapter 4 is dedicated to the characteri-
zation of the FFPC. After establishing the
fundamental properties of our cavity, we
will discuss the passive and active sta-
bilization of the cavity length. We will
show that a stability better than the cav-
ity linewidth can be maintained even for
very low optical powers and at cryogenic
temperatures.

In chapter 5, we will discuss the design and fabrication
of our hBN drum resonators. After motivating the ex-
act parameters of our devices, we will give a detailed
explanation of the wet transfer technique we employ,
including additional cleaning procedures. Finally, we
will give a short overview of the hBN resonators fabri-
cated like this.

We will present the mechanical characterization of the
drum resonators in chapter 6. Focusing mainly on one
of the devices, we will characterize the properties of
many different modes based on their thermal motion
and spatial mode shape. We will further discuss the
arising hybridization between higher order modes of
the hBN drum and the Si3N4 substrate.

In chapter 7, the combined MIM-FFPC system
is explored. We will establish the viability of
hBN as a material for MIM operation under
high finesse conditions by exploring static op-
tomechanical interactions. As a final step, we
will present a recent measurement of optome-
chanically induced transparency to showcase
the dynamical optomechanical effects in our
system.

We will conclude in chapter 8,
summarizing the main results of
this thesis. In addition, a short
outlook will be presented with
currently ongoing measurements
regarding this project and its po-
tential future avenues.
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Chapter 2

Theoretical Background

We will begin this thesis by introducing the theoretical models necessary for the
discussion of the measurement results in the following chapters. After taking a look
at the two constituents separately, namely the hBN drum resonators in section 2.1
and the FFPC in section 2.2, we will move on to a more complete description of the
MIM-FFPC system in section 2.3.

2.1 Mechanics of a hBN Drum Resonator

To analyse the hBN drum resonators, we will use both thermal displacement spectra
and spatial imaging maps of the drum’s motion. For the former, we will employ a
simple formalism based on a general harmonic oscillator. The latter will require a
more detailed discussion tailored to drum resonators in particular.

2.1.1 Power spectral density

Here we follow [40, 126] and adopt a notation similar to [18] when possible. We
begin with the equation of motion of a harmonic oscillator driven by a force F(t)

m∗xẗ + γmxṫ + kmx(t) = F(t) (2.1)

where m∗ is the effective mass, γm the damping coefficient and km the spring con-
stant. It is convenient to convert to frequency space with angular frequency ωm
(ωm = 2π fm, where fm is the frequency) using the Fourier transform1:

−m∗ω2
mx(ωm)− iωmγmx(ωm) + kx(ωm) = F(ωm) (2.2)

This algebraic equation can now simply be solved for x(ω).

x(ωm) =
1

m∗(ω2
m,0 − ω2

m − iωmΓm)
F(ωm) = χm(ω)F(ωm) (2.3)

Here we used the definition ωm,0 =
√

km/m∗ and also redefined γm = Γmm∗ =
wm,0

Q m∗ to have a dissipation in units of Hz to be more in line with the definitions
typically used in the field of optomechanics. Q denotes the Q-factor of the oscillator,
i.e. the ratio between the stored energy and the energy loss per cycle. χm(ωm) is
called the frequency response function or alternatively the mechanical susceptibility.

From this we can obtain the power spectral density (PSD) for the harmonic oscil-
lator

Sx(ωm) = lim
τ→∞

1
τ
|x(ωm)|2 = |χm(ωm)|2SF(ωm) (2.4)

1x(ω) =
∫︁

dteiωtx(t)
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The PSD of the driving force F(ωm) is translated into the PSD of x(ωm) accor-
ing to the mechanical susceptibility χm(ωm). For thermal motion, we can use the
fluctiation-dissipation theorem [127] to obtain

SF(ωm) =
2kBT
ωm

Im
[︃

1
χm(ωm)

]︃
= 2kBTm∗Γm (2.5)

This then results in the PSD for the thermal motion of our harmonic oscillator,
for which we also show a general spectrum in Fig. 2.1.

Sx(ωm) =
2ΓmkBT

m∗((ω2
m,0 − ω2

m)
2 + Γ2

mω2
m)

(2.6)

0.0 0.5 1.0 1.5 2.0
m/ m, 0

0.0

0.2

0.4

0.6

0.8

1.0

S x
/S

x(
0)

m

kBT

FIGURE 2.1: Normalized thermal displacement PSD of a harmonic os-
cillator, with Γm corresponding to the FWHM of the resonance peak.
The area under the peak is highlighted in blue and is proportional to

the temperature.

Thermal motion and zero point fluctuations

The PSD derived above can be used to fit a recorded thermal spectrum and extract
the characteristic parameters of the mechanical resonator, such as Q, m∗ and ωm,0,
in particular when T is known. Meanwhile, it is useful to have an estimate of the
expected amplitude of the thermal- and quantum fluctuations to have an idea of the
required sensitivities for position detection, or expected optomechanical coupling
strengths.

For the thermal fluctuations one simply needs to recall the equipartition theorem

1
2

km
⟨︁

x2⟩︁ = 1
2

kBT (2.7)

to arrive at the expression

xth =

√︄
kBT

ω2
m,0m∗ (2.8)

The zero point fluctuations are given by the expectation value of the position opera-
tor of the quantum harmonic oscillator for the ground state ⟨0|x̂|0⟩, which gives

xzpm =

√︄
h̄

2ωm,0m∗ (2.9)
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Micro and nanomechanical resonators are commonly used as sensors. In this
case, one measures the effect of an added mass or an external force gradient on the
resonance frequency. In this regard, thermal fluctuations set a lower limit, allowing
us to define force and mass sensitivities as follows:√︂

S̄F(ωm) =
√︁

4kBTΓmm∗ (2.10)√︂
S̄m(ωm) =

√︁
2kBTΓmm∗ 2

xω2
m,0

(2.11)

Here S̄F(ω) = 2SF(ω) is the single sided PSD for ωm > 0.

2.1.2 Circular drum resonators

It is now necessary to move from the general description of a harmonic oscillator
to a formalism that captures the behavior of the mechanical resonators described
in this thesis. For this, we consider a circular drum under tension as in [44, 128],
additional information can be found in [129, 189]. In this model, both the bending
rigidity and the tension of the plate are taken into account. Usually, for thick drums,
the bending rigidity is the dominant term and the tension is neglected, resulting in
the well known plate description. For very thin drums, it is the other way around
and we enter the membrane regime. Our resonators tend to sit right between these
two extremes, making it necessary to take both effects into account.

Mode frequencies of a circular membrane

The equation of motion for such a system is given by

Dp∆2z − Tp∆z + ρ
∂2

∂t2 z = 0 (2.12)

where Dp is the bending stiffness, Tp is the tension, ρ is the density, z is the out of
plane motion, ∆ is the Laplace operator and ∆2 the biharmonic operator. Dp depends
on the plate thickness dm and the material properties, namely the Poisson ratio ν and
the Young’s modulus E, as follows

Dp =
Ed3

m
12(1 − ν2)

(2.13)

The resonance frequencies for the different modes are then given by [128]

fmn =
1

2π
(kmnr)

√︄
Dp

δr4 [(kmnr)2 +
Tpr2

Dp
] (2.14)

Here r is the radius of the drum, (kmnr)2 is the numerically calculated eigenvalue for
mode (m, n), where m, n denotes the lateral and circular mode number. The values
for (kmnr)2 can be calculated using

(kmnr)2 = αmn + (βmn − αmn)e
−ηmn exp(γmn ln(

Tpr2

Dp )) (2.15)

where αmn, βmn, γmn, ηmn are numerical values that are given for each mode and can
be found in Appendix A.
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FIGURE 2.2: Resonance frequency of the first few modes of a hBN
drum with r =10 µm. Shown are the curves obtained with Eq. 2.14
as well as the isolated plate model (red) and the isolated membrane

model (green) for the fundamental mode.

The behavior of this model is captured in Fig. 2.2. For a drum of small dm, the
resonance frequency approaches that of the membrane model. One can retrieve the
purely membrane-like expression from Eq. 2.14 by taking the limit Dp → 0. For
a larger dm, the resonance frequency is dominated by the bending rigidity, i.e. by
plate-like behavior, which is retrieved by neglecting the Tp term in Eq. 2.14. Both for
very small and large thickness, the resonance frequency increases, with a minimum
located between the purely plate- and membrane-like regimes.

Mode shapes of a circular membrane

The mode shapes of a circular membrane are most easily expressed in polar coor-
dinates (θ, a). To label the different modes, we use indices (m, n) representing the
amount of radial and circular nodal lines, respectively. Note that while the amount
of radial nodal lines is equal to m, the circular nodal lines amount to n − 1. In this
case, the characteristic functions describing the out of plane motion of these modes,
as defined in [190], are given by

ψe,(m,n)(θ, a) = cos(mθ)Jm

(︃
πβm,na

r

)︃
(2.16)

where Jm is the Bessel function of the first kind, r is the radius of the drum and βm,n
is a value determined by the boundary condition Jm = 0 for a = r.

In addition to these solutions, there is another set of solutions for m ≥ 1, i.e. for
modes that are no longer radially symmetric. We call the solutions in Eq. 2.16 the
even solutions and the ones in Eq. 2.17 the odd solutions:

ψo(m,n)(θ, a) = sin(mθ)Jm

(︃
πβm,na

r

)︃
(2.17)

These modes are simply rotated by π/2m with respect to the ones in Eq. 2.16 and
are otherwise degenerate. We plot ψm,n for the first few modes according to Eq. 2.16
in Fig. 2.3.
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m=0,n=1 m=0,n=2 m=0,n=3

m=1,n=1 m=1,n=2 m=1,n=3

m=2,n=1 m=2,n=2 m=2,n=3
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FIGURE 2.3: Out of plane motion ψm,n for the first nine modes of a
circular drum resonator, where we have omitted the additional solu-

tions for m ≥ 1 given by Eq. 2.17, which only differ in orientation.

Another important quantity is the effective mass m∗, which can be calculated
once the mode shapes are known [191, 192]. For the fundamental mode of a circular
drum, it is related to the geometrical mass mg by m∗

mg
≈ 0.27 [130], giving

m∗
th = 0.27πr2dm (2.18)

as a theoretical prediction for m∗ of the fundamental mode of our drums.

2.2 Fabry-Perot Cavity

We will now introduce the general description of a Fabry-Perot cavity that we will
employ in the rest of the manuscript. Here we make use of the transfer matrix for-
malism, which is particularly useful when describing light that passes through a cas-
cade of elements. We closely follow [66, 131, 203], more information can be found in
[193–195].

When relating the ingoing and outgoing fields on one side of a system of ele-
ments to the ingoing and outgoing fields on the other side, one can obtain a single
matrix M, describing the entire process simply by cascading the matrices describing
the individual elements n in order M = Mn · Mn−1 · ... · M1.
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LCav

E1 E2

E3E4

ECav

Mirror 1
(r1,t1)

Mirror 2
(r2,t2)

FIGURE 2.4: Simplified sketch of the Fabry-Perot cavity considered
here. Two planar mirrors are separated by the cavity length LCav.
They are characterized by their reflection and transmission coeffi-
cients ri, ti. Red arrows illustrate the relevant electric field compo-

nents Ei.

We start with a simple Fabry-Perot Cavity of length LCav with two planar mirrors
characterized by their reflection coefficients R1,2 = r2

1,2 and their transmission coeffi-
cients T1,2 = t2

1,2. Here R, T are the intensity coefficients and r, t the field coefficients.
This system is sketched in Fig. 2.4.

For now, we assume a plane wave travelling along the optical axis z given by

E⃗ = Eei(kz−ωt) (2.19)

We further assume no losses, i.e., R + T = 1, and describe the light with its wave
vector k⃗, with |k| = k = 2π/λ = ω/c, where λ is the wavelength, ω the angular
frequency and c the speed of light.

We can now derive a characteristic matrix, MCav, that relates the electric field
components Ei, as defined in Fig. 2.4, as follows:(︄

E2

E3

)︄
= Mcav ·

(︄
E1

E4

)︄
(2.20)

We assume that our cavity is only pumped from one side and ignore vacuum fluc-
tuations, so we set E3 = 0.

We require three constituent matrices to calculate Mcav, one for each mirror and
one for the space of length LCav in between. The travel over LCav is described by
the well known characteristic matrix for translation in a homogeneous medium.
The ones describing the mirrors are given by the characteristic matrices for reflec-
tion/transmission at a flat interface.

Mmir,i =
i
ti

(︄
−1 ri

−ri 1

)︄
, MLCav =

(︄
eikLCav 0

0 e−ikLCav

)︄
(2.21)

Note that k in MLCav has to be adjusted for the refractive index n of the medium, but
we assume an empty cavity here and hence n = 1.

The matrix describing the cavity is then given by the product of these matrices
Mcav = Mmir,2 · MLCav · Mmir,1, resulting in

Mcav = − 1
t1t2

(︄
eiϕ − r1r2e−iϕ −r2eiϕ + r1e−iϕ

r1eiϕ − r2e−iϕ −r1r2eiϕ + e−iϕ

)︄
(2.22)
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where we defined ϕ = kLCav, the phase picked up when traversing the cavity.
With this characteristic matrix, we can now calculate the reflection and transmis-

sion coefficients of the cavity, given by the ratios Cr =
E4
E1

and Ct =
E2
E1

according to
Eq. 2.20.

Since we are interested in the reflected/transmitted power, we evaluate |Ei|2 to
obtain the corresponding coefficients CR,T and express the results in terms of R, T
rather than r, t.

CR =
(R1 − R2)2 + 4

√
R1R2 sin2(ϕ)

(1 − R1R2)2 + 4
√

R1R2 sin2(ϕ)
(2.23)

CT =
T1T2

(1 − R1R2)2 + 4
√

R1R2 sin2(ϕ)
(2.24)

We can now plot these two coefficients as a function of ϕ, which corresponds to
the very common procedure of scanning either the laser wavelength λ or the cavity
length LCav to obtain the cavity spectrum in reflection/transmission, as shown in
Fig. 2.5.

(c)(a) (b)

FIGURE 2.5: Normalized cavity spectrum in reflection (a) and trans-
mission (b) when tuning the cavity length LCav. (c) shows a zoom
of (b) to better visualize the line shape as well as the FWHM corre-
sponding to κ. For these plots, we assume a critically coupled cavity

with mirror reflectivities of R1 = R2 = 0.95.

We can also find a similar expression for the power circulating in the cavity, by
comparing the field before and after the first mirror.

Ccav =
T1

(1 − R1R2)2 + 4
√

R1R2 sin2(ϕ)
(2.25)

Note that here and in the following, we will assume a critically coupled cavity, i.e., a
cavity where the mirrors have the same reflectivity R1 = R2.

It is useful to introduce some quantities often employed to characterize optical
cavities. The distance between the resonances in a cavity spectrum, as seen in Fig. 2.5
(b), is called the free spectral range and is given by

ωFSR =
πc

LCav
(2.26)

The full width at half maximum (FWHM) of a cavity resonance can be extracted
from the formulas above to give the cavity linewidth κ, as depicted in Fig. 2.5 (c),

κ =
2c

LCav
sin−1

(︃
1 −

√
R1R2

2 4
√

R1R2

)︃
(2.27)
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And closely related to these quantities, the finesse of the cavity is defined as

F =
ωFSR

κ
(2.28)

F is a figure of merit often used since it is directly related to the losses of the optical
resonator, the higher F , the lower the losses.

Since we will work with high finesse cavities, implying high mirror reflectivities
R1, R2 ≈ 1 and thus R1, R2 ≫ T1, T2, we can simplify these expressions as follows:

κ ≈ c
LCav

(1 −
√︁

R1R2), F ≈ π

1 −
√

R1R2
(2.29)

This allows us to estimate F knowing nothing about the cavity but the mirror reflec-
tivities.

If we further assume that we will be working only slightly detuned around a
resonance of the cavity, we can simplify the intensity coefficients and express them
in terms of ∆ = ω − ωres ≪ ωFSR, with ωres being the frequency of said resonance:

CT =
1

1 +
(︂

∆
κ/2

)︂2 , CR = 1 − 1

1 +
(︂

∆
κ/2

)︂2 , Ccav =
F
π

1

1 +
(︂

∆
κ/2

)︂2 (2.30)

Now the typical nature of a cavity spectrum becomes obvious when looking at the
expressions above. A cavity resonance in transmission is simply a Lorentzian peak,
while in reflection, it is a dip. The circulating power in the cavity is the same as the
transmitted power, except for an additional amplification proportional to F .

2.2.1 Transverse mode profile

So far, we have found a simple description of the cavity spectra and resonance be-
havior regarding its longitudinal modes. To arrive at a more realistic description of
the cavity, we have to go beyond the simple plane wave model and consider the
electromagnetic field in all three dimensions. A detailed discussion regarding this
section and section 2.2.2 can be found in [131, 193].

We start with the general scalar wave equation

[∇2 + k2]E(x, y, z) = 0 (2.31)

When describing laser beams or cavity modes, it is useful to work with the paraxial
approximation of this equation. We again assume a beam that travels along z, this
implies that we can factor out a term eikz, that describes the dominant (fast) sinu-
soidal evolution along z, resulting in

E(x, y, z) = u(x, y, z)eikz (2.32)

We further assume that the remaining z-dependence in u(x, y, z) is slow and ∂2

∂z2 u(x, y, z)
can be neglected. This then leads to the well known paraxial wave equation

[∇2
⊥ − 2ik

∂

∂z
]u(x, y, z) = 0 (2.33)

where ∇2
⊥ is the transverse Laplace operator.

One simple solution to this wave equation, which already brings us close to our
final description, is a paraxial wave with spherical wavefronts originating from a
point source:

u(x, y, z) =
1

R(z)
e−i k

2R(z) (∆x2+∆y2) (2.34)
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Here ∆x = x − x0, ∆y = y − y0 and R(z) = z − z0 is the radius of curvature. From
this point on we will choose our coordinate system so that x0, y0, z0 = 0. The main
problem with this solution is that the power does not fall off in the transverse direc-
tion, and thus it is not a realistic waveform.

All we need to do to convert this into a useful solution, that can be employed to
model the fundamental mode of Fabry-Perot resonators and laser beams in general,
is to assume an additional imaginary part for the Radius of curvature R(z) → q(z) =
z + izR. This will give us the typical Gaussian beam. Note that we renamed the
radius of curvature here since it now represents the commonly used complex beam
parameter q(z). zR is the Rayleigh range, signifying the length from the beam waist
ω0 after which the cross section of the beam has doubled, or the waist has grown to
ω(z) =

√
2ω0:

zR =
πω0

λ
(2.35)

The complex beam parameter is often also given in the form

1
q(z)

=
1

R(z)
− i

λ

πω(z)2 (2.36)

x,y

z=0

zR

w0
√2w0 zR(z)

FIGURE 2.6: Gaussian beam expanding from its waist at z = 0, in-
cluding the geometrical definitions necessary to determine the com-

plex beam parameter q(z).

The expression for a Gaussian beam, which can be completely characterize by its
complex beam parameter q(z), is then given by

u(x, y, z) =
1

q(z)
e−ik x2+y2

2R(z) −
x2+y2

ω(z) (2.37)

We can also express the radius of curvature and beam waist in terms of the Rayleigh
range as follows:

R(z) = z
(︃

1 +
z2

R
z2

)︃
(2.38)

ω(z) = ω0

√︄
1 +

(︃
z2

z2
R

)︃
(2.39)

The radial (r2 = x2 + y2) intensity profile of a Gaussian beam with power P is then
given by

I(r, z) =
2P

πω(z)2 e
− 2r2

ω(z)2 (2.40)

which is important when considering clipping losses, that can occur when the beam
travels through an aperture of radius a

Iapt(a, z) =
2P

πω(z)2

∫︂ a

0
2πre

− 2r2

ω(z)2 dr = P(1 − e
− 2a2

ω(z)2 ) (2.41)
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While the description above represents a good model for the fundamental mode
of a cavity, which is most commonly employed in experiments, a more complete
description needs to include higher order modes. Here we will focus on the Hermit-
Gaussian modes, which form a complete set of orthogonal functions that can be used
to expand any paraxial beam.

It is first useful to introduce a phase into our description by rewriting

i
q(z)

=
i

R(z)
+

λ

πω(z)2 =
1

|q(z)| e
ϕG(z) (2.42)

where ϕG(z) = tan−1
(︂

z
zR

)︂
is called the Guoy phase.

We then note that due to the symmetry in x and y, u(x, z) =̂ u(y, z). It is thus
sufficient to give an expression along one transverse dimension u(x, z), the over-
all three dimensional expression is then retrieved by taking product of u(x, z) and
u(y, z). The general expression for any Hermit-Gaussian mode is

un(x, z) =
(︃

2
π

)︃1/4
√︄

1
2nn!ω(z)

Hn

(︄√
2x

ω(z)

)︄
e
−i kx2

2R(z)−
x2

ω(z)2 e−iϕG,n(z) (2.43)

where ϕG,n(z) = (n + 1
2 )ϕG(z) is the Guoy phase for higher order modes and Hn

are the Hermit polynomials. These Hermit-Gauss modes are not only useful be-
cause they can expand any paraxial wave, but also because the individual functions
represent the transverse intensity profiles observed in typical real life Fabry-Perot
cavities. Naturally, they contain the simple Gaussian beam introduced in Eq. 2.37 as
the lowest order mode u00(x, y, z).

2.2.2 Gaussian beams in cavities and cavity stability

We can now combine the notions introduced in the two previous sections to describe
a more realistic Fabry-Perot cavity. Since a Gaussian beam is characterized by its
complex beam parameter q(z), we can use the ABCD-law

q2 =
Aq1 + B
cq1 + D

(2.44)

to relate q1(z) before a system to q2(z) after that system. A, B, C and D are the entries
of the ray transfer matrix (or ABCD-matrix) M of the system, not to be confused with
the characteristic matrices M used before.

We are considering the round trip matrix of the cavity and assume that q1(z) =
q2(z) = q(z), since we are looking for the eigenmodes of the cavity, which are pre-
served after a roundtrip per definition. Some algebraic manipulation of Eq. 2.44,
together with the fact that det(M) = 1 for any ray transfer matrix where the refrac-
tive index n does not change between input and output, yields

1
q
=

1
2B

⎡⎣D − A ± 2

√︄(︃
A + D

2

)︃2

− 1

⎤⎦ (2.45)

Remembering the definition given in Eq. 2.36, we notice that to have a corresponding
imaginary part that represents a real value for ω0, we require that(︃

A + D
2

)︃2

− 1 < 1 (2.46)
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The round trip matrix can be calculated by multiplying the ray transfer matrices
Mmir,i =

(︁ 1 0
−2/RC,i 1

)︁
for the two curved mirrors with radius of curvature RC,i and the

one representing the travel over the cavity length MLCav =
(︁ 1 LCav

0 1

)︁
twice, resulting

in

M =

⎛⎝ 1 − 2LCav
RC,2

− 2
RC,1

(︂
1 − LCav

RC,2

)︂
− 2

RC,1
− 2

RC,2
+ 4LCav

RC,1RC,2
1 − 4LCav

RC,1
− 4LCav

RC,2
+

4L2
Cav

RC,1RC,2

⎞⎠ (2.47)

3 2 1 0 1 2 3
g1

3

2

1

0

1

2

3

g2

LCav = 45 m

LCav = 3 m

Cavity Stability

R1 = 92 m, R2 = 57 m

FIGURE 2.7: Stability diagram of an optical cavity. The dark blue ar-
eas are combinations of g-factors that lead to a stable cavity according
to Eq. 2.49. The red line shows g1g2 as a function of LCav for the radii

of curvature of the FFPC we will use in later chapters.

It is common to define the so called g-factors at this point, which represent the
geometrical properties of the cavity

1
2

(︃
A + D

2
+ 1
)︃
=

(︃
1 − LCav

RC,1

)︃(︃
1 − LCav

RC,2

)︃
= g1g2 = g (2.48)

Combining this with Eq. 2.46, we can obtain the typical stability criterion for cavities,
which only depends on the radii of curvature of the two mirrors and the cavity
length

0 ≤ g1g2 ≤ 1 (2.49)

These g-factors can also be used to express the size of the cavity waist, with only
LCav and λ as additional parameters,

ω2
0 =

LCavλ

π

√︄
g1g2(1 − g1g2)

(g1 + g2 − 2g1g2)2 (2.50)

as well as the beam waist at the end of the cavity (i.e. at the mirror interfaces),

ω2
i =

LCavλ

π

√︄
gi

gj(1 − g1g2)
(2.51)
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where i, j = 1, 2 and i ̸= j. This gives the necessary quantities to predict clipping
losses together with Eq. 2.41.

In Fig. 2.7 we show the cavity stability as a function of the g-factors. For example,
a cavity made of two planar mirrors, implying RC,1, RC,2 → ∞, would be situated in
the origin of the graph. While this point is stable according to Eq. 2.49, in practice,
such cavities on the edge of the blue stable region in Fig. 2.7 become unstable due
to the smallest deviations in cavity parameters. It is easy to imagine that a small
deviation from perfect parallel alignment of the two mirror surfaces in such a planar
cavity would lead to a loss of confinement of the light in the cavity. The red line in
Fig. 2.7 represents g-factors for the radii of curvature and cavity lengths correspond-
ing to our experimental parameters, lying well within the stable region.

Finally, we have to take into consideration the phase that a beam picks up when
travelling through the cavity. When combining the solutions for the Hermit-Gaussian
modes into the three dimensional representation umn(x, y, z) = um(x, z)un(y, z), we
get a Guoy phase of ϕmn = (m + n + 1)ϕG, which can be expressed in terms of the
g-factor as ϕG = 2 cos−1(

√
g) [131], resulting in a phase

ϕ = kLCav − (m + n + 1)ϕG (2.52)

Because of the dependency on the mode order, this leads to a separation of higher
order modes in the cavity spectrum.

2.2.3 Pound-Drever-Hall locking scheme

It is often necessary to lock the wavelength of a laser to a cavity resonance or vice
versa, to maintain a stable signal for measurements. When locking on resonance,
a drop in the cavity signal does not reveal in which direction the system needs to
be corrected due to the symmetry of the cavity transmission/reflection. A solution
is to use the derivative of the cavity signal instead, which is commonly achieved
following the Pound-Drever-Hall technique [132, 133]. This procedure starts with a
phase modulation of the input signal

E⃗in = Einei(ωt+β sin(ωmodt)) (2.53)

This phase modulation will result in sidebands spaced by the modulation frequency
ωmod from the main carrier at ω. We will assume that the power in the sidebands
Ps is much weaker than the power in the main carrier Pc, with Pin = Pc + 2Ps. This
means that we are using a small modulation amplitude β. With Cr as defined in
section 2.2, the reflected power is then of the form

Pr(t) = PDC + (terms in 2ωmod) + 2
√

PcPs[

Re(Cr(ω)C∗
r (ω + ωmod)− C∗

r (ω)Cr(ω − ωmod)) cos(ωmodt)+
Im(Cr(ω)C∗

r (ω + ωmod)− C∗
r (ω)Cr(ω − ωmod)) sin(ωmodt)]

(2.54)

Here PDC is the part of the signal independent of ωmod. By mixing with a signal
sin(ωmodt + ϕmod) and low-pass filtering, we retain only the sine and cosine terms
as down-mixed DC components. Further defining χ(ω) = Cr(ω)C∗

r (ω + ωmod) −
C∗

r (ω)Cr(ω − ωmod) we will be left with an error signal

ϵ(ω, ϕmod) ∝ Re(χ(ω)) sin(ϕmod) + Im(χ(ω)) cos(ϕmod) (2.55)

With appropriate choice of ϕmod, we can measure each quadrature of χ(ω). The
common Pound-Drever-Hall error signal is retrieved for ϕmod = 0.
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FIGURE 2.8: Reflected cavity signal including the sidebands at ±ωmod
in (a). In (b) we show both the regular PDH error signal and the angle
signal, which in this case can be used to lock at the upper sideband.
The dotted lines show ±κ/2 around the upper sideband, representing

the limits of the lock range of the regular PDH error signal.

In Fig. 2.8 (a) we show the reflected cavity signal with sidebands at the modu-
lation frequency as reference. In (b), we show the PDH error signal. In particular,
the approximately linear regime around resonance (∆ = 0) is used when locking the
main carrier to the cavity. But the Pound-Drever-Hall error signal is also useful for
locking around the areas corresponding to the sidebands at ±ωmod. It is also worth
noting that the entire error signal can be inverted by shifting ϕmod by π.

Instead of this PDH error signal, it is also possible to use the angle of the two
quadratures X and Y measured by the LI-A as an error signal [198]

ϵPDH,ϕ = arg(X + iY)/π (2.56)

For an appropriate choice of phase in the LI-A, this gives an error signal as shown
in Fig. 2.8 (b) in green, which can be used to lock on the upper sideband. Due to
the discontinuity around the main peak, it can only be used on the sidebands. A
shift of the phase in the LI-A by π flips the signal and allows to lock on the lower
sideband instead. There are two main advantages of this type of error signal over
the regular PDH error signal. First, there are no turning points of the signal that
limit the locking range. These turning points are the maxima of the regular PDH
error signal that occur at κ/2, highlighted by the dotted lines in Fig. 2.8 (b). Second,
this error signal does not scale with the laser power. This can be especially useful
when varying experimental parameters since an adjustment of the lock settings can
be avoided.
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2.3 MIM Optomechanics

We now begin with the description of the combined MIM-FFPC system. To model
what happens when we put a membrane in the middle of our cavity we use the same
approach as with the empty cavity, we simply have to add a characteristic matrix Mm
that describes the membrane, as in [66, 197, 203, 134, 135].

We assume that this membrane is positioned at zm from the middle of the cavity
and has a thickness of dm, as sketched in Fig. 2.9. This results in two sub cavities,
divided by the membrane, of lengths LCav,1 = LCav

2 + zm − dm
2 and LCav,2 = LCav

2 −
zm − dm

2 .

LCav,1 LCav,2

E1 E2

E3E4

ECav,1 ECav,2

dm

(rm,tm)

zm

Mirror 1
(r1,t1)

Mirror 2
(r2,t2)

FIGURE 2.9: Extension of our previous model, shown in Fig. 2.4, to a
MIM system. The cavity is now split into two sub cavities by a mem-
brane placed at position zm from the middle. Similarly to the mirrors,
we characterize this membrane by its reflection and transmission co-

efficients (rm, tm) as well as its thickness dm.

We can describe the membrane in terms of its reflection and transmission coeffi-
cients with a single characteristic matrix2 in the form

Mm =
1
tm

(︄
t2
m − r2

m rm

−rm 1

)︄
(2.57)

where we assumed that t2
m + r2

m = 1 [203]. The reflection and transmission coeffi-
cients of a lossless membrane with refractive index nm are

rm =
(1 − nm)2 sin(ϕm)

2inm cos(ϕm) + (1 + n2
m) sin(ϕm)

(2.58)

tm =
2inm

2inm cos(ϕm) + (1 + n2
m) sin(ϕm)

(2.59)

where ϕm = nmkdm is the phase picked up when travelling through the membrane.
The matrix describing the entire system is then given by

MMIM = Mmir,2 · MLCav,2 · Mm · MLCav,1 · Mmir,1 (2.60)

2This expression is equivalent to a product of matrices as in Eq. 2.21, to account for the two inter-
faces and the membrane medium. For the two interfaces r1 = r2 = 1−nm

1+nm
, t1 = 2

1+nm
and t2 = 2nm

1+nm
.
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As before, we can find the overall reflection and transmission coefficients CR, CT of
our MIM-cavity system with this matrix. The resulting spectra are plotted in Fig. 2.10
as a function of the cavity length and the position of the membrane.

The addition of the membrane shifts the resonance length (frequency) of the cav-
ity compared to the empty cavity case Lres → Lres + δL. For ϕm ∈ [0, π/2], and
assuming the mirror reflectivities are r = r1 = r2, this perturbation can be expressed
as [203, 134]

δL =
λ

2π

[︃
cos−1

(︃
(−1)N+1 cos(2kzm)

1 + r2

2r
|rm|

)︃
− ϕr

]︃
(2.61)

where N is the longitudinal mode order of the cavity and ϕr is the phase associated
with rm:

ϕr = π − tan−1
[︃

2nm cos ϕm

(1 + n2
m) sin ϕm

]︃
(2.62)

The overall resonance condition in terms of length and frequency is then given
by

Lres,N =
Nλ

2
+ δL, ωres,N = Lres,N

2ωFSR

λ
(2.63)

Note that depending on the definition of the coordinate system the simulated
cavity spectrum can show asymmetries. The spectrum shown in Fig. 2.10 (a) as-
sumes that both LCav,1 and LCav,2 are changed by the same amount, leading to a
symmetric increase of LCav around the central position where the membrane is lo-
cated. This coordinate system is simple in theory but requires a more elaborate ex-
perimental setup, in which both cavity mirrors can be tuned in a synchronized way.
A more realistic scenario for us is given in Fig. 2.10 (b), where only the left mirror is
moved leading to a change of only LCav,1, while the membrane is detuned from its
initial position by ∆zm, affecting both sub-cavities. Assuming that the first mirror is
positioned at z = 0, the membrane at zm and the second mirror at z = LCav, the two
sub-cavity lengths are then given by

LCav,1 = zm − ∆LCav,1 + ∆zm − dm/2
LCav,2 = LCav − zm − ∆zm − dm/2

Similar to Eq. 2.61, the perturbation of a thin membrane on the cavity resonance
length in this reference frame can be approximated as follows [134]:

δL =
λ

2π
tan− 1

[︃
cos(ϕr) + |rm| cos(2kzm)

sin(ϕr)− |rm| sin(2kzm)

]︃
(2.65)

Both analytical expressions are also plotted in Fig. 2.10, matching the simulations.
It is common to quantify the effect of the membrane on ωres with the frequency

pull parameter, which is related to the single-photon optomechanical coupling strength
g0 through the zero point motion of the mechanical resonator

G =
∂

∂zm
ωres,N =

g0

xzpm
(2.66)

In addition, the effective optomechanical coupling strength, taking into account
higher photon numbers np circulating in the cavity, is then

g = g0
√

np (2.67)
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FIGURE 2.10: Transmission of a MIM system as a function of the de-
tuning of the cavity length and the membrane position. Dashed grey
lines show the case for unity rm, resulting in two separated sub cav-
ities. We used R1 = R2 = 0.95 and rm, tm are modelled for a 50 nm
thick hBN membrane. White dashed lines show the analytical expres-

sions defined in Eq. 2.61 and 2.65

2.3.1 Losses in a MIM-FFPC system

As a final step, we have to introduce losses to the description of our system. One
immediate consequence of losses is that the Ri, Ti of our mirrors do not add up to
unity anymore, instead we will now assume

Ri = 1 − Ti − Li (2.68)

where Li contains contributions such as mirror absorption, but also the Gaussian
clipping losses discussed in section 2.2.1. It is useful to rewrite Eq. 2.29 with this
new definition, using the approximation

√
1 + x ≈ 1 + x/2 for x ≪ 1 we get

F ≈ 2π

T1 + T2 + L1 + L2
(2.69)

Resonance lineshape of a FFPC in reflection

We now want to discuss two less transparent consequences of imperfections in our
system. First, we discuss a model for FFPC’s that includes mode matching between
the fiber modes and the modes of the cavity itself, taking into account coupling
losses. In the case of a standard free-space cavity, mode matching can be adjusted
with optics and mostly affects the contrast of the Lorentzian shaped cavity signal.
In the case of an FFPC, the mode-matching is partially determined by the fibers and
the mirror geometries, while also depending on the cavity alignment. Furthermore,
the reflected beam in a FFPC has to be matched to the input fiber mode once again,
leading to a modification of the reflected lineshape compared to standard cavities in
addition to the changes in contrast.

The reflected power of a FFPC under these considerations can be described by a
model including a dispersive term as described in [136],
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FIGURE 2.11: Reflected FFPC signal as a function of ∆ according to
Eq. 2.70, as well as the separated Lorentzian (green) and dispersive

(orange) parts of the model.

CR,Fano = ηr − ηL

(︄
1

1 +
(︁ 2∆

κ

)︁2 −A
2∆
κ

1 +
(︁ 2∆

κ

)︁2

)︄
(2.70)

where ηr is an alignment independent reflected background, ηL is the amplitude
of the Lorentzian dip and A is the amplitude of the dispersive part. CT and Ccav, on
the other hand, are not modified in lineshape by mode-matching or alignment, the
signal is only affected in amplitude, which can be handled with a simple pre-factor.

The resulting line shape of CR,Fano is shown in Fig. 2.11 together with its contri-
butions corresponding to the regular Lorentzian lineshape, matching CR from before
with reduced contrast (ηL < 1), and the dispersive part which causes the Fano line-
shape.

Scattering losses

Next, we consider losses due to the membrane. In the whole MIM system, the mem-
brane is expected to lead to significant losses due to scattering channels out of the
cavity mode. This can be caused by misalignment but also by surface roughness
of the mechanical oscillator. As long as one does not care about additional impli-
cations, such as heating of the membrane, one can also model absorption this way,
since it simply constitutes another loss channel out of the regular cavity mode.

We again employ the transfer matrix formalism to model this loss channel by
introducing a beamsplitter term into our membrane, which models the part of the
light that is deflected out of the cavity mode [203, 193]. We now have to consider ad-
ditional input and output directions, which increases the dimensions of our matrices
from (2 × 2) to (4 × 4).

We sketch the MIM system in Fig. 2.12, but this time with the additional channels
corresponding to the two beamsplitters, one for each direction of propagation.⎛⎜⎜⎜⎜⎝

E2

0
ES1

ES2

⎞⎟⎟⎟⎟⎠ = M(4×4)

⎛⎜⎜⎜⎜⎝
E1

E4

0
0

⎞⎟⎟⎟⎟⎠ (2.71)
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dm/2
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dm/2
E4

E2

ES2

BS1

BS2

FIGURE 2.12: Membrane modelled as a beamsplitter to account for
scattering losses. We only consider channels corresponding to output
channels (i.e. losses) and no input channels due to the beamsplitters,

leading to two new channels ES1 and ES2.

We again assumed that the cavity is only pumped from one side and that the
beamsplitters in the membrane only couple light from the cavity mode to the free
space mode, and not the other way around. Any (2 × 2) matrix M(2×2) in Eq. 2.60
that we defined before, which is not Mm, will be converted into a (4 × 4) matrix as
follows:

M(4×4) =

(︄
M(2×2)

I(2×2)

)︄
(2.72)

Here I is the identity-matrix, leading to no interaction with the free-space channels.
This means that apart from Mm, the formalism discussed so far is still applicable.
Mm,(4×4) will now include the characteristic matrix for a beamsplitter with transmis-
sion coefficient Tbs = |tbs|2 and reflection coefficient Rbs = |rbs|2

Mbs,(4×4) =

⎛⎜⎜⎜⎜⎝
tbs 0 −rbs 0
0 1/tbs 0 rbs/tbs

rbs 0 tbs 0
0 rbs/tbs 0 1/tbs

⎞⎟⎟⎟⎟⎠ (2.73)

The membrane, as shown in Fig. 2.12, then is made of two flat interfaces, translation
along two lengths of dm/2, which are separated by a beamsplitter in the middle,
leading to

Mm,(4×4) = M2,(4×4) · Mdm/2,(4×4) · Mbs,(4×4) · Mdm/2,(4×4) · M1,(4×4) (2.74)

The matrices needed in addition to Mbs,(4×4) to calculate Mm,(4×4) are again con-
verted as in Eq. 2.72, and we can reuse the definitions in Eq. 2.21 for the (2 × 2)
matrices (see 2).

We can now calculate a characteristic matrix including scattering losses MMIM,sctr
for the entire system as in Eq. 2.60 and retrieve the transmission and reflection coef-
ficients of the MIM system as before. We also define the scattering coefficient of the
system, corresponding to the new loss channels, as

Cs,MIM =
ES1

E1
+

ES2

E1
=

M31M22 − M32M21

M22
+

M41M22 − M42M21

M22
(2.75)
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FIGURE 2.13: Cavity Transmission as a function of cavity length de-
tuning and membrane position, including scattering losses in the
membrane (a). Corresponding scattering parameter (b). We used
R1 = R2 = 0.95 and Rbs = 0.03, (rm, tm) are modelled for a 50 nm

hBN membrane.

where Mmn are the entries of MMIM,sctr.
Fig. 2.13 (a) shows the same cavity spectrum as Fig. 2.10 (b), but with the ad-

ditional losses. We see that the losses are particularly pronounced when the mem-
brane is away from a node of the cavity field, where a higher field is present inside
the membrane. The scattering parameter plotted in Fig. 2.13 (b) shows a distinct
asymmetry in intensity when comparing the left and right side of the cavity (anti)
node, but the transmission signal appears more symmetric in this regard. This is an
asymmetry in addition to the aforementioned tilt of the signal due to the fact that we
only scan one mirror of the cavity. This can be explained with the fact that the cavity
is pumped from only the left side and thus the cavity field in the two sub cavities of
the MIM system are not equal. In this configuration, the field in the right sub-cavity
is constant and the transmission signal is symmetric as a function of membrane po-
sition zm. However, the same is not true for the left sub-cavity, which affects the
scattering parameter. When the membrane is positioned to the left of the node of the
cavity field, the field in the left sub-cavity is higher than in the right and vice versa
[197, 203]. This leads to the observed asymmetry in the scattering parameter.

Since in Fig. 2.13 we have chosen a rather moderate mirror reflectivity for visibil-
ity of the signal, this plot does not give a quantitative idea about the impact of losses
in our system caused by the membrane. To this end, we have plotted the maximum
transmission, reflection and scattering coefficient of the MIM system as a function
of beamsplitter losses in Fig. 2.14. Here, the mirror reflectivities are chosen to result
in a finesse of 15000 for an empty cavity, similar to the reflective coating used in
our experiments. We keep the membrane position fixed and vary the cavity length,
corresponding to a typical cavity scan in an experiment. To illustrate the impact of
the membrane position, we show curves representing three different membrane po-
sitions. Each position is represented by a different color in Fig. 2.14, the transmitted
(reflected) signal is shown by a solid (dashed) line, while the scattered intensity is
shown as a dotted line. In all cases, the scattered intensity is maximal for a moderate
amount of beamsplitter losses, since for higher losses no significant field can build
up in the cavity, and most of the light is reflected. For zm = 0, the membrane is po-
sitioned on a node of the cavity field and the losses are minimal, as already visible
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FIGURE 2.14: Impact of losses in a MIM system. The maximum cavity
transmission is shown as a solid line, the reflected signal as a dashed
line, and the scattering losses as a dotted line. zm = 0 corresponds to
the cavity node, while zm = λ/4 corresponds to the anti-node. For
these plots we used 200 ppm of mirror losses, to match the experi-
mental parameters used in the measurements in this thesis, this level

of losses is indicated by the vertical dashed line.

in Fig. 2.13. Further away from the node, for zm = λ/4 and zm = λ/8, the losses
are significantly higher and the transmission signal is lost for smaller values of rbs.
Already for moderate losses, there is a clear impact on the observed cavity signal.
But especially when overtaking the losses associated with the mirrors of 200 ppm,
the signal quickly drops to zero, highlighting the importance of resonators made of
low-loss materials in high finesse MIM systems.

2.3.2 Optomechanically induced transparency

In the resolved sideband regime of cavity optomechanics, where κ ≪ ωm, the in-
teraction between the cavity and the mechanical oscillator leads to observable side-
bands spaced by ωm. Due to the small dimensions of our FFPC, our system resides
in the unresolved sideband regime, where κ ≫ ωm. This means that the sidebands
at ωm are indistinguishable from the central cavity resonance peak, which is a pre-
requisite for many experimental protocols [18]. But even in this unresolved regime,
where the cavity field reacts to the mechanical system quasi instantaneously, new
experimental techniques are being developed [137–140] and strong interactions are
observed [59]. One effect that allows us to observe the optomechanical interaction
clearly in the cavity spectrum, and to characterize it even in the unresolved sideband
regime, is optomechanically induced transparency (OMIT) [141, 142, 199, 143].

To develop a model for this dynamic optomechanical effect, we start with the
general Hamiltonian of an optomechanical system [18]

ĤOM = ĤCav + Ĥm + Ĥint + Ĥin (2.76)

This Hamiltonian includes the contributions of the bare cavity and mechanical os-
cillator (ĤCav and Ĥm), where â, â† and b̂, b̂

†
are the photonic and phononic ladder
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operators respectively. We have also given Ĥm in terms of the position and momen-
tum operators x̂, p̂ as we will use this definition in the following derivation. Ĥint
accounts for the optomechanical coupling characterized by the single photon cou-
pling strength g0 as defined in the previous section. The classical input laser αin is
accounted for by the drive term Ĥin.

ĤCav = h̄ωcav â† â

Ĥm = h̄ωcavb̂
†
b̂ =

1
2m∗ p̂2 +

1
2

m∗ω2
m x̂2

Ĥint = −h̄g0 â† â(b̂ + b̂
†
)

Ĥin = ih̄αin(â + â†)

Moving forward, we consider the semi-classical limit in which we will assume that
the involved quantities (â, p̂, x̂) show small fluctuations around a steady state value.
We now describe e.g. the cavity occupation by substituting the operators with α(t) =
α + δα(t), where α is the steady-state value and δα is the smaller fluctuating term.
This allows us to linearise the equations of motion as follows [18],

∂

∂t
δα = (i∆ − κ

2
)δα − iGα +

√
κinδαin

m∗ ∂2

∂t2 δx = −m∗(Γm
∂

∂t
+ ω2

m)δx − h̄Gα(δα − (δα)∗)

where κin accounts for the input mirror losses and we re-define the detuning be-
tween the cavity and the laser to include the static offset caused by the optomechan-
ical interaction ∆ − Gx → ∆.

We generate our probe tone via phase modulation at frequency Ω and thus con-
sider an input drive of the form

αin(t) = αin + δαin(t) = αin + δα+
ine−iΩt + δα−

ineiΩt (2.79)

Following the derivation in [141], we use an Ansatz

δα = δα+e−iΩt + δα−eiΩt

δx = δx+ + e−iΩt + δx−eiΩt

where we note that (δx+)∗ = δx−. With this Ansatz we find coupled equations for
δx, α+ and α−

δα+ = χCav(Ω + ∆)(
√

κinδα+
in − iGαδx+)

δα− = χCav(Ω − ∆)(
√

κinδα−
in − iGαδx−)

2m∗ωmχ−1
m (Ω)δx = −ih̄Gα(δα+ + (δα−)∗)

Here we define the cavity and the mechanical susceptibility as

χ−1
Cav(∆) =

κ

2
− i∆

χ−1
m (Ω) =

Γm

2
− i(Ω − ωm)

The cavity susceptibility is defined in analogy with the field reflection/transmission
coefficients of the cavity Cr = 1 − κinχcav. The mechanical susceptibility as defined
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here is a deviation from the definition given in section 2.1.1, but as noted in [18], this
definition matching χCav is more convenient in this formalism.

With these equations, we can arrive at the following expression for our mechan-
ics

2m∗ωmχ−1
m,e f f (Ω)δx = −ih̄Gα

√
κin(χCav(Ω + ∆)δα+

in − χCav(Ω − ∆)(δα−
in)

∗) (2.83)

where we defined the effective mechanical susceptibility as

χ−1
m,e f f (Ω) = χ−1

m (Ω) + g2(χCav(Ω + ∆)− χCav(Ω − ∆)) (2.84)

and used g
√

h̄/2m∗ωm = Gα. This χm,e f f includes the optomechanical effects on the
mechanics; in the limit of κ > g these effects can be limited to the optomechanical
damping and optomechanical frequency shift (or spring effect). In this regime we
can rewrite χm,e f f as [18]

χ−1
m,e f f (Ω) =

Γm + δΓm

2
− i(Ω − (ωm − δωm)) (2.85)

Here δωm is the optomechanical spring effect given by

δωm = g2
[︃

∆ − ωm

( κ
2 )

2 + (∆ − ωm)2 +
∆ + ωm

( κ
2 )

2 + (∆ + ωm)2

]︃
(2.86)

and δΓm is the optomechanical damping defined as

δΓm = g2
[︃

κ

( κ
2 )

2 + (∆ + ωm)2 − κ

( κ
2 )

2 + (∆ − ωm)2

]︃
(2.87)
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FIGURE 2.15: (a) Reflected signal based on ROMIT for Ω on the order
of κ, showing the overall cavity lineshape (top) and phase (bottom),
with the narrow OMIT features. (b) Zoom in around ωm. Values
are typical for our system, with κ/2π = 2 GHz, ωm/2π = 2 MHz,
Γm/2π = 320 Hz, m∗ = 1 × 10−14 kg, ∆ ∼ −100ωm and a cou-
pling given by G/2π = 15 GHz · nm−1, with a photon number of

|α|2 = 2000.
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We can finally derive solutions for δα+ and δα+ of the form

δα+ =
√

κinδα+
inχCav(Ω + ∆)K(Ω)

δα− =
√

κinδα−
inχCav(Ω − ∆)(K(Ω))∗

where K = χ−1
m /χ−1

m,e f f contains the omit signal.
We in the end measure αout,R = αin − √

κinα in reflection, giving us an overall
signal of

αout,R(t) = αin − κinαinχCav(∆)

+ (δα+
in − κinαinβχCav(Ω + ∆)K(Ω))e−iΩt

+ (δα−
in − κinαinβχCav(Ω − ∆)(K(Ω))∗)eiΩt

The first term is a constant signal offset, which we will ignore since we are interested
in the signal at frequency Ω. Furthermore, the second and third line correspond to
the contributions of the sidebands at ±Ω, but only the first will be resonant with
our cavity and χCav(Ω − ∆) → 0. The additional factor β accounts for the sideband
amplitude compared to the main tone. We thus expect a reflected signal of the form

ROMIT ∼ |δα+
in − κinαinβχCav(Ω + ∆)K(Ω)|2 (2.90)

In the absence of optomechanical interaction (i.e. g → 0), χ−1
m,e f f → χ−1

m and thus
K(Ω) → 1. In this case Eq. 2.90 simply contains the cavity lineshape described by
χCav(Ω + ∆). In the presence of optomechanical coupling, K adds the characteristic
OMIT dip to the cavity signal, as shown in Fig. 2.15, caused by interference between
the mechanical sidebands of the pump and the probe tone. Since this dip depends
not only on the mechanical properties (Γm, ωm), but also on the optomechanical cou-
pling, such a measurement can be a useful tool to characterize an optomechanical
system.
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Chapter 3

Experimental Setups

In this chapter, we will introduce two experimental setups that were used to obtain
the measurements presented in this thesis. The first is the membrane-in-the-middle
fiber Fabry-Perot cavity (MIM-FFPC) setup, which was used to produce the mea-
surements of the FFPC alone (see chapter 4) and the optomechanical measurements
shown in chapter 7.

The second setup is a room-temperature Michelson interferometer used to char-
acterize the hBN drum resonators, which was used to obtain most of the results
presented in chapter 6.

3.1 MIM-FFPC Experimental Setup

Here we will begin by discussing the laser ablated fibers that make up the optical
cavity. We will then show the low-temperature probe that hosts the MIM-FFPC sys-
tem in the bath cryostat and the laser-based setup used to measure and control it.

3.1.1 Fiber based Fabry-Perot cavity

To build a FFPC, we require two optical fibers with cleaved end facets, which are
facing each other, forming the optical cavity. Such cavities have been used with
great success, especially in experiments that require a small footprint and vacuum
or cryo-compatibility [98, 144, 145]. From the stability criterion in Eq. 2.49, we know
that only for certain combinations of radii of curvature of the two mirrors, and for
certain cavity lengths between them, can we expect a stable cavity. To this end,
we need to appropriately shape the facets of the fibers. We do this by removing
material from the cleaved surfaces with CO2 laser-ablation, producing craters with
well controlled profiles [99]. To improve the moderate reflectivity of cleaved optical
fibers, amounting only to a few percent, we employ a highly reflective dielectric
coating deposited by LaserOptik1.

Specifically, we employed both single-mode2 (SM) and multi-mode3 (MM) fibers
as constituents of our FFPC. The SM fibers are useful to supply a well defined input
mode that can be matched to the mode of the FFPC by careful choice of the geomet-
rical parameters of the cavity. The MM fiber, on the other hand, is a good choice for
the transmission fiber, since it will provide a collection efficiency of almost unity.

The coating we use is intentionally capped to produce a moderate finesse of up
to 15000. While it is possible to fabricate mirrors with much smaller transmission
losses, resulting in finesse as high as 2 × 105 [118], this also results in more challeng-
ing experimental parameters. For example, relatively small scattering losses due to

1https://www.laseroptik.com/
2IVG fiber Cu800
3IVG fiber Cu50/125

https://www.laseroptik.com/
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the membrane would already have a detrimental effect on the cavity signal, see sec-
tion 2.3.1. The requirements for the mechanical stability of the setup also scale with
the finesse and are not easy to meet, as we will see in chapter 4.
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FIGURE 3.1: (a) Model (orange) and characterization data (blue) of
the dielectric coating deposited onto our fibers. The green shaded
area shows the tuning range of our NIR laser. (b) Same as in (a), but
shown with a logarithmic scale to visualize the changes within the
stop band of the coating. (c) The phase extracted from the model as
well as a simulation within the highly reflected band, provided by

LaserOptik.

The highly reflective Bragg window of our coating easily covers the entire tun-
ing range of our near-infrared (NIR) laser of 915 to 980 nm. Fig. 3.1 (a) and (b) shows
both the characterization data of the coating supplied by LaserOptik and a numer-
ical model that can be extended beyond the characterized range. We will later use
this model to gain insight into the behavior of our FFPC when operated at wave-
lengths below the highly reflective window. Note that the characterization data was
not obtained from our cratered fibers, but from reference mirror blanks exposed to
the same coating run. In (c), the corresponding phase is shown as obtained by our
model, as well as a simulation provided by LaserOptik that is limited to within the
highly reflective Bragg window. Within this range, our model agrees well with this
simulation.

The coating is a 28 layer distributed Bragg reflector made of alternating layers of
Nb2O5 and SiO2. The layer thickness corresponds to λn/4, where λn = λ0/n with n
the refractive index of the layer and the central wavelength λ0 = 944.6 nm. However,
the thickness of the first two layers is adjusted to 1.825λn/4 (Nb2O5) and 0.592λn/4
(SiO2). This is done to achieve a transmission of 100ppm, matching our target finesse.
The capping layer is a SiO2 layer with a thickness of 0.933λn/4, intended to shift the
anti-node of the cavity field just outside the mirror surface.

Plugging all these specifications into a series of characteristic matrices, again us-
ing the definitions in Eq. 2.21, to characterize the alternating stacks of materials and
their interfaces, we obtain the model shown in Fig. 3.1. The model appears to match
the data well for lower wavelengths and along the stop band, but towards higher
wavelengths as well as in the middle of the stop band, we observe some deviations.
Some of these deviations could be caused by minor differences in the refractive index
data we employ for these simulations. As will be discussed in section 3.1.3, we will
be interested in the extension towards lower wavelengths that this model provides,
for which the deviations are acceptable.
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CO2-ablated optical fibers

The ablation procedure is used to shape parabolic mirrors on the fiber facets [100].
Unlike the dielectric coating, this was performed in-house. We have built and char-
acterized a CO2-ablation setup and created a large array of fibers with different
crater geometries, a detailed discussion can be found in [99, 200]. Here, we will
limit ourselves to a short overview.

We use λ = 10.6 µm CO2-laser pulses to ablate the craters. These pulses are cre-
ated with an AOM and focused at the cleaved fiber facets with a 50 mm aspheric
lens. An example of such a cratered fiber can be seen in Fig. 3.2 (a). The inset shows
a fiber which features an especially large crater, due to the transparency of the fiber
it is visible from the side. In Fig. 3.2 (b) we define the parameters used to charac-
terize the fiber mirrors. Namely the crater depth t, the radius of curvature R, taken
as the radius of the circular profile close to the center of the crater, and the spherical
diameter Ds corresponding to this inner region. To produce craters with different
geometries, we adjust the ablation parameters as described in [99]. Typical values
used are around 1 W in laser power, pulse durations of 10-50 ms and a waist of ap-
proximately 40 µm, which is adjusted by moving the fiber facet away from focus.

(a) (b)

FIGURE 3.2: (a) Photograph of a crater on a fiber facet after ablation.
Inset shows a side view of a much larger crater visible through the
transparent fiber. (b) Definition of the different geometrical parame-
ters used to characterize the crater. Ds is the spherical diameter, R the
radius of curvature and t the crater depth. Data in blue is a linecut
of a profilometer map of a cratered fiber. Note the difference in scale

between the horizontal and vertical axis.

The data presented in this thesis was almost exclusively recorded with a FFPC
made of a SM input fiber and a MM transmission fiber. The SM fiber has crater
dimensions of tSM = 0.2 µm, RSM = 92 µm and Ds,SM = 14 µm. The MM fiber has
crater dimensions of tMM = 1.1 µm, RMM = 57 µm and Ds,MM = 19 µm. Ds gives
a close approximation for the effective mirror diameter, and with Eq. 2.41 allows us
to estimate clipping losses for large beam diameters at the mirrors when increasing
LCav. tSM could pose a lower limit to a minimal LCav, but the craters used here are
very shallow compared to our typical cavity lengths. Especially when inserting a
membrane into the FFPC, several microns of safety distance are maintained.
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3.1.2 Probe

The probe assembly has to hold the MIM-FFPC system and allow for its alignment,
as well as connections for remote signal detection and control. The assembly needs
to fit inside a vacuum can, which can be placed inside of our liquid-helium bath
cryostat4. In addition, it must be possible to scan several parameters in order to
perform different measurements, like the position of the mechanical oscillator in
x, y, z, or the position of one of the fiber mirrors to change LCav. Since our cryostat
also hosts a superconducting magnet, all materials used should be non-magnetic.
Finally, the system should provide some shielding against mechanical noise and not
undergo any drastic deformations when cooling down to cryogenic temperatures,
so as to preserve the alignment of the system as much as possible.
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FIGURE 3.3: (a) Overview of the probe inside the vacuum can (trans-
parent) with the copper plate (1), the top plate of the probe (2), the
titanium cage hosting the MIM-FFPC system (3) and the bottom plate
of the probe (4). (b) Detailed overview of the titanium cage includ-
ing the cavity block hosting the FFPC and the sample block hosting
the membrane. (c) Cut-out of the Cavity block showing the FFPC.
(d) Photograph of the MIM-FFPC system, showing the sample chip

in the middle of the two fibers.

With these goals in mind, we designed the probe depicted in Fig. 3.3 (a). The
vacuum can (red arrows in (a)) containing the probe is closed against a copper plate
(1) with an indium seal to ensure a low temperature compatible vacuum operation.
A tube which is connected to the copper plate leads to the top of the cryostat. It
contains all wires and optical fibers leading out of the cryostat, and is connected to
a turbo-pump station5 at the top. When the bath cryostat is filled, the stainless steel
can and the copper plate (1) are in direct contact with the liquid helium and are thus
thermalized to 4.2 K.

The top plate of the probe (2) is fixed to the copper plate (1). It is also made of
copper which is gold plated to prevent oxidation and ensure good thermal contact
to all attached components. It serves as a clamping point to thermalize all wires
and fibers coming from the top and is connected to the bottom plate of the probe
(4) by four long springs6. Apart from the springs, two additional soft copper braids

4Cryomagnetics liguid He bath cryostat with an 8 T superconducting magnet
5Agilent TPS
616 cm-long copper–beryllium springs with a spring constant of 0.023 N · mm−1
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connect (2) and (4), ensuring sufficient cooling power to reach close to 4.2 K at the
bottom of the probe. (4) is again made of gold plated copper and is the base for the
FFPC-MIM assembly, thus the temperature of the probe is measured with a temper-
ature sensor attached to this bottom plate.

The springs are meant to decouple the system from acoustic noise and are de-
signed to be rather soft, resulting in low resonance frequencies. To deal with low-
frequency seismic noise, the cryostat is additionally placed on a passive vibration
isolation platform7.

The frame holding the MIM-FFPC system (3) is mounted on top of the bottom
plate (4). It needs to be stiff and maintain the alignment of the FFPC, which is why it
is machined out of solid titanium blocks where possible. Titanium is a non-magnetic
metal with a low thermal expansion coefficient and good mechanical properties,
matching our design requirements. A more detailed view of (3) is shown in Fig. 3.3
(b). It is sub-divided into two blocks, as highlighted by the green boxes: one being
the cavity block and the other the membrane block.

The cavity block holds both fibers of the FFPC, which are aligned horizontally in
the probe. One fiber is mounted on a Attocube piezo xyz-positioner8 (on the right
in Fig. 3.3 (b)), while the other is mounted on a home-built tip-tilt stage (left). This
tip-tilt stage is inspired by standard tip-tilt mirror mounts often employed in free
space optical setups, but is made to be vacuum and low temperature compatible. A
more detailed view of the cavity block is shown in Fig. 3.3(c), highlighting the FFPC.
Each fiber is inserted and glued into a ceramic ferrule, which is then clamped into
a titanium holder with screws pressing against the ferrule to secure it in place. The
one on the right sits on an L-bracket connecting it to the Attocube positioners. The
fiber on the left is fixed in a cylindrical holder, which is pressed against a ring piezo
with a leaf spring. The fiber is inserted through the hole of that ring piezo, which
can be used to tune the cavity length LCav.

While the x, y, z positioner can change LCav as well, the ring piezo has a higher
bandwidth on the order of 100 kHz. This is important for fast scanning of the cavity
length as well as for its active stabilization, but this piezo has a low range of ≈
1 µm at RT and less than one FSR of the cavity at LT. The x, y, z positioner on the
other hand can be moved over several mm in stepping mode, allowing for long
range measurements, cavity alignment, and opening of the cavity to comfortably
exchange a membrane chip. Aside from this stepping mode, a DC offset can be
applied that gives reasonable scanning capabilities. Like this, several FSR can be
scanned, although at a lower bandwidth compared to the ring piezo. While the ring
piezo is used as feedback element on the cavity length, we still use the z-positioner
to compensate larger offsets beyond the range of the ring piezo.

While all the piezos can be adjusted in-situ, the tip-tilt mount can only be ad-
justed by hand, making the angle alignment only available when the system is open.
However, thanks to the monolithic and relatively symmetric titanium cage, we only
expect negligible changes in the tip and tilt of the fibers when cooling the probe
down. The biggest changes when going to low temperature are due to the contrac-
tion of the Attocube piezo stacks, which can be directly adjusted for.

The sample block is similar to the right half of the cavity block, employing the
same Attocube xyz-positioner to place the membrane in between the FFPC. On top
of this positioner is a dove-tail based sample holder, which also contains a x-y piezo

7Minus K 1000BM-1CMM
8Attocube ANPx312
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scanner9. It also hosts a small disc piezo to drive vibrations in the membrane10. The
dove-tail mechanism allows for relatively safe insertion of the sample holder due to
its guiding features while also becoming a very rigid connection when clamped.

1mm

FIGURE 3.4: Glueing procedure for the membrane chip. The chip is
pressed onto the metal holder with a needle (green arrow), while pre-
cured UV glue is applied with a stripped optical fiber (red arrow) to
the three contact points. The underside of the glued chip is shown in
the inset, revealing the backside depression that one of the two fibers

of the cavity can be inserted into.

As depicted in Fig. 3.3 (d), the membrane chip is glued to a thin metal holder
which allows insertion between the two fibers. The gluing process of the chip on
the sample holder is optimized to ensure that the sample is inserted into the cavity
at normal incidence, while avoiding excessive contact between the sample chip and
its holder. In addition, the sample holder has to keep the chip accessible from both
sides for optical access. For similar Si3N4 chips, it has been observed that the Q of the
devices benefited from as little clamping or gluing as possible [201]. Since our FFPC
is horizontal, we need a way to fix our chip, but we limit the contact to three gluing
points and employ a holder that has as little overlap with the chip as possible. We
use glue that is cured under UV light11 which is vacuum and low temperature com-
patible. We start the curing process with 30 sec of UV light illumination to increase
the viscosity of the glue, making it easier to apply small quantities and preventing
the glue from creeping underneath the chip. As shown in Fig. 3.4, we press on the
chip with a metal needle mounted on a mechanical xyz micropositioner, to ensure
that it is placed flat on the titanium holder. The titanium holder is polished before
use to ensure that no burr might lead to uneven sample placement. The small drops
of glue are applied with a stripped optical fiber to the side of the chip, and the glue
is cured completly under UV light.

In addition to holding the mechanical oscillator in the MIM configuration in-
side the FFPC, the membrane block features an additional configuration shown in
Fig. 3.5. When the dove-tail holder is inverted, the membrane block turns into a
fiber-based confocal microscope. The microscope objective is a fiber-based objective
that is built according to [146]. It uses a titanium tube in which the cleaved fiber is
glued in front of two lenses, one for collimation and one for focusing on the sam-
ple12. The focusing lens has a focal length of 1.45 mm and an NA of 0.58. Due to

9Attocube ANSxy50
10PI ceramic piezp disc OD=3 mm, thickness=0.25 mm
11Norland Optical Adhesive NOA 65
12Collimation lens: Thorlabs 354430, focusing lens: Thorlabs 354140
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Fiber Microscope

Sample Scanner

Membrane Chip

FIGURE 3.5: Membrane block of the titanium cage in the confocal
microscope configuration, in which the dovetail hosting the sample
scanner and the membrane chip is inverted compared to Fig. 3.3 to

position the chip in front of the microscope objective.

the reflective surface of the cleaved fiber facet, a small interferometer is formed be-
tween the confocal objective and the surface of the mechanical oscillator. We use this
setup to perform characterization of our mechanical samples at low temperature. At
room temperature, we instead use the Michelson interferometer discussed later in
section 3.2.

3.1.3 Optical setup and feedback lock-loop

The optical measurement and control setup we employ has to accomplish several
tasks, some of them in parallel. It has to provide the main carrier at ωres, with which
the cavity is kept resonant. It has to record the reflected and transmitted signals of
the FFPC. For more advanced measurements, it is often also necessary to generate an
additional tone that can be detuned from ωres, enabling us to perform pump-probe
measurements. It has to stabilize the cavity length to the laser according to the PDH-
technique, introduced in section 2.2.3. We also use a red laser, for which the reflectiv-
ity of the fiber mirrors is low, for coarse alignment of the setup. Finally, we employ
white-light (WL) spectroscopy to measure the mirror-mirror and mirror-membrane
distance in our FFPC-MIM system. This results in a rather elaborate setup that we
will break up into several parts in our discussion.

Main optical setup

First, we will take a look at the main optical setup responsible for the standard FFPC
operation at high finesse. Starting with the NIR laser13 shown in the bottom-left cor-
ner in Fig. 3.6, the light passes a fiber-paddle polarization controller before entering
the electro-optic modulator14 (EOM), which we use to generate the modulation at
ωmod that is the basis of the PDH error signal, as discussed earlier in section 2.2.3.
Afterwards, we transition into a free-space setup. A combination of a λ/2-plate and
the first polarizing beamsplitter (PBS1) allows us to split the beam into two paths
with an adjustable ratio.

13Toptica CTL950
14iXblue NIR-MPX950-LN-10
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FIGURE 3.6: Sketch of the main optical setup15, shown in the con-
figuration for operation with the NIR laser. The filter setup (orange
box) is shown in more detail in Fig. 3.7 and the involved microwave
electronics that provide the RF input for the EOM (blue box) are dis-

cussed in section 3.1.3.

Following the path downwards, the polarization is turned by 90◦ and passes
through PBS2, entering two sequential acousto-optic modulators16 (AOM) in double-
pass configuration. Note that the AOM setup is heavily simplified in Fig. 3.6, refer
to [147] for a more in depth discussion. These two AOMs are aligned in such a way,
that one operates on the n = +1 diffraction order while the other operates on the
n = −1 diffraction order. All other diffraction orders are not collected. An AOM
will shift the frequency of the light in the first diffraction order by its operating fre-
quency ωAOM, in our case it can be tuned around its central value of 200 MHz by
±20 MHz. A single AOM would not be able to provide a detuning below 180 MHz,
but the two AOMs effectively compensate each others offset of 200 MHz since they
operate on opposite diffraction orders. This gives us a smaller tuning range which
is centred around 0.

In addition to frequency detuning, an AOM also offers a good way to control the
laser intensity. This is done by changing the amplitude of the RF tone applied to the
AOM, which adjusts the amount of light diffracted into the first order. This can also
be done in a dynamic way with a high bandwidth limited by the AOM rise time.
This setup thus provides a convenient way to electronically control the laser power
as well as modulate it with a bandwidth of up to around 30 MHz.

15The illustrations in Fig. 3.6,3.7,3.8,3.11 and 3.12 are in part made with the ComponentLibrary
by Alexander Franzen, licensed under a CC BY-NC 3.0 license, see http://www.gwoptics.org/
ComponentLibrary/

16G&H Aomo 3200-1117 with driver AODR 1200AF-AEF0-2.5

http://www.gwoptics.org/ComponentLibrary/
http://www.gwoptics.org/ComponentLibrary/
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After passing the two AOMs twice, the polarisation has been turned by the
quarter-waveplate in front of the end mirror in such a way that the back-travelling
light will be reflected at PBS2 and PBS3. At this point, it is recombined with the
fraction of the laser that was transmitted through PBS1, which has not been altered.

By default, only the light that was reflected at PBS3 would be reflected at PBS4
towards the fiber coupler leading to our FFPC. Using the half-waveplate in front
of PBS4 allows to control the ratio of the two frequency components that we send
towards the cavity. The beams transmitted through PBS4 are discarded into a beam
blocker.

The first way this setup can be used is to insert a beam blocker between PBS1 and
PBS3 to collect only the laser beam that passed through the AOM setup, which can
be amplitude controlled and modulated. The other way is to combine both paths to
have two frequency components, one at the laser frequency and one at the frequency
detuned by the AOM setup. Since we can also produce several sidebands to interact
with the MIM-FFPC system using the EOM alone, we will use the setup in the former
way in this thesis.

After being fed to the FFPC, the light is either reflected back or transmitted. The
transmitted light is collected on a variable gain photodiode (PDt)17, while the re-
flected light passes a polarization controller (twice), which is adjusted so that the
light is now transmitted by PBS4 on its way back. This reflected beam is split by a
50 : 50 beamsplitter (BS) after PBS4. One half is collected on a second variable gain
photodiode18 (PDr) for the reflected signal, the other half is sent to a fiber coupler
that leads to the fast detection part of the setup.

This fast detection setup entails a high frequency (HF) detector19 (PDHF) that
has a bandwidth of up to 10 GHz, intended to record the fast modulation necessary
for the PDH stabilization. Since the sensitivity of this photodetector is more lim-
ited compared to our other detectors, we use a fiber-based amplifier20 to boost the
signal strength. Such an amplifier works similar to a laser diode, employing a gain
medium to boost an incoming signal. The main difference is the lack of a laser res-
onator, transmitting the signal after a single pass, which is ensured by anti-reflection
coatings. Similar to a laser diode, such an amplifier produces spontaneous emission
proportional to the applied current, resulting in a broad background much higher
in power than our signal of interest. This would lead to a reduction in the signal to
noise ratio and defeat the purpose of the setup. The best way to recover the signal
to noise ratio and achieve an effective gain in signal is spectral filtering of the light,
a detailed discussion can be found in [198]. Furthermore, the spontaneous emis-
sion is emitted bidirectionally, making it necessary to employ an isolator to prevent
feedback into the main optical setup.

Filter setup

The spectral filter is a home-built optical setup and is based on a reflective diffraction
grating21 with a groove density of 1200 mm−1 and a blaze wavelength of 1000 nm,
employing a similar working principle as a spectrometer. To estimate the perfor-
mance of our filter, we can start with the grating equation for the first diffraction

17FEMTO OE-300-01
18FEMTO OE-300-03
19Newport 818-BB-51A
20Thorlabs BOA930S
21Thorlabs GR25-1210
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order [194]

sin(θ(λ))− sin(θi) = −λ

a
(3.1)

where a is the grating period, θi the angle of the incoming light and θ the reflected
angle of the first diffraction order. We can further define a spectral selectivity dλ

dθ .
This gives us a spectral width ∆λ depending on the angles ∆θ that our detector
captures,

∆λ = −a cos(θ)∆θ (3.2)

where θ is given by cos(θ) =
√︂

1 − (λ
a − sin(θi))2.

For our typical wavelength of 920-980 nm and an a of 833 nm, this results in ∆λ
on the order of 1 nm if we collect 0.1◦ with our detector.

Main
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Variable Slit
PDHF
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Ampli�er

FIGURE 3.7: Detailed overview of the filter setup in front of the high
frequency detector in Fig. 3.6.

In principle, one also has to take into consideration that the beam expands while
it travels according to Gaussian beam theory, as well as the beam diameter to begin
with. To optimize ∆λ one might think that a smaller beam diameter would be useful,
but from section 2.2.1 we know that this leads to a small zR and thus to a quickly
expanding diameter ω(z) of the beam. In the end, the easiest way to optimize the
filter performance in practice is to use a grating with a small a, a moderate beam
diameter (1 mm in our case), leading to a relatively slowly diverging ω(z), and a
long distance between the grating and the detector (2 m) in order to capture a small
∆θ.

In Fig. 3.7 the filter setup is sketched. After the fiber amplifier, the beam is re-
flected towards the grating with a combination of a half-waveplate and a PBS. The
grating is operated in the Littrow-configuration, in which θi = θ(λc) [194]. Here
λc is our central wavelength of interest around which we want to filter. Due to a
quarter-waveplate positioned between the PBS and the grating, the diffracted light
will be transmitted through the PBS, slowly dispersing. After some distance, a vari-
able slit filters the now spatially separated spectral intervals other than some narrow
range ∆λ around λc. By adjusting the slit size, it is possible to set ∆θ and thus the
sharpness of the filter. Furthermore, since we operate in the Littrow-configuration,
simply changing the grating angle allows to tune λc without realigning any other
component in the setup. Finally, the filtered signal is detected by the HF detector.
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Pound-Drever-Hall setup

The PDH stabilization requires the reflected cavity signal to be recorded on the HF
detector, including the modulation provided by the EOM, with the setup introduced
above. It further involves a microwave electronics setup introduced here to perform
the up and down mixing of the signal.

IR Laser

FFPC

Main
Setup

+
Filter

PDHF

VNA

EOM

LI-A

Mixer

Splitter

Ampli�er

90° Hybrid

Cable

LO

90°

90°

0°

0°

90°
0°

90°
0°

FIGURE 3.8: Microwave electronics setup for our PDH stabilization
scheme used to lock the FFPC length to the IR laser.

A radio frequency (RF) source22 provides the local oscillator (LO), which is split
into two paths, shown to the left of Fig. 3.8. The first of these two signals (lower path)
is mixed with the output of the lock-in amplifier23 (LI-A) to obtain a a frequency
ωmode = ωLO − ωLI−A. Instead of a simple mixer, we use a image rejection mixing
scheme, to suppress one of the two sidebands generated in frequency mixing. This is
achieved by using two 90◦ hybrid couplers in conjunction with two mixers. Both the
signal from the LI-A and the LO are split into a non phase shifted and a 90◦ phase
shifted part, the signals with the same phase shift are then mixed together. After
recombining, this leads to a cancellation of one of the two sidebands [204].

The signal we then obtain is amplified before being applied to the EOM as an in-
put. The EOM then generates a phase modulation of the light at the same frequency,
creating the foundation for the PDH error signal as in Eq. 2.53. After passing the
parts of the optical setup introduced before, and being reflected by the cavity, the
signal is detected by the HF detector.

Now, following the upper path in Fig. 3.8, the detected signal is amplified24 be-
fore being mixed with the LO and fed to the lock-in amplifier. A similar image rejec-
tion mixing scheme is used as before. The LI-A is then used to demodulate the signal
and record both of its quadratures, corresponding to a signal as in Eq. 2.55, providing
the PDH error signal. For the PDH stabilization itself, the vector network-analyser25

(VNA) is not necessary. Its output is coupled into the setup between the EOM am-
plifier and the up-conversion electronics, while the input of the VNA is picked up
between the amplified HF detector signal and the down-conversion electronics. Like
this, it is a useful addition for pump-probe measurements. Such measurements are

22Rohde & Schwarz SGS100A
23Zurich Instruments HF2LI
24Pasternack PE15A1010
25Rohde & Schwarz ZNB4
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often employed in optomechanics experiments, and we will make use of this aspect
of the setup in chapter 7.
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FIGURE 3.9: Spectrum of the RF signal supplied to the EOM amplifier,
generated with a simple mixer (dotted line) and a single side mixing
scheme (red line), to suppress one of the sidebands around the LO.

To make sure that the setup produces a clean output spectrum with the intended
tones present, we record a spectrum just before the signal is sent to the EOM, shown
in Fig. 3.9. We compare the performance of the single side mixing scheme and a sim-
ple mixer, showing that the unwanted sideband is suppressed by roughly 25 dBm
by the former. While there are small contributions left from the LO and the sup-
pressed sideband, the setup succeeds in predominantly supplying the EOM with
the modulation tone for the PDH stabilization scheme and an additional variable
tone generated by the VNA, which can be turned on and off at will.

After obtaining the PDH error signal, we use a red pitaya running the PyRPL
software package26 to generate a PID signal that is fed to the ring piezo of the cavity,
to act on the cavity length. We also use the infinite impulse response (IIR) mod-
ule of PyRPL to digitally filter our error signal in order to smooth out the response
and maximize the gain of our feedback loop, as will be discussed in more detail in
chapter 4.

Low reflectivity operation

Fig. 3.6 shows the main configuration where we use the NIR laser to operate the
cavity in a high finesse regime. To the bottom right of the figure, we show a white-
light (WL) lamp27 and a 633 nm laser28 that we use to characterize the MIM-FFPC
system.

The red laser is used to operate outside of the highly reflective coating window
(see Fig. 3.1) of the FFPC. This makes the system much easier to work with, since in-
stead of sharp cavity resonances, one observes a simple sine wave behavior, and the
cavity alignment is much more forgiving in terms of signal drops. We circumvent
most of the optical setup in Fig. 3.6 in this configuration and use a fiber beamsplitter
that is directly connected to the FFPC input fiber, while the other arm of this splitter

26https://pyrpl.readthedocs.io/
27Thorlabs SLS201L/M
28Q-Photonics QFBGLD-633-30

https://pyrpl.readthedocs.io/
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is connected to another detector29 (PDr,red) for the reflected signal. For the transmit-
ted signal, we use the same detector as before, which still performs reasonably well
around 633 nm.

Apart from the alignment of the FFPC, we also use the red laser to image the sam-
ple using the sample scanner, producing images that are detailed enough to navigate
the sample, especially when the input fiber of the cavity is in close proximity to the
membrane, see for example Fig 7.1.

White-light spectroscopy

To be able to bring the system in close enough proximity so that we can start the
fine alignment with the red and NIR lasers, we use a WL spectroscopy technique to
estimate LCav [148]. In this third configuration of the setup, we connect the WL lamp
directly to the FFPC, again with a fiber-based beamsplitter. We use a fiber coupled
spectrometer30 to record the response of the cavity to this broadband source, giving
us a cavity spectrum in a single-shot measurement. Due to the limited resolution
of the spectrometer, we perform these measurements outside of the highly reflective
window of the coating, where the spectral features are not as sharp.

The main purpose of these measurements is to estimate the distances between
the fibers and the sample, which is particularly useful when the system is enclosed
in the vacuum can or cooled down inside the cryostat. The spectrometer can be con-
nected in transmission and in reflection. In transmission, it replaces PDt, while in
reflection, we use the fiber beamsplitter as we did with the red laser. Even though
the WL setup uses MM fibers, APC connectors are essential to remove back reflec-
tions onto the spectrometer, leading to a strong reduction in the background level
of around three orders of magnitude in reflection. The measurements in transmis-
sion are performed without the membrane in the signal path, achieved by using
holes that are present in the membrane chip (see chapter 5). Like this, we can gain
information about the fiber to fiber distance, i.e., Lcav. In reflection, we move the
membrane in front of the input fiber, giving us the length of the first sub-cavity
Lcav,1 instead. The measurement of Lcav,1 is best done when the second fiber is far
removed to not disturb the measurement by adding an additional reflecting surface.
Thus, we usually begin by adjusting Lcav,1. This provides us with all the necessary
distances to position the constituents of the system along the cavity axis.

We usually not only record the cavity spectrum as a function of the wavelength,
but also repeat this measurement for varying cavity lengths or sample-fiber dis-
tances, to produce a more robust measurement; such a measurement will be pre-
sented in chapter 4.

3.2 Room Temperature Interferometer

To characterize the mechanical oscillators developed in this thesis before they are
integrated into the FFPC-MIM setup, we have built a simple room-temperature (RT)
test setup. It is comprised of a polarization based Michelson interferometer with bal-
anced detection. The sample is placed in a vacuum chamber with a microscope head
on top, which leads to the interferometer. The system is designed for ease of use and
quick sample exchange times. A camera that makes use of the same microscope head
as the interferometer allows one to observe the sample in the vacuum chamber. The

29Thorlabs APD130A/M
30Ocean Optics QEPro
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sample can be excited with a piezo shaker, and an additional amplitude modulated
green laser can be used as an optical drive.

(a) (b)
z

x y

FIGURE 3.10: (a) Vacuum chamber on top of a x-y translation stage
with a cutout to show the sample holder inside. Optical access is
achieved through the window in the top of the chamber. (b) Isolated
sample tower. The sample holder is mounted on a temperature con-
trol stage on top of a stack of piezo positioners and a x-y piezo scan-
ner. A copper braid is used for thermal contact to the base block of

the tower, which is used as a thermal sink for the Peltier element.

An overview of the vacuum chamber can be seen in Fig. 3.10 (a). It is a small
home-built aluminium cube with a vacuum window in the top for optical access,
as well as several electrical connectors and a valve leading to a turbo pump sta-
tion31 on its sides. This cube is mounted on two linear translation stages32 for coarse
translation of the sample under the microscope in x and y, where z is the optical
axis. Looking at the internal structure in Fig. 3.10 (b), the mechanical oscillator is
placed on the top plate of this sample tower. Below this topmost plate, there is a
temperature control stage and a x, y piezo scanner33, used for fine position control
and scanning of the sample.

The temperature control stage34 can be used to stabilize the temperature or per-
form sweeps in a range of 10 ◦C to 70 ◦C. It uses the lower part of the sample tower
as heatsink. To bridge the poor thermal conductivity of the Attocube tower, we use
the copper link shown in Fig. 3.10 (b) for thermal contact. For additional shielding
from thermal radiation, a metal shroud (transparent part in Fig. 3.10 (b)) is put on
top of the sample with a small aperture for optical access. This temperature control
was added only recently and was not available for all measurements presented in
this thesis.

31Pfeiffer-Vacuum HiCube
32Thorlabs XR25/M
33Attocube ANSxy50
34Peltier element: CUI Devices CP2088-258P; TEC controller: meerstetter TEC-1091 and Pt1000 tem-

perature sensors
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As depicted in Fig. 3.11 (a), the 50x microscope objective35 is mounted outside
the chamber above the vacuum window. This objective is designed for use with a
3.5 mm thick glass window and has a long working distance of 13.89 mm, giving
us enough space to position the sample in focus. We use a z-translation stage36

to move the objective with respect to the chamber, allowing us to adjust the focus
of the microscope. A cage-based periscope with several mirrors then aligns this
microscope head with the rest of the interferometer setup.

Camera

AOM

Dichroic
Mirror

LED

Laser

BS

BS

Vacuum
Chamber

Periscope
Periscope

Objective

(a) (b)

FIGURE 3.11: (a) Microscope objective head above the vacuum cham-
ber (side view). (b) Overview of the additional camera and green laser
excitation arms (top view). The dashed box in both images highlights
the position of the periscope used to bridge the height difference be-
tween the microscope head and the interferometer setup (towards the

black arrow in (b), shown in Fig. 3.12)

Apart from interfacing the microscope head with the interferometer, we also use
the cage system of the microscope head to couple to the camera setup with two
beamsplitters (BS), as shown in Fig. 3.11 (b). The BS shown at the bottom combines
the camera setup with the main optical path, while the upper BS couples in an LED to
illuminate the sample. Furthermore, just before the interferometer, we use a dichroic
beamsplitter to combine the red laser used for detection with the green laser37 used
for optical excitation. This green laser is intensity modulated with a single pass
AOM setup38, allowing for frequency modulation up to 30 MHz.

3.2.1 Optical interferometer setup

The interferometer follows to the right of Fig. 3.11 (b) (black arrow). In Fig. 3.12,
we have omitted the parts introduced above except for the sample itself for simplic-
ity, and the black arrow matches the one in Fig. 3.11 (b). A short discussion of the
theoretical operation principles has been included in Appendix B since polarization
based interferometers with balanced detection are not exceedingly common.

Starting at the input (Ein), the incoming light is split at the left PBS in Fig. 3.12
by a ratio that is determined by the polarization of the incoming light, which can be
adjusted with a polarization controller. The two signal components are then reflected
back by either the sample (left) or the end mirror in the reference arm (top). In

35Mitutoyo G Plan Apo 50x
36Thorlabs CT1A/M
37Q-Photonics QFLD-520-10S
38G&H 3350-199 with 1350AF-AEFO-01
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FIGURE 3.12: Sketch of the polarization based Michelson interferom-
eter with balanced detection. The design of this setup roughly follows

[149].

both cases, passing a λ/4 plate twice. This effectively results in a π/2 shift in the
polarization, meaning that light that was reflected before at the PBS will now be
transmitted, and vice versa. Like this, the two signals from both arms are collected
and directed towards the right in Fig. 3.12, towards the second PBS.

On the way towards the second polarising beamsplitter, the polarisation state has
to be adjusted once more. Otherwise, the two contributions would simply be sepa-
rated again, and we would not obtain an interference signal on the detectors. This
is done with a λ/2 plate, which can be rotated to obtain the optimal working point,
where the two signals are equally mixed in both output directions of the second PBS.
This naturally also leads to a scenario where both I1 and I2 are equal in amplitude.
Subtracting the two intensities then gives us our balanced signal, removing signal
offsets due to incomplete interference contrast and common amplitude noise.

Such a polarization based setup has a few advantages. First, it allows us to col-
lect all light reflected from the sample and the reference mirror, as well as preventing
back reflection of light into the laser diode. Such back reflections can lead to instabil-
ity of the laser and would have to be avoided with optical isolators in such a setup.
Second, a standard Michelson interferometer without balanced detection typically
employs a single non-polarising beamsplitter and makes use of all four of its sides.
To use two outputs of the cube for balanced detection and the two remaining sides
for the reference arm and the sample arm, one needs to find other means to couple
in the laser source. But in the case of a polarization based setup as presented here,
we have additional paths to use and can avoid this issue. Finally, the setup becomes
adjustable with regards to the splitting ratios of the polarizing beamsplitters, allow-
ing us to perfectly balance the signal as well as to control the power incident on the
sample, independently of the overall laser power.

After taking the difference of the two detected signals from the balanced detec-
tor39, we are left with the following signal (see Appendix B),

IB =
1
4

Iinηr sin(δϕ) (3.3)

where δϕ contains the signal of interest as phase fluctuations, η is the interference
contrast and r the sample reflectivity. In Fig. 3.13 (a), we show the expected balanced

39Thorlabs PDB230A
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interference signal IB, which is centered around zero. η can be optimized by ensur-
ing that the beams originating from the sample and the reference mirror are spatially
well overlapped. To this end, it is beneficial to ensure similar lengths in both arms
to account for changes in the beam waist. Any additional constant phase offset ψ be-
tween the reference arm and the sample arm would lead to an overall phase δϕ + ψ
in Eq. 3.3. This constant phase can be adjusted with a piezo mounted under the ref-
erence mirror, allowing us to choose the region of the interference fringe with the
highest sensitivity, i.e., the region with maximum slope, where ψ = 0.

In practice, we not only adjust the sensitivity of the interferometer with the
piezo40 controlled reference mirror, but we also use it to stabilize the balanced signal
with a PID feedback loop. Since we can scan more than one period of the expected
signal in Eq. 3.3 with this piezo, and the wavelength of the laser is known, we can
also use this to calibrate a conversion factor between the detected voltages and the
actual displacement of the sample. Such a measurement is shown in Fig. 3.13 (b),
matching the predicted signal shape in (a). Assuming an amplitude Vp of the calibra-
tion sine wave, and a measured voltage δV corresponding to δϕ, the displacement is
then [149]:

δx ≈ λδV
4πVp

(3.4)

Here it is assumed that δV ≪ Vp.
In addition, assuming that the interferometer is at its optimal point of sensitivity,

the lower limit for the displacement spectral density to be measured is given by [149,
150, 196],

√︁
Sx =

λ

2π

(︃
ηd Iin

h̄ω

)︃−1/2

(3.5)

where λ and ω are the wavelength and frequency of the laser and ηd is the overall
detection efficiency of the setup. This detection efficiency also includes contributions
such as the interference contrast η from before.

We show the estimated sensitivity we can achieve in Fig. 3.13 (c). Due to the
difficulty in predicting all contributions that might affect ηd, we plot a large range
of possible values. The white dashed line represents the expected peak signal for
our hBN drums, calculated using Eq. 2.6. For a characterization of the properties of
these resonators see chapter 6. Here, we assumed m∗ = 1 × 10−14 kg, ωm,0/2π =
2 MHz and Γm/2π = 300 Hz. The region to the top right of this line represents the
parameter space for which a signal should be observable.

In Fig. 3.13 (d), we show a displacement spectral density of one of our hBN
drums. This spectrum was obtained by measuring the thermal motion at room tem-
perature. Considering the input power of around 80 µW, this measurement is in
good agreement with Fig. 3.13 (c) and shows that we can comfortably observe the
thermal motion of our devices. We will return to this measurement in section 6.1 for
further analysis.

Finally, to control and read out the interferometer, we again use a Red Pitaya in
conjunction with the PyRPL software package, which we already used for the dig-
ital filtering of the PDH error signal of the cavity. However, here we do not use
this digital filtering feature, but the many useful instruments provided, such as the
network- and spectrum-analyser. We also use the lock-box feature provided by this
software package. The lock-box allows us to implement the PID feedback loop of

40Thorlabs PA44M3KW
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FIGURE 3.13: (a) Interference signal for large detunings of δϕ accord-
ing to Eq 3.3. (b) Measured calibration signal, obtained by detuning
the reference mirror over several interference fringes. (c) Expected
sensitivity range for our interferometer. The dashed line represents
the expected peak signal for our hBN devices. (d) Shows a measured
thermal spectrum of the fundamental mode of one of our hBN drums
at room temperature (see chapter 6 for further discussion). The input

power in this measurement was ∼80 µW.

the interferometer as well as a re-locking scheme. It re-engages the lock on a neigh-
boring fringe of the interferometer when the setup drifts beyond the travel range of
the piezo under the reference mirror, keeping the interferometer operational indefi-
nitely. Of course, the built in instruments often lack the necessary performance for
more sophisticated measurements, and when using the setup beyond simple charac-
terization (as, for example, in chapter 6), the instruments will be substituted. We will
note when this is the case and which instrument was used in the following chapters.
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Chapter 4

Fiber Fabry-Perot Cavity

We will begin the discussion of the results with the characterization of the empty
FFPC. Following the models developed in chapter 2, we will first investigate the
cavity signals both in transmission and reflection, and extract figures of merit such
as the finesse of the cavity. Afterwards, we will demonstrate our ability to operate
this system in a stable and well controlled fashion. To this end, we will discuss
our WL spectroscopy technique to measure the length of the cavity as well as the
stabilization of the cavity with the PDH technique. The latter aspect was published
in [151]. A more detailed discussion of the characterization of our FFPCs and the
involved measurement techniques can be found in [200].

4.1 Characterization of the FFPC
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FIGURE 4.1: Long range scan of the cavity length, spanning several
times the FSR: reflected cavity signal in (a) and transmitted cavity sig-
nal in (b). The vertical dashed lines serve as a guide for the eye to see
the changing splitting between the resonances in this measurement
due to the piezo’s non-linear behavior. These measurements were

taken with the z-positioner of the cavity.
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We begin with a long range scan of the cavity length, covering several times
the FSR of the cavity. At this point, we have not established the cavity length, but
usually our FFPC is operated around LCav = 20 − 40 µm. Similar to Fig. 2.5, we
would expect repeating resonances spaced by an interval corresponding to the FSR
of the cavity.

When looking at Fig. 4.1, we do see repeating cavity resonances, with the ex-
pected dip in the reflected signal and a peak in the transmitted signal on resonance.
But the spacing between the resonances changes when comparing subsequent pairs.
This is due to the fact that the cavity piezo tends to not respond linearly to the ap-
plied voltage. Even if we were able to convert this scan to units of frequency, this
would make it difficult to establish the FSR and, subsequently, the cavity length
LCav. This highlights the need to calibrate the cavity length by other means, as we
will discuss in the next section.

We use the positioner for this task due to the limited range of the ring piezo.
While this positioner is intended to operate as a slip-stick stepper, an offset volt-
age can be applied to generate a length scan that covers a much larger range than
the ring piezo. To avoid acoustic noise and drifts that interfere with the recorded
cavity scans, these measurements have to be recorded rapidly. In order to keep the
positioner from taking steps during such fast scans, as intended by its design, we
employ an S-shaped voltage ramp. This voltage ramp has an acceleration and a de-
acceleration phase limited to a fixed value, avoiding abrupt changes in velocity. The
data is recorded between those (de-)acceleration phases.

Another important observation is the absence of higher order modes in the spec-
trum. As discussed in section 2.2.2, such higher order modes have a shift in reso-
nance frequency compared to the fundamental cavity resonance. During the align-
ment process, such higher order modes are often visible, but once properly aligned,
this particular cavity shows no visible higher order modes in such a scan. In fact, we
even use the presence of such higher order modes to gauge our alignment. We have
taken similar scans employing different fibers where higher order modes could not
be suppressed to this extent [200].

To characterize the lineshape of the resonances and extract some characteristic
values of our FFPC, we take a more detailed look at a fundamental resonance of
such a cavity in Fig. 4.2.

In (a), we show the recorded signal of one of our FFPCs in reflection, revealing
an obvious Fano lineshape. This matches our discussion in section 2.3.1 well and is
due to mode matching between the fiber mode and the cavity mode. As expected,
this feature is only present in the reflected signal of the FFPC and the transmitted
signal shown in (b) follows a simple Lorentzian lineshape. This measurement was
taken with an earlier FFPC that illustrated the asymmetric lineshapes particularly
well, this indicates that the mode matching of the fiber mode to the FFPC was not
ideal. All other measurements presented in this thesis were taken with a single com-
bination of fibers, whose properties we discussed in section 3.1.1.

In order to extract the cavity linewidth, we require a frequency calibration of the
x-axis of these scans. While it would be possible to estimate the displacement based
on the known characteristics of the piezos involved, which could be converted to fre-
quency when using an estimate for LCav, this would only be a rough approximation.
Especially since the piezo’s performance under load is not well calibrated.

We can instead use sidebands that we add to the signal by phase modulation
with the EOM. These sidebands, in conjunction with the setup presented in sec-
tion 3.1.3, not only produce the desired PDH error signal but also constitute a ref-
erence due to the fact that the sideband splitting is determined by the well known
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[V] [V]

FIGURE 4.2: Zoomed in scan of a fundamental cavity resonance, the
reflected signal is shown in (a) and the transmitted signal in (b). The
signal in reflection is fitted with the expected fano lineshape as dis-
cussed in section 2.3.1, while the signal in transmission is fitted with
a Lorentzian lineshape. These scans were taken with the ring piezo of

the cavity.

value of our modulation tone. This tone was set to ωmod
2π = 9.03 GHz in the measure-

ments shown here.
Fig. 4.3 (a) again shows the expected cavity signal in reflection, with a more mod-

erate Fano lineshape, indicating better mode matching for this FFPC. In addition, the
now present sidebands are included in the fit and serve as a calibration to give the
spectrum as a function of frequency.
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FIGURE 4.3: (a) Reflected signal as in Fig 4.2 (a), but now including
sidebands at ±ωmod that serve as calibration for the frequency detun-
ing. The sidebands are split by 9.03 GHz in this scan. (b) PDH error

signal.

In Fig. 4.3 (b), we show the resulting PDH error signal and fit it with the model
derived in section 2.2.3. It should reveal a linear region around zero detuning, which
could be used to lock the FFPC, but the graph is slightly shifted to the right. This
shift is due to an electronic delay in the acquisition, and we find that it has no impact
on the locking itself, as we will see later. The PDH signal also shows additional linear
regions detuned by ωmod

2π , these regions can be used to lock to the sidebands instead
of the central laser frequency. We will make use of this in chapter 7, where we will
lock to one of the sidebands using the angle signal, as discussed in section 2.2.3.
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From the now calibrated spectrum in (a), we can extract the linewidth of the
cavity from the fit in units of frequency, resulting in a value of κ/2π = 0.88 GHz.
This measurement also reveals why we opt to perform our cavity scans by varying
the length of the cavity and not the frequency of the laser source. While modern
tunable lasers can comfortably span a few GHz, covering the cavity resonance in a
short time, scanning an entire FSR would be more difficult. The frequency detuning
necessary to cover several times the FSR would be well in the THz range for cavity
lengths around 10-50 µm (see Eq. 2.26). This is difficult to achieve with a tunable
laser, but the corresponding length detuning only amounts to values around 1 µm,
which is well within the range of our piezo positioner.

4.1.1 White-light spectroscopy

As previously mentioned, precise knowledge of Lcav is essential in order to deter-
mine the other parameters of the FFPC. To estimate the cavity length, which will
give us the FSR as well as the finesse of the cavity, we will now discuss the WL spec-
troscopy measurements. We use the setup described in section 3.1.3 to produce a
spectrum outside the highly reflective coating of our cavity. Even outside the coat-
ing window, there will be a number of cavity resonances at wavelengths that depend
on Lcav. This spectrum is then repeated for an array of cavity lengths, to produce a
robust statistical measurement. While there are alternatives to this technique, as dis-
cussed in [200], WL spectroscopy is fast and does not require intrusive changes to
the FFPC, making it our standard measurement of the cavity length.

In a naive approach, one could extract several estimates for LCav by extracting
the distances of neighbouring pairs of resonances in the cavity spectrum, according
to

LCav =
λnλn+1

2(λn − λn+1)
(4.1)

where n is the mode index of the resonance.
However, as pointed out in [152], one has to take a phase penetration depth

Lϕ = ϕr/2k into account, where ϕr is the reflection phase obtained from the mirror
coating simulation, which was shown in Fig. 3.1. The additional phase penetration
depth is particularly important in the case of short micro-cavities. This leads to a
modified expression

LCav =
λnλn+1(π + ϕn + ϕn+1)

2π(λn − λn+1)
(4.2)

In Fig. 4.4, we compare a very simple model for the cavity transmission with the
one featuring the simulated reflectivities for our mirror coating and the correction
for ϕr.

To fit this data and extract an estimate for LCav, we go through several steps.
First, we use a peak finder to identify the resonance positions in the spectrum. Real
world data can contain some false positives, resulting in an overestimation of LCav or
miss a peak, resulting in the opposite scenario. Because of this, we start with some
estimation for possible values of LCav and hence the mode order n, to exclude such
data points. We perform a fit using Eq. 4.2 for each pair of resonances and then take
the average over each spectrum.

We then use these first results as an initial guess for a more involved procedure,
where we fit all neighboring pairs of resonances in a spectrum simultaneously. This
fit enforces a common mode number n in each spectrum. Like this, we explore an
array of possible integer values of n, and finally pick the one that minimizes the error
of the fit and use it to determine LCav. This procedure might seem elaborate, but in
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(a) (b)

FIGURE 4.4: Simulated cavity transmission as a function of cavity
length and wavelength for a constant mirror reflectivity (a) and with
the mirror coating modelled according to our simulation, including
adjustments of the resonance condition due to Lϕ (b). The white
dashed line indicates the onset of the highly reflective band of our

coating.

practice, the measurement noise can easily lead to deviations on the order of a few
µm when evaluating the data carelessly. Especially when operating at short LCav in
the MIM configuration, such deviations can lead to collisions in the system when
scanning the sample position, as the lateral dimensions of both the membrane and
the fibers are much larger than LCav and not necessarily perfectly parallel in motion.

We show a WL measurement in Fig. 4.5 (a). To obtain this spectrum, we subtract
the average of all lines from each spectrum, to remove background independent of
the cavity length.

The result of the initial fit is shown in Fig. 4.5 (b), together with the estimated lon-
gitudinal cavity mode number in (c). This fit already appears quite reasonable and
shows the expected increase in cavity length with piezo detuning. But the estimated
error bars shown in red, and the somewhat inconsistent jumps in mode number in
(c), reveal that it is not yet a very precise measure of our cavity length, as mentioned
before.

The final fit, shown in (d), is now much more stable, and the statistical fit error
is too small to be visible. The corresponding mode numbers are shown in (e) and
do not show the same inconsistencies as (c). We attribute the non-linearity in (d)
to a non-linear response of the piezo. The cavity length is given by the value at
zero piezo detuning; in this case, Lcav = 38.2 µm has been estimated. Note that this
measurement changes drastically depending on the cavity length. For short lengths,
the measurement might be limited to 10 pairs of resonances in a spectrum, and the
precise knowledge of the phase penetration depth has a larger impact. For very
long cavities, on the other hand, the number of observed pairs can approach 100,
giving stronger statistics. In this regime, the resolution of our spectrometer becomes
a limiting factor. For our setup, we find that between 20 and 100 µm the technique
works reliably.

We note that the fit error alone is not a very good figure of merit for the precision
of this measurement, since it includes no systematic errors. To ensure that this mea-
surement technique is reliable, we have compared the cavity lengths extracted from
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(a)

(b) (c)

(d) (e)

FIGURE 4.5: (a) White light spectrum in a wavelength range below
the highly reflective window of the FFPC. The identified peak posi-
tions are shown in red. (b) The cavity length estimated with the initial
fit in blue, error bars in red, (c) shows the corresponding longitudinal
mode number. (d) and (e) show the same as (b) and (c), but for the

final fit. Best estimate of the cavity length is shown in (d).

the fit to the ones measured with direct microscope imaging of the FFPC.
We imaged the FFPC with a digital microscope and used the known diameter of

the optical fibers of 125 µm as a reference to estimate the cavity length, as shown in
two examples in Fig. 4.6 (a) and (b). We then performed WL spectroscopy measure-
ments to compare the two measurements, Fig. 4.5 shows one of the measurements
in this series. Our WL measurements generally take into account the (phase) pen-
etration depth in such a way that the obtained result corresponds to the physical
separation of the mirrors. The crater depths in our FFPC only amount to a little over
1 µm, which we assume to be well below the precision of the estimation of LCav using
the microscope images, and are thus unimportant.

Apart from the two examples in (a) and (b), we repeated these measurements
until the fibers were almost in contact, staring at a length of over 400 µm. We show
the absolute discrepancy as well as the relative discrepancy of the two measure-
ments in Fig. 4.6 (c). Generally, the values are in good agreement, the large absolute
discrepancy towards the longest cavity configurations amounts to an acceptable rel-
ative discrepancy. This is especially true considering that 400 µm is well beyond the
maximal operational LCav for the NIR laser, as we will discuss later. Only the large
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194μm
125μm

8μm

(a) (b) (c)

WL: 195μm WL: 6.5μm

FIGURE 4.6: (a) and (b) show microscope images of the open FFPC,
where we used the diameter of the fiber as reference to visually es-
timate the fiber separation. For comparison, the resulting LCav as
estimated by WL measurements are given at the bottom of the im-
ages. In (c) we show the absolute (orange) and relative (blue) devi-
ation between such visual estimations and WL measurements for a
large range of cavity lengths. The dashed lines corresponds to the

measurements in (a) and (b).

relative errors towards the shorter lengths appear problematic, but as shown in (b),
estimating these lengths with the camera images is very difficult, and the error might
simply be the result of this visual inaccuracy and not the spectroscopy technique it-
self. These extremely short values will hardly be relevant in our experiments as well,
since we need space to introduce the mechanical resonator in between the fibers. We
will typically work with a Lcav corresponding to the middle region in (c), where the
WL spectroscopy measurements appear to be sufficiently reliable to align the system
otherwise ’blind’.

We will revisit these WL measurements in chapter 7, where we use such spec-
troscopy in reflection to determine the distance between the input fiber and the
membrane. There we will also discuss the alignment procedure of the complete
system, including the FFPC and the membrane.

4.1.2 Finesse and clipping losses

Now that we have obtained a measure for the cavity length, we can estimate the
finesse of our cavity. We do not only want to do this for a fixed Lcav, but over a
large range covering the entire stable region of our cavity, as indicated in Fig. 2.7.
To this end, we again start with the fibers almost in contact. We take a spectrum
of the cavity to extract the linewidth as before (see Fig. 4.3), and also perform an
initial WL measurement to calibrate our starting cavity length. We then take a step
with the positioner to increase LCav, limiting the voltage of this step to be small
enough to move less than one FSR of the cavity. This allows us to keep track of the
longitudinal mode order across the stepping process and thus keep track of LCav.
A detailed description of this measurement technique, and alternative estimations
based on fitting of higher order modes, can be found in [200]. With this procedure,
we keep increasing the cavity length, covering the range shown in Fig. 4.7. At the
end of this measurement, we perform another WL measurement to make sure that
we kept track of LCav correctly.

Having obtained spectra of the cavity signal for each length, we can now estimate
the finesse using Eq. 2.28, shown as the black line in Fig. 4.7. While we can take WL
measurements at much longer LCav than 60 µm, the losses have increased to the point
where a measurement with the NIR laser is no longer possible.
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FIGURE 4.7: Cavity finesse recorded over a long range of cavity
lengths. The finesse drop off is modeled using Gaussian clipping
losses in blue, and a model based on mode mixing simulations in
red. The Models have been normalized to the measured Finesse at

the start of the measurement.

We compare the measured finesse with two theoretical models, both of which
have been renormalized to match the measured finesse for very short cavity lengths.
The first is a simple Gaussian clipping model based on Eq. 2.41. It captures the drop
off between 40 and 60 µm of the finesse, corresponding to the cavity length where
the waist of the fundamental mode of the cavity at the mirrors becomes comparable
to the spherical diameter of the craters.

The second model is a mode mixing simulation based on the measured crater
profiles of our fibers. These simulations are again discussed in detail in [200], fur-
ther information can be found in [153]. Apart from the fact that these simulations
take the real physical shape of our mirrors into consideration, they also take coupling
between different transverse modes into account. These transverse mode couplings
present themselves as dips in both the simulation and our measured data, corre-
sponding to cavity lengths where the fundamental mode becomes resonant with a
higher order mode, leading to an increase in losses and thus a drop in finesse.

Both of these models fail to capture the gradual drop off we observe in the mea-
sured finesse already before 40 µm. We believe that this drop off is due to an in-
creased misalignment of the setup since the cavity axis does not perfectly coincide
with the axis of motion of the piezo positioner. A realignment of the system after
each step would have been an unreasonable time investment, but we are generally
able to align the system to a better finesse for a given LCav than this measurement
would indicate. Typically, a finesse of at least 8 × 103 can be achieved for cavity
lengths below 40 µm, except for the regions where we couple to higher order modes.

4.2 Cavity Stability

As mentioned before, we generally have to perform these cavity scans in a quick
fashion (10 to 100 Hz) to avoid the detrimental effects of mechanical and acoustic
noise on the stability of the optical cavity. But for most measurements, this is not
enough, especially when we need to stay at resonance, or at a precise detuning from
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it. While a cavity such as ours tends to have a very large linewidth (and FSR) in
terms of laser frequency, the corresponding changes in cavity length are exceedingly
small, on the order of 100 pm. This means that we have to stabilize LCav to such a
level so that we do not lose the cavity signal in a locking scheme, and to an even
better level if we want to stay on resonance or maintain a precise detuning. In most
similar systems [109, 116, 118–123, 154] sacrifices are made in terms of either finesse,
tunability, or cryo-compatibility, where our goal is to maintain a high degree of all
these parameters. We will naturally employ our PDH stabilization scheme to this
end, but first we will discuss the passive stability of our system.

4.2.1 Passive cavity stability

Since the useful linear region of the PDH error signal is only present around a cavity
resonance, we need to obtain a passive stability already close to the cavity linewidth
to be able to employ our active stabilization. We also want to use our setup both
at room temperature and under cryogenic conditions, each configuration having
slightly different challenges, as we will see below.
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FIGURE 4.8: Repeated measurements of the light transmitted through
the cavity while scanning its length around a cavity resonance, show-
ing the impact of different system configurations on the stability of
the FFPC. Scans were performed with the DC offset of the cavity po-

sitioner.

Most of the measures used to achieve high passive stability have already been
discussed in chapter 3, and they can be summarized as follows: We rely on springs
and a passive vibration isolation platform under our cryostat to shield the FFPC
from mechanical noise. In addition, we design our probe as rigidly as possible.

In order to get a rough estimate of the cavity’s stability, we perform repeated
scans of the cavity transmission around a fundamental resonance. For this purpose,
we again use the offset voltage of our positioner since the ring piezo is too limited
in range. In our experience, the repeatability of these scans is good enough so that
shifts in the cavity resonance position between scans should be dominated by me-
chanical noise, and not by the piezo’s behavior. Thus, such a measurement allows
us to measure the passive stability of our cavity length. Fig. 4.8 shows a selected set
of these measurements that were carried out at room temperature. Each vertical line
represents a cavity scan. We again employ sidebands produced by EOM modulation
of the input signal, this time corresponding to a splitting of 3.9 GHz, to calibrate the
spectra. These sidebands are present in all measurements but are easier to observe
in the last part of Fig. 4.8 labeled “Combined”.
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A measure of the displacement noise is provided by the standard deviation of the
main peak position, both in units of frequency and in terms of the cavity linewidth
to better illustrate at what point our goal of stability on the order of κ is achieved.
The cavity linewidth is estimated to be 0.36 GHz. This estimation was obtained by
fitting each spectrum in Fig. 4.8 with a Lorentzian and taking the average linewidth,
as well as taking the average of the observed sideband splitting. We chose such a
statistical approach since the quality of the spectra in this measurement was rather
limited compared to the ones shown in section 4.1. This is due to the slower scan
speed of the piezo positioner compared to the ring piezo, making the measurements
more susceptible to noise.

We again use WL spectroscopy to determine a cavity length of Lc = 25 µm. The
measurements shown were affected by thermal drifts, leading to a slope in the data
which was removed. Such thermal drifts are easy to compensate for when employ-
ing active stabilization and are minimized mostly by the conditions in the room and
the choice of materials of the probe.

A number of different experimental conditions were studied to shed light on
what is required to best passively isolate the system from external noise. These con-
ditions are combinations of employing the spring suspension in the probe, covering
the probe with the vacuum can, putting it under vacuum, and putting it into the
cryostat (without cryogenic liquids) on top of the passive vibration isolation stage.
In addition, we have found that electronic low-pass filtering is useful to remove
noise that acts on the cavity length through the piezo elements in the system. The
specified output noise of the amplifiers1 is less than 5 mV (RMS), which corresponds
to a change in cavity length by 5 times the cavity linewidth at room temperature.
The filter used is a third-order low-pass filter at 10 Hz. It is important to note that
not only the piezos acting directly along the cavity axis play a role since, due to
the shapes of the mirrors, even perpendicular motion can affect LCav. These piezos
could also induce additional vibrations in the system. In general, piezo elements
that are not needed for a certain measurement are grounded and disconnected to
avoid ground loops.

As a baseline, we clamp the top and bottom plates (see Fig. 3.3 (a)) with a metal
bridge to circumvent the springs in the system. The probe is not covered by the
vacuum can, is outside of the cryostat, and no electrical filters are used. The re-
sulting stability of this configuration is shown in the first section of Fig. 4.8, labeled
“Clamped”, with noise levels several times larger than κ.

The second configuration, labeled “Suspended”, differs from the first only in that
the titanium frame is suspended using springs, resulting in a slight improvement.

The third configuration, labeled “with Filter”, differs from the first only in that
the electronic filters are activated to reduce the noise of the voltage driving the piezo-
electric positioners.

The fourth configuration, labeled “Enclosed”, differs from the first by including
both the suspension of the titanium frame via springs and its enclosure inside the
vacuum can. The effect of the enclosure could not be tested without the spring sus-
pension since the metal bridge used for clamping does not fit inside the vacuum
can. Comparing this configuration to the one with only the suspension, it appears
that the slower modulation of the cavity length is suppressed. This indicates that
these modulations are likely caused by air currents or thermal fluctuations in the air.
Whether or not the system is under vacuum does not notably affect the mechanical
noise.

1Attocube ANC300
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Finally, the fifth configuration, labeled “Combined”, includes the spring suspen-
sion, the electronic filters, and the enclosure in the vacuum can. The combination of
these measures results in passive stability close to the cavity linewidth, thus bringing
the system into a regime where active PDH stabilization can be employed. The clear
improvement in this final configuration compared to all the others indicates that all
the measures play a significant role in the stability of the system and are necessary
to reach the desired effect.

We have analysed other configurations not shown here, such as the “Enclosed”
configuration under vacuum, but there was no observable difference. While some
measures might have small effects, they are generally overshadowed by the differ-
ence caused by the electronic filtering and the spring suspension, which appear to
be the key elements in this system. We have thus omitted the configurations that did
not result in further insight into the system’s behavior.

Repetitions
20

15

10

5

0

5

10

15

20

Ca
vi

ty
 D

et
un

in
g 

[G
Hz

]

0 Tesla 1 Tesla 2 Tesla 3 Tesla
=2.00 GHz =0.57 GHz =0.27 GHz =0.88 GHz

/ =4.85 / =1.38 / =0.66 / =2.14

Cavity Stability at 4K

40

20

0

20

40

Un
its

 o
f C

av
ity

 L
in

ew
id

th
 

FIGURE 4.9: Same measurement procedure as in Fig. 4.8, but this time
the impact of damping due to a vertical magnetic field is studied at

4 K.

We now turn to measurements at 4 K, where the probe is inserted into the cryo-
stat in liquid helium. Naturally, we have no choice but to keep the system suspended
and under vacuum at low temperature, making the same measurement series as in
Fig. 4.8 impossible. The electronic filters do not have a noticeable effect under these
conditions, most likely because of the 10-fold reduction in the piezoelectric coeffi-
cient of the positioners from room temperature to 4 K.

In Fig. 4.9 instead, we study the impact of the application of a vertical magnetic
field with the superconducting magnet in our cryostat. Such a magnetic field damp-
ens vibrational noise via eddy-currents induced in the suspended conducting frame
of the probe, leading to additional passive stabilization of the system.

We again start with a baseline configuration in which no magnetic field is ap-
plied. Interestingly, the system shows degraded stability compared to the com-
parable configuration, labeled “Combined”, at room temperature. This deteriora-
tion may be caused by bubbling of the liquid helium that surrounds the probe or
bubbling of the liquid nitrogen in the outer jacket of the cryostat. A temperature-
dependent change in the mechanical properties of the probe materials could also
lead to differences in mechanical stability.

We then apply a magnetic field of 1 T, where the damping due to the magnetic
field brings the stability to better than a cavity linewidth and thus into a regime in
which the cavity can be actively stabilized. At 2 T of applied field, the stability is
even further increased due to an increase in the damping effect. However, a subse-
quent increase to 3 T leads to an increase in vibrational noise. We believe that this
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may be the result of residual magnetization in some part of the suspended system,
causing it to deflect and come into contact with the vacuum can. Once the lower
parts of the probe are in contact with the vacuum can, mechanical noise can bypass
the spring suspension and affect the cavity more directly.

In summary, we have found configurations both at low temperature and at room
temperature where the passive stability could be improved to below the cavity linewidth
κ, putting the system into a state where we should be able to employ active feedback
stabilization. Operating the system at liquid nitrogen temperatures is challenging
since the deleterious effects of the boiling liquid are already present, but we can-
not employ the superconducting magnet for damping, leaving us in a configuration
similar to the first one in Fig. 4.9.

4.2.2 Active stabilization

While the system is kept in one of the stable configurations outlined above, the cavity
length is locked with respect to the fixed laser wavelength via active feedback. The
feedback signal is generated using the PDH setup introduced in section 3.1.3 and
applied to the piezoelectric ring, which modulates the cavity length at a sufficiently
high bandwidth.

When simply using the PDH error signal in conjunction with a PID feedback
loop, the cavity can in principle be locked, but this lock is limited due to mechanical
resonances in the system. These resonances can be observed when recording the
transfer function of the system by using a network analyser to record the systems
response to mechanical modulation applied with the ring piezo, as can be seen in
Fig. 4.10. These resonances are not only frequencies at which the feedback applied
to the ring piezo drives the system particularly well, but also anti-resonances that
respond poorly compared to the average level. This means that when increasing the
gain of the PID feedback signal, the system will become unstable and start ringing
at the strongest resonance, while at the anti-resonances, the feedback would require
a much higher gain for effective stabilization.

Using a digital IIR filter, we can then smooth out the response, increasing the
maximal stable gain and bandwidth of the lock. The digital nature of this filter has
the additional advantage that it can be adjusted to accommodate changes in the
transfer function due to temperature drifts, changes in alignment, or in the probe
itself. All measurements, as well as the filtering, are done with the PyRPL software
package running on a Red Pitaya FPGA.

In Fig. 4.10 (a) and (b), we use the network analyser module to drive the ring
piezo at a frequency that is ramped between 100 Hz and 30 kHz. This measurement
is first performed with the system in a quasi open-loop configuration, i.e., the feed-
back signal sent to the ring piezo is low-pass filtered at only 10 Hz. This is so as to
only cancel low-frequency drifts of the cavity resonance, such as thermal effects, to
maintain the cavity signal while having no effect on the mechanical noise at higher
frequencies.

The result is shown in blue and reveals several regions with clear peaks or dips
in the response. In (c) and (d), we zoom in around the most prominent resonances in
the transfer function. This group of resonances, between 800 Hz and 2 kHz, is likely
caused by resonances of the piezo positioners, roughly matching the manufacturer’s
specifications. They are an expected downside of our system, which favors tunabil-
ity to a large degree. Changes in alignment, via displacement of the positioners, al-
ters their amplitude and slightly changes their frequency, making these resonances
particularly tricky to deal with.
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FIGURE 4.10: Feedback loop transfer function (amplitude (a) and
phase (b)) of the cavity lock: In blue, the system’s response in the
quasi-open loop configuration. It is possible to identify many reso-
nances in the system, mostly due to the piezo positioners and the can-
tilever modes of the fiber mirror. The dotted line shows the IIR filter
designed to suppress most of the system’s resonances below 20 kHz
(limited by the computational power of the FPGA itself). The red line
is the system response when the IIR filter is enabled. (c) and (d) are a

zoom in around the most problematic region around 1 kHz.

The next prominent resonances appear above 6 kHz, and we believe these are at
least in part caused by the cantilever modes of the overhanging fiber mirrors. Their
frequencies match the expected resonance frequencies for fibers protruding by about
4 mm from their support ferrules. This significant overhang is the result of some of
the material deposited for the highly reflective coating attaching itself to the side of
the fiber. When retracting the fiber into the ferrule, which has a very low tolerance
of only 1 µm for the central bore, this results in the fiber becoming wedged with a
overhang of several mm.

Finally, an overall low-pass filter behavior can be observed. This is simply the
result of the limited bandwidth of the ring piezo, leading to a decrease in response.

The IIR filter is designed in the IIR module of the PyRPL GUI by manually plac-
ing zeros and poles, in order to obtain a filter that is as close to the inverse of the
system transfer function as possible. The result is shown as the dotted blue line in
Fig. 4.10. We focused on the most prominent resonances in the transfer function, in
particular, the region shown in (c) and (d), while neglecting many of the numerous
smaller features. A maximum of 13 pairs of zeros and poles can be used, limited
only by the computational power of the Red Pitaya, together with an additional real
pole that acts as a low-pass filter to stabilize the filter response.

To gauge the effectiveness of the filter, we again perform a response measure-
ment, but this time in closed-loop configuration, i.e., with the feedback signal being
sent to the piezoelectric ring after the application of the IIR filter. The closed-loop
response, shown in red in Fig. 4.10, now shows a strong reduction in the system’s
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FIGURE 4.11: Same measurement as in Fig. 4.10 performed at 4 K. The
transfer function has changed significantly after cooling the probe
down and a new IIR filter has to be designed. The most problem-

atic region is still between 1 and 2 kHz.

mechanical resonances. This allows us to increase the gain of the feedback much
further without causing the system to ring. The stabilization loop now has a band-
width of 4 to 6 kHz at room temperature (corresponding to the frequency at which
the phase crosses −π [133, 155]).

At low temperature, the transfer function of the system shows several differ-
ences, making it necessary to re-design the filter. The same procedure is again em-
ployed and the resulting filter, as well as the open- and closed-loop measurements,
are shown in Fig. 4.11. Like this, we achieve a feedback loop with a bandwidth of
10 kHz at 4 K.

Long term stability

The stability achieved by the system is demonstrated by recording the FFPC’s trans-
mission signal over an extended period of time, as shown in Fig. 4.12. The plot in
(a) shows the transmission signal with the cavity locked over a period of 3 h. Such
stability can be sustained for much longer periods without the need for a re-locking
system. The slow decrease in signal is the result of drifts in the input laser power,
which is not stabilized in this measurement. A plot of a 10 s segment of the locked
transmission signal, shown in (b), reveals that the transmission is capped by a max-
imum value with the cavity on resonance, as expected. The cavity detuning stays
within a few percent of this maximum. Given the cavity linewidth of around 50 pm,
this corresponds to better stability than a few pm. The seemingly narrower line in
(a) is the result of a lower resolution in time binning, effectively averaging the sig-
nal. Unfortunately, the data volume would not have been manageable over this long
period, employing the same settings as in (b).
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(a) (b) (c)

FIGURE 4.12: Long term stability of the cavity transmission signal
while the cavity is locked. (a) shows a stability measurement over 3
hours, the dashed line at 1.0 showing the maximum cavity transmis-
sion; we attribute the drift towards lower values of the cavity trans-
mission signal to power instability of the optical measurement setup,
not to an instability of the cavity itself. (b) shows a shorter term ver-
sion of the same measurement, revealing a clearly visible maximum
value when the cavity is on resonance, again shown by a dashed line
at 1.0. (c) shows a histogram of the measurement points taken in (b).

Fig. 4.12 (c) shows a histogram of the data shown in (b), revealing that the cavity
transmission predominately stays very close to its maximal value, while only occa-
sionally dropping to the lower boundary of the signal visible in (b).

4.2.3 Low power operation

Even though high frequency detectors, such as the one used for our active stabiliza-
tion scheme, are generally not as sensitive as their lower bandwidth counterparts,
we can operate our system at remarkably low intra-cavity powers. This is mostly
achieved by amplifying the signal with an optical amplifier in conjunction with the
filter setup presented in section 3.1.3. This is of particular interest in an optome-
chanical system involving nanomechanical resonators, where a strong optical power
quickly leads to unwanted effects such as heating of the mechanical resonator, auto
oscillations, or non-linear effects [47, 58, 156]. To demonstrate the performance of
our setup, we perform active stabilization as before while reducing the optical power
coupled into the cavity.

In Fig. 4.13 (a), we show long term measurements of the recorded cavity trans-
mission as in Fig. 4.12, while decreasing the injected laser power. We estimate the
number of photons present |α|2 based on the input power P [18],

|α|2 =
κex

∆2 + κ2

4

P
h̄ωL

(4.3)

where κex are the coupling losses. We estimate the injected laser power by measuring
these losses in our setup where possible, but also by comparing our reflected signal
with the one in transmission. Since we use a multimode fiber in transmission, we
can reasonably assume a coupling close to unity, which is then directly connected
to a detector, giving us a good estimation of the intra-cavity power. Comparing the
estimated intra-cavity power based on our reflected signal agrees well with the one
estimated based on the transmitted power, indicating that we have a good under-
standing of the coupling losses in our system.
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FIGURE 4.13: Cavity lock at low optical powers. (a) shows long term
measurements of the cavity transmission, for clarity the lock was de-
activated towards the end of the measurement to show the baseline
signal. Each measurement has been vertically offset for clarity, the
dashed lines indicate the noise floor. The estimate intra-cavity photon
number is shown in the legend. In (b) the feedback signal is shown
for two of the measurements in (a). For Nγ = 0.08 the lock failed
sever times and had to be re-engaged. The arrows show the abrupt
changes when the lock is intentionally turned on or off, and the less

abrupt decline (second arrow) when the lock fails.

The feedback signal, which is applied to the ring piezo of the FFPC, is shown in
(b) for the measurement at the highest and lowest power. To illustrate the change
in signal quality, we turn the active stabilization off at around 80 s into the mea-
surement for all but the lowest power setting, for which a stable lock could not be
maintained for the measurement duration. This turn-off point is indicated by the
third arrow in (b) and the corresponding signal drop in (a). The first arrow indicates
the activation of the active stabilization in the measurement at |α|2 = 0.08 while the
second arrow shows the less abrupt failure of the lock.

These measurements show that we can comfortably operate our system at pow-
ers corresponding to well below a single photon in the cavity and maintain a stable
lock indefinitely, highlighting the effectiveness of our stabilization as well as the ef-
ficiency of our detection scheme. The main limiting factor in these measurements is
the lack of sensitivity of the high bandwidth photodiode: Surprisingly, for these low
power levels, a PDH error signal is no longer visible when performing a scan, as in
Fig. 4.3, yet the lock remains effective.
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Chapter 5

Fabrication of hBN Drum
Resonators

Having discussed the cavity, we will now introduce the mechanical element of our
FFPC-MIM system, the hBN drum resonators. In this chapter, the focus is on the de-
sign and fabrication of these devices, while in chapter 6, we will go over a thorough
mechanical characterization. Since low optical absorption is a key requirement for
MIM-optomechanics devices, we will also discuss different cleaning procedures and
their impact on organic residue deposited during the fabrication process. Finally,
we will give an overview of a few devices that have been successfully fabricated
and were used in the measurements shown in the subsequent chapters.

5.1 Device Design

Our goal was to fabricate hBN microdrum resonators that could be combined with
our FFPC to form a MIM system. A first choice to be made is the one between
mechanically exfoliated flakes or CVD grown sheets of hBN. Mechanical exfoliation
is generally viewed as a convenient way to produce very high quality flakes of 2D
materials at the cost of thickness control and yield [157]. CVD grown films, on the
other hand, can be well controlled and cover a large area, making them a good choice
when scalability becomes an issue. But their quality is still considered inferior by
many, even though progress is continuously being made [158] and the concept of
quality depends on the exact material and application [159].

In the case of hBN in particular, finding a mono-layer flake by exfoliation is
known to be a difficult endeavor [160], while it is easy to obtain multi layer flakes of
around 50 nm (≈ 150 layers [77]) by exfoliation. The situation is different for CVD
grown hBN. While mono and few layer films of many 2D materials are commer-
cially available, thicker layers are more difficult to find. This makes CVD grown
hBN a natural choice when aiming for very thin devices, as in [45]. However, since
we are interested in MIM optomechanics, we aim for significant reflectivity, yield-
ing a stronger optomechanical coupling. This requires relatively thick hBN flakes as
shown in Fig. 5.1, making exfoliation a natural choice for our application.

Another important question is the nature of the frame that supports the micro-
drum. The typical approach of directly exfoliating [43, 93] or stamping [161] 2D
flakes on top of a thick substrate with trenches or cavities is unsuitable for our appli-
cation. On one hand, such a substrate does not have optical access from both sides.
On the other, it is too thick for the short cavity lengths of our FFPC. We thus have
to choose a thinner frame to support our drums, with holes all the way through, to
enable optical access.
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FIGURE 5.1: (a) Reflectivity of a hBN membrane as a function of
wavelength and flake thickness. (b) Linecut along the blue dashed
line in (a), representing 920 nm, the wavelength we typically work

with in our FFPC.

The size of these holes determines many of the mechanical properties of the
drums, such as their resonance frequency and effective mass. Since it is difficult
to find flakes of much larger lateral dimensions than 50 µm while maintaining good
flake quality, (i.e., no steps, folds, cracks, or other imperfections) this poses an upper
limit. Some room for error has to be included for the deposition precision of our
transfer process, as well as some area for the flake to adhere to the frame, so the
hole diameter should be considerably smaller than this upper limit. A lower limit is
posed by the waist of the cavity mode and the associated clipping losses, discussed
in section 2.2.1 and section 2.2.2. The drum diameter also has a significant impact on
the resonance frequency of the devices (see Eq. 2.14).

In practice, we find holes with a diameter of 20-30 µm a good choice. Fortunately,
such substrates are commercially available as Si3N4 membranes with hole grids by
Norcada, a sketch of such a chip is shown in Fig. 5.2.

2.65 mm

0.2-0.5 mm

20-30 μm

125°

200 nm

200 μm

Si3N4

Si

FIGURE 5.2: Dimensions of a typical Norcada chip. The diameters
of the window and the holes are given in ranges since we used three
different window sizes (0.2, 0.3, and 0.5 mm) and three different hole

diameters (20, 25, 30 µm).
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These devices are based on a 200 µm thick Si-chip with a 200 nm Si3N4 film on
top. A backside etch creates a cavity and leaves a suspended square Si3N4 mem-
brane supported by a Si frame. This backside cavity is large enough to insert one
of the fibers of our FFPC, allowing for short cavity lengths. The hole grid is etched
into the Si3N4 membrane, over which a hBN flake can be suspended, forming drum
resonators. The hole grids are designed in such a way that there is a central hole
which coincides with the center of the square membrane.

While chips with a low stress Si3N4 film and specifications within the ranges
outlined in Fig. 5.2 are available as standard devices, we have opted for an array
of custom made devices, which includes chips with high stress stoichiometric (∼
1 GPa) Si3N4 films and a wider selection of geometrical parameters. The reason for
this choice concerns the mechanical properties of the Si3N4 membranes and will be
discussed in the following section.

5.1.1 Estimation of device properties

The expected resonance frequencies for the hBN drums can be estimated using Eq. 2.14.
In Fig. 5.3 (a), we show the resonance frequency of the fundamental mode of the
hBN drum for a span of dimensions that could be reasonably fabricated. While the
Young’s modulus of suspended hBN flakes has been measured [44, 45], the results
showed a high variance and did not match theoretical predictions [72]. As a starting
point, we will use the average value of 392 GPa reported in [44], since the devices
fabricated there were rather similar to the ones presented in this thesis.
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FIGURE 5.3: (a) Resonance frequency of the fundamental mode of the
hBN drum as a function of drum diameter and membrane thickness.
(b) Linecuts of (a) with the minima of each curve highlighted with
dotted lines. We also compare the analytical solution plotted here
with a Comsol simulation (dashed line) for a diameter of 25 µm, find-

ing excellent agreement.

As already shown in Fig. 2.2, there is a transition from the membrane to the plate
regime, explaining the lower frequencies for moderate thicknesses. We have plotted
the expected frequencies for a few typical drum diameters in Fig. 5.3 (b) to make
the exact values more obvious. It becomes apparent that one needs to make rather
large drum resonators that are thick enough to be situated in the transition regime
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between a membrane and a plate when aiming for low resonance frequencies. Res-
onance frequencies can instead be maximized by making small drums with either
very thin or very thick flakes.

Since the thin Si3N4 membrane has to be treated as a mechanical oscillator on its
own, which might couple to the hBN drum resonators we want to investigate, we
simulated the expected resonance frequencies of these devices using Comsol multi-
physics in Fig. 5.4.

The size of the backside cavity in the chip determines the size of the Si3N4 mem-
brane. It is limited by our ability to insert a fiber when aligning the system, meaning
that it should be significantly larger than the outer fiber diameter of 125 µm. Since
we wanted our devices to not be too fragile for our transfer process, we kept the
Si3N4 film at a thickness of 200 nm.

Looking at Fig. 5.4, we expect the resonances of the Si3N4 membrane to start
at a few hundred kHz for a low-stress film (250 MPa) and at around 1 MHz for a
high-stress film (900 MPa). These resonances quickly become denser when going to
higher frequencies.
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FIGURE 5.4: The first 60 modes of Si3N4 membranes with differ-
ent sizes and stress configurations. The dashed line is set to 3 MHz
and visualizes the lowest expected resonance frequency for our hBN

drum.

Since we not only need to separate the resonance frequencies of the two res-
onators involved, but also have to consider limitations in the bandwidth of our ex-
citation piezos and detectors, we would like to keep the resonance frequency of the
hBN drum as low as possible, while pushing the ones of the Si3N4 membranes as
high as possible. As an estimate for the lowest possible hBN resonance frequency,
we chose 3 MHz (dashed line in Fig. 5.4), which corresponds to the lowest value
in Fig. 5.3. It is also worth mentioning that the zero point motion is inversely pro-
portional to the square root of the resonance frequency (see Eq 2.9), which directly
affect the optomechanical coupling strength (see Eq 2.66). Note that the frequency
estimates of the hBN drum heavily depend on the tension Tp in Eq. 2.14, which is
difficult to predict. We chose a value of 1 N · m−1 in line with reported values of
similar devices [44].

To at least avoid an overlap with the denser parts of the mode spectrum of the
supporting membrane, we have to work with high-stress Si3N4 membranes. In ad-
dition, they should ideally feature a relatively small membrane size of 200-300 µm.
Since we are interested in optomechanics, we also have to pay attention to the op-
tical properties of the hBN flake. Fortunately, the thickness at which the frequency
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minima are expected also happen to produce reasonable reflectivities, as can be seen
when comparing Fig. 5.1 and Fig. 5.3. From this, we can conclude that we have
found a parameter space that should fulfill most of our needs.

5.2 Device Fabrication

Having motivated the structure and properties of the desired devices, we will now
discuss the fabrication procedure. While stamping techniques, as in [161], have be-
come the standard for deterministic placement of 2D materials, we employ a wet
transfer as is more commonly used with CVD grown materials. Such a transfer in-
volves more steps and the use of additional chemicals, which in the case of CVD
grown materials cannot be avoided since the underlying metal foil has to be re-
moved in an etching step. But it is also a more gentle approach, which is advanta-
geous to protect the rather fragile high-stress Si3N4 membrane. As will be discussed
in chapter 6, it could also help to keep the pre-tension Tp of the membrane on the
lower end, reducing the resonance frequencies of our drum resonators.

For clarity, a short overview of the entire procedure will be given, after which we
will go into more detail for each step. Following Fig. 5.5 (a), we first exfoliate hBN

30μm

(a) (b)

FIGURE 5.5: (a) Fabrication procedure. hBN flakes on a Si/SiO2 sub-
strate are spin-coated with PMMA (1). The PMMA membrane is re-
moved in an etching step (2) and then placed on the Norcada mem-
brane using a wet transfer (3). Finally, the PMMA is removed (4). (b)
Microscope image of a finished hBN drum resonator. An AFM mea-
surement in the area highlighted by the small white box is shown in

Fig. 5.8.

flakes onto Si substrates with a SiO2 layer (step 1). We then spin coat the chip with
Poly(methyl methacrylate) (PMMA) and etch away the underlying oxide, releasing
the PMMA membrane with the attached hBN flakes (step 2). This membrane is then
transferred onto the Norcada chip using a micromanipulator setup in a wet transfer
process (step 3). The final step is to remove the PMMA with a solvent cleaning
procedure (step 4), resulting in a device as shown in Fig. 5.5(b).

Exfoliation of hBN flakes

As source material, we use commercially available crystals of hBN1. We start by
thinning out such a crystal over a larger adhesive master-tape2 (≈10 cm×10 cm) by

1HQ-Graphene
2Nitto ELP BT-150P-LC
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repeated folding. From this master tape, we then collect flakes with smaller pieces of
the same kind of adhesive tape, and transfer them onto 1 cm2 Si chips with a 290 nm
SiO2 layer (see Fig. 5.7 (a)). This layer is not only the sacrificial layer for the later
etching process, but it also increases the visibility of the hBN flakes on the substrate.
The substrates are cleaned before use by sonication in acetone for 5 min, followed
by isopropyl alcohol (IPA) for the same duration. After this step, the substrates are
cleaned in a UV-ozone cleaner for 10 min. It is important to only use substrates with
cleaved edges and not the edge of the original wafer, since at the edge of the wafer
the oxide layer disappears and the PMMA membrane would not detach during the
later etching process.

(a) (b)

(d)(c)

FIGURE 5.6: Relative contrast of the different color channels for hBN
on a SiO2 substrate in (a) and on top of a 200 nm Si3N4 membrane
in (b). (c) and (d) show the corresponding simulated apparent colors
we use to estimate the thickness of the hBN flakes under an optical

microscope.

To estimate the thickness of the hBN flakes optically, we use their apparent color
as a result of white light illumination under an optical microscope. While such an
estimate is not as accurate as, e.g., an AFM measurement, it is much quicker. Given
that one has to sort through a large quantity of flakes at this stage of the fabrication
procedure, such a quick evaluation is strongly preferred.

We simulate the color as a function of flake thickness using the procedure intro-
duced in [162]. This procedure uses intensity reflection coefficients to integrate the
intensity over three color bands, 435-520 nm for blue, 520-590 nm for green, and 590-
720 nm for red. These three color channels can then be used to produce an RGB color
image. Comparing the flakes apparent color under an optical microscope to the re-
sulting color chart, as shown in Fig. 5.6, then gives an estimate of the thickness.
Apart from the thickness, we also try to avoid any flakes that show imperfections,
which typically present themselves as lines or changes in color across the flake.

Before proceeding further, we again clean the chip for 10 min in the UV-ozone
cleaner to remove residue left by the adhesive tape.
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Spin coating and etching of SiO2 layer

We spin-coat the chips with PMMA with a molecular weight of 950, 000 dissolved in
anisole (4 % solids) 3. We spin at 4000 rpm for 40 sec, resulting in a PMMA thickness
of 200 nm. After spin-coating, the chip is baked at 180 ◦C for 5 min on a hot plate.

For etching of the SiO2 , we use a 2 mol solution of NaOH. The chip is placed at
the bottom of an empty beaker, which is then carefully filled with the etching solu-
tion so as to keep the chip floating on top of the liquid. The NaOH will then under-
etch the PMMA, removing the oxide layer, resulting in a floating PMMA membrane
with embedded hBN flakes.

We perform this step at room temperature, resulting in a slow etching process
over night. In our experience, this results in a cleaner membrane with fewer gas
bubbles trapped underneath, which can interfere with the wet transfer procedure.
After the membrane has detached, we replace the NaOH solution with DI water in
several rinsing steps.

Wet transfer

(a) (b) (c)

FIGURE 5.7: Microscope images of the fabrication process. (a) hBN
flake on a Si/SiO2 substrate. (b) PMMA membrane with the same
hBN flake (white dashed rectangle) held by two glass needles (see
arrows), while floating on water above the Norcada chip. (c) hBN

flake in contact with Norcada chip.

The wet transfer is performed using a Narashige micro-manipulator setup with
an optical microscope. We employ the two pneumatic micro-manipulator arms of
this setup to control two pulled glass needles to position the PMMA membrane dur-
ing the procedure, as shown in Fig. 5.7 (b).

As preparation, the Norcada chip is glued above a hole in a metal plate using
Crystalbond. This is done to secure the small chip in place and make it easier to
handle. Crystalbond is a glue that can be repeatedly melted at a temperature above
70 ◦C, making it convenient to apply. It can also be removed in a simple solvent
cleaning procedure since it dissolves in acetone. The hole in the metal plate allows
for drainage of water while the chip is covered by the PMMA membrane. This metal
holder is then submerged in DI water, before the PMMA membrane is transferred
into the same dish, floating above the chip.

The pre-selected flake is held in position above the central hole of the Si3N4 mem-
brane with the micro-manipulator setup. This alignment is continuously monitored
by adjusting the focus between the chip and the flake, overlapping the two with a

3MicroChem 950PMMA A4
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crosshair in the eyepiece of the microscope. For this task, two needles are necessary
in order to avoid movement and rotation of the PMMA membrane.

The water in the dish is then slowly removed with a pipette while continuously
lowering the two glass needles to stay in contact with the PMMA membrane. Just
before the flake comes into contact with the Si3N4 , usually indicated by the appear-
ance of interference fringes, the flake position can be fine-tuned.

If the positioning fails, the PMMA membrane can be carefully re-floated by adding
DI water, and the procedure can be repeated. Once the placement of the flake is suc-
cessful (Fig. 5.7 (c)), the remaining water is removed, and the device is left to dry
over night.

Removal of PMMA layer

The dried device, still fixed to the metal holder, is cleaned using solvents. This re-
moves both the PMMA as well as the Crystalbond, detaching the chip from the metal
holder.

The first step of this cleaning procedure is to submerge the chip in acetone,
heated to 50 ◦C for a duration of 1 h. This step is followed by IPA at the same temper-
ature for the same duration. The sample is then once again cleaned in a UV-ozone
cleaner for 15 min.

5.3 Device Cleaning and Characterization of Organic Residue

During several steps of our fabrication procedure, the hBN flake comes into contact
with organic contaminations, e.g., residue of the adhesive tape used for exfoliation,
the solvents, or the PMMA. Such residue can lead to excessive losses in a MIM sys-
tem due to an increase in surface roughness and thus scattering losses, but also due
to optical absorption. Most of this contamination can be removed by the cleaning
steps outlined above, but a residue of the fabrication process can still be identified in
an AFM measurement as clearly visible surface roughness, as is for example visible
in Fig. 5.8.

(a) (b)

48nm

FIGURE 5.8: AFM measurement in the region highlighted by the
white box in Fig. 5.5. 2D map in (a), and the averaged horizontal

linecut showing the flake height in (b).

The AFM measurement shows residue on both the hBN flake and the Si3N4 sur-
face. Especially in the 2D map in (a), features as high as 10 nm can be identified.
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These measurements were taken after treating the sample with solvent and UV-
ozone cleaning, as outlined above.

We can not only use AFM measurements to characterize organic contamination
of the flake and the surrounding substrate but also Raman spectroscopy. The con-
tamination can be identified as spectral features and as broad background beyond
the Raman signatures associated with hBN and the underlying substrate, especially
after the sample has been exposed to high temperature annealing in an inert gas like
argon. As we will see later, such annealing appears to make the contamination opti-
cally active and easily visible in optical spectra. Like this, we can gain some insight
into the necessity and success of the cleaning procedures we employ.

We begin by examining the flakes after exfoliation. In Fig. 5.9 (a), we show Ra-
man spectra taken on both the Si/SiO2 substrate and on an exfoliated hBN flake.
The first two spectra were taken after high temperature annealing in argon gas, both
showing a broad background across the entire spectrum. After a cleaning step in a
UV-ozone cleaner for 5 min, the background is eliminated and only the expected Ra-
man peaks of Si, SiO2 and hBN remain. Note that the latter two spectra appear iden-
tical to the spectra one would obtain before the annealing step in argon, showing
no broad background and only the expected Raman peaks. The high temperature
annealing is performed for 30 min at 850 ◦C in a vacuum quartz tube furnace under
continuous argon gas flow, resulting in a pressure of 1.3 mbar.
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FIGURE 5.9: (a) Raman spectra on hBN and the surrounding Si sub-
strate showing strong background counts after annealing in Argon (1)
at 850 ◦C. The background is removed after 5 min in a UVO cleaner
(2). (b) Raman spectra on hBN after an initial UVO cleaning step (1),
after argon annealing (2) and after a subsequent UV-ozone cleaning
step (3). The Raman peaks of SiO2 and hBN are shown as a green
and a blue dotted line, respectively. The strong leftmost peak in the

spectra is the Raman peak of Si.

To make sure that the contamination is indeed present before the annealing, we
perform UVO cleaning first and then the argon annealing step afterwards. This
results in a reduced background, as shown in Fig. 5.9 (b), compared to the one in
(a), indicating that the cleaning step still had an effect. An additional UVO cleaning
step again removes this remaining background. These tests have been repeated with
several samples, and the results were comparable, indicating that the differences
between (a) and (b) were not a coincidence. This shows that a significant fraction
of the observed contamination is already present before the annealing in argon, but
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FIGURE 5.10: Raman spectrum taken on an hBN flake after annealing
in an O2/Ar mixture (1) and after subsequent annealing in a pure Ar

atmosphere (2).

that some contamination might be added during the annealing as well. Another
possibility is that the contamination is easier to remove once it has been annealed
and that no additional residue is added during the annealing step.

A careful reader might have noticed that our annealing procedure is identical to
the recipe used to create single-photon emitters in hBN, as outlined in [85]. While
one can indeed create such emitters with this recipe, here we will focus solely on the
effects on the Raman spectra and the organic contamination, where it mostly serves
to make such contamination visible.

Apart from UV-ozone treatment, another method to clean such organic contami-
nation is to perform annealing at an elevated temperature in an oxidizing gas envi-
ronment. Such annealing procedures have been used to not only clean contamina-
tion visible in optical spectra on hBN [163], but also to bake off PMMA layers in a
liquid free process during similar device fabrication [164]. High temperature anneal-
ing has also been shown to positively affect the mechanical properties of suspended
hBN [45] and graphene devices [80, 165]. To this end, we again use our vacuum
quartz tube furnace, but now we use a gas mixture of 20% oxygen and 80% argon.
The temperature is lowered to 500 ◦C, and the pressure is increased to 0.1 bar. The
pressure is kept at this value solely to protect the outer parts of the annealing oven
from overheating. To our knowledge, this annealing step would work under atmo-
spheric pressure as well. The annealing is performed for several hours, depending
on the degree of contamination of the sample.

We again perform a measurement series as in Fig. 5.9 (b), but instead of cleaning
the sample with a UV-ozone treatment, we perform the oxygen annealing procedure.
As shown in Fig. 5.10, the results appear to be more promising. After the initial oxy-
gen annealing step, there is no visible background in contrast to annealing in a pure
argon environment. Furthermore, after a subsequent argon annealing step meant to
reveal remaining contamination, the background remains low. This confirms that
the background visible after the argon annealing in Fig. 5.9 was likely due to con-
tamination already present, which was converted to a fluorescent background in the
high temperature environment. It also shows that annealing in oxygen could com-
pletely remove this background as opposed to UV-ozone treatment. We still perform
several UV-ozone cleaning steps throughout our fabrication procedure to minimize
the contamination, since it still shows good results considering its ease of use.

Moving on from exfoliated flakes on SiO2 substrates to our hBN-Si3N4 devices,
we might encounter contamination not only from the adhesive tape but also from
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FIGURE 5.11: Raman spectra on a suspended hBN flake, capturing
the impact of a series of treatments. In order, the sample was irradi-
ated in a FIB microscope, cleaned in a UVO cleaner, annealed in an
Ar atmosphere, again cleaned in a UVO cleaner, and finally annealed
in a O2/Ar mixture. (a) shows the spectra taken after each step, while

(b) shows the three spectra lowest in counts for clarity.

the PMMA assisted transfer process. In addition to this, both for imaging and fur-
ther processing, one might expose such devices to irradiation in a scanning electron
microscope (SEM) or a focused ion beam (FIB) microscope [166, 167]. The contam-
ination caused by SEM and FIB irradiation is known to present itself as a double
peak around 1350 cm−1 and 1600 cm−1 corresponding to the D and G bands associ-
ated with graphite [166, 168, 169].

The measurements shown in Fig. 5.11 were performed on a suspended drum
after exposure to FIB irradiation. In this device, all aforementioned contaminants
should be present. Note that since the sample is suspended and there is no underly-
ing substrate, the Raman signal is much lower. Apart from the absence of the Raman
peaks associated with the substrate, the initial spectrum (green in Fig. 5.11) shows
a moderate background and a clearly visible D and G band, expected from the FIB
irradiation. This is especially visible in Fig. 5.11 (b), where we focus on the spectra
with lower intensity. After a UV-ozone cleaning step, some of the broad background
is removed, but the double peak structure remains unchanged (blue spectrum). This
is in line with our assumption that this device has several different kinds of contami-
nation, some of which can be removed as before in Fig. 5.9. An argon annealing step
again reveals a strong contamination shown in Fig. 5.11 (a), which is not affected
by a subsequent UV-ozone treatment. However, a long term (12 h) annealing in an
oxygen/argon mixture, as outlined before, not only manages to remove the broad
background but also the D and G band peaks associated with surface graphitization
caused by FIB irradiation, as visible in the final orange spectrum.

Finally, we return to AFM measurements to confirm the effectiveness of this
cleaning procedure in another way, especially since the surface quality of the mem-
brane is of high importance in MIM optomechanics. We performed AFM measure-
ments before and after annealing in an O2/Ar mixture for 4 h. This test was per-
formed on a new suspended hBN drum with a flake thickness of 22 nm (see Fig. 5.13
(b) for further details). As visible in (a), the initial contamination of this device ap-
pears to be less severe compared to the one shown in Fig. 5.8. Nevertheless, a clear
surface roughness on the flake and some larger contamination on the substrate can
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FIGURE 5.12: AFM measurements around the flake edge before (a)
and after (b) annealing in an O2/Ar mixture. The insets show line cuts
that give a better impression of the surface roughness. In addition, the

thickness of the hBN flake in this device is confirmed to be 22 nm.

be observed. After the annealing step (b), the surface roughness is reduced, and the
spotty surface appears much more homogeneous.

From these AFM and Raman measurements, we can conclude that high temper-
ature annealing in an O2/Ar mixture is a gentle and effective approach to remove
residue caused by different steps in the fabrication procedure. It even proved effec-
tive in removing contamination caused by FIB irradiation. No damage to the sample
and no observable change to, e.g., the flake thickness could be observed. In addition,
UV-ozone treatment is a less effective but more convenient alternative, that shows
good results when treating contamination introduced during the exfoliation proce-
dure.

5.4 Sample Overview

We have fabricated a variety of samples with varying drum thicknesses between
5 nm and 50 nm. While thicker samples should result in a higher reflectivity and
thus in a stronger interaction with the cavity, thinner samples present a lower effec-
tive mass. This leads to advantages in sensitivity (see Eq. 2.10) when using such a
resonator as sensor, but due to the impact on xzpm (Eq. 2.9) it also has implications for
the optomechanical coupling according to Eq. 2.66, as we will explore later in chap-
ter 7 (Fig. 7.8). The mechanical characterization of these samples will be discussed
in chapter 6.

The samples shown in Fig. 5.13 are all fabricated on high-stress Si3N4 membranes
with lateral dimensions of 300 µm. The hole sizes are 30 µm for the samples shown in
(a),(d) and (e), while in (b) and (c) the holes have a diameter of 20 µm. This is mostly
due to the fact that finding flakes with a thickness of only a few nm is difficult with
the lateral dimensions necessary for our larger holes.

The dark-field images shown in the lower half are well suited for the identifica-
tion of imperfections in the flake. While in Fig. 5.13 (a) and (b), the dark-field image
reveals no obvious imperfections in the drum, the one shown in (c) shows several
lines. We believe that these lines represent folds rather than cracks or steps since no
steps were visible in the flake before transfer and, under close inspection, no gap in
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FIGURE 5.13: Overview of samples for which measurements will be
presented in this thesis. (a) Is the sample used for most results shown
in chapter 6 and [170]. For (a)-(c) a regular photograph (top) and a
dark-field image (bottom) are shown. The thickness for (a)-(c) was
measured via AFM and is indicated in the bottom right of each pho-
tograph. For (d) and (e), only a regular photograph is available, and

the thickness was estimated based on the color instead.

the material could be seen. We further believe that it is much more difficult to avoid
folding of such thin flakes since they are deep in the membrane limit and thus do not
hold their own shape as a plate would. This is also consistent with thin hBN sam-
ples based on CVD grown material shown in other publications [45]. In contrast, the
lines visible in Fig. 5.13 (e) show a clear gap in the material due to damage caused
during the flake transfer.
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Chapter 6

Mechanical Characterization of
hBN Drum Resonators

Here we discuss the mechanical properties of the hBN samples presented in Fig. 5.13,
in particular the sample shown in Fig. 5.13 (a), but also those of the Si3N4 membranes
and their hybridization with our microdrums. These results have been published in
[170]. Similar hybridization between 2D material resonators and underlying Si3N4
membranes has been observed before [171, 172], but here we focus on the impact
on the quality factor (Q) and effective mass (m∗). In our case, the underlying Si3N4
membrane has a much higher Q than the hBN drum. The resulting hybridized sys-
tem, where the Si3N4 membrane lends its mechanical properties to the modes of the
hBN drum, could be useful for sensing applications [171, 173, 174], and the engi-
neering of functionalized mechanical systems.

The measurements at room temperature were performed with the interferometer
setup introduced in section 3.2, while the ones at low temperature were performed
using the confocal microscope configuration of our FFPC-MIM probe introduced in
section 3.1.2.

6.1 Mechanical Properties of the hBN Drum

We start by focusing the laser of the interferometer onto the center of the hBN drum,
where the fundamental drum mode (m = 0, n = 1 in Fig. 2.3) should have its peak
motional amplitude. We then record a thermal spectrum with the built-in spectrum
analyser of the RedPitaya to obtain an overview of the resonances present. We ex-
pect to observe several resonances belonging to both the hBN drum and the Si3N4
membrane, as is the case in Fig. 6.1 (a). Since the simulations of the Si3N4 membrane
should be rather precise due to its well characterized properties, we can expect a
good agreement between simulation and measurement. It is thus reasonable to as-
sume that the peak at 1.2 MHz is its fundamental mode, matching the lowest value
in Fig. 5.4 for a 300 µm membrane dimension.

In Fig. 6.1 (b) and (c), we show higher resolution spectra of the two modes high-
lighted in Fig. 6.1 (a). These more detailed spectra were taken with our LI-A instead
of the Red Pitaya. While (b) shows the fundamental Si3N4 mode, we suspect (c) to
show the fundamental mode of the hBN resonator.

To further investigate which resonances in the overview spectrum belong to the
hBN drum, one could move the focus of the microscope to a region just outside
the drum and see which resonances remain or disappear in the overview spectrum.
However, a more sophisticated approach is to scan the laser spot across the drum
and some of the surrounding Si3N4 membrane while recording the peak intensity
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of a specific resonance by demodulating the signal with the LI-A around the cor-
responding frequency. While such a measurement can image the thermal motion
as well, here we drive the resonance in question with the disc piezo mounted on
the sample block (see section 3.1.2) to ensure a high SNR. This procedure effectively
generates an image of the motional amplitude and thus the mode shape for the reso-
nance in question. The measurements shown here correspond to the absolute value
of the mode shapes shown in Fig. 2.3, which is sufficient to identify most modes. If
necessary, the LI-A gives access to the phase as well as the individual quadratures,
making it possible to perform measurements matching Fig. 2.3.

In Fig. 6.2 (a), we show such mode images for both the fundamental Si3N4 mode
at 1.2 MHz and the potential fundamental hBN drum mode at around 2 MHz. While
both modes show strong motion in the drum, the one at 2 MHz is much more con-
fined and matches the expected mode shape of a fundamental drum mode well. The
one at 1.2 MHz that we assigned to the Si3N4 membrane shows clear motion outside
of the drum and appears to be much broader in shape. Unfortunately, the scanning
range of our setup is not large enough to image the entire Si3N4 membrane.

Apart from identifying the mode a resonance in a spectrum corresponds to, mode
imaging is also useful in gaining insight into the imperfections of the membrane
and their effects on the mode shapes. As pointed out in [44], mode shapes are,
for example, sensitive to asymmetric tension in the flake and bulging effects. Our
mode images in Fig. 6.2, especially in the case of the fundamental Si3N4 mode, reveal
a diagonal line, highlighted by the arrows in Fig. 6.2. This line is not visible in
the microscope image in Fig. 5.13, but it was present in AFM measurements shown
in Fig. 6.2 (b). The AFM measurement was performed outside of the suspended
drum, but the line extends into the drum, matching the feature observed in the mode

(a)

(b) (c)

FIGURE 6.1: (a) Overview spectrum of the thermal response taken
in the middle of the hBN drum. (b) Detailed spectrum of the first
peak highlighted with a blue arrow in (a), which we attribute to the
fundamental mode of the Si3N4 membrane. (c) Second highlighted
peak in (a), which we attribute to the fundamental mode of the hBN
drum. Fit in (b) and (c) is shown in red and is used to extract the Q-

factors shown in the top right of the two graphs.
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1.233 MHz 2.065 MHz(a) (b)

FIGURE 6.2: (a) Mode images recorded by demodulating the response
around the frequencies of the fundamental SiN mode (Fig. 6.1 (b))
on the left and of the fundamental hBN mode (Fig. 6.1 (c)) on the
right. Both responses have been normalized to unity. The scale bar
corresponds to 10 µm. Especially the mode image of the Si3N4 mode
reveals a linear feature highlighted by arrows; this line is found as a
feature of approximately 10 nm in the AFM measurement shown in

(b).

image. This line appears to be a feature of around 10 nm in height. Since the flake
height is equal on both sides of this line, we assume that it is caused by a fold rather
than by a step in the flake. While this feature is observable in some of the mode
images, it does not appear to disturb the expected mode shapes of the hBN drum, as
we will see in the following measurements.

Now that the fundamental mode of the drum has been identified, we further in-
vestigate the properties of our mechanical resonator by fitting the thermal spectrum
with Eq. 2.6, as shown in red in Fig. 6.1. From this fit, we can extract the linewidth
and hence the Q-factor of our resonators.

If we know the temperature of the sample and measure the peak amplitude of
the mode in question, we can extract the effective mass as a fit parameter as well. To
ensure that we are not heating the sample with our laser, we increase its power until
we see a shift in the resonance frequency, a clear sign that heating has occurred. Then
we lower the optical power well below that point, where no thermal effects due to
the laser can be observed. This usually results in an optical power below 100 µW.
In this configuration, we can be reasonably confident that the sample temperature is
thermalized with the surrounding bath at room temperature.

With these assumptions, we extract a value of m∗ = 1.71 × 10−14 kg for our hBN
drum. We can also calculate the expected effective mass for our hBN drum according
to Eq. 2.18, giving us a theoretical value of m∗

th = 1.89× 10−14 kg, in good agreement
with our measurement. Here we assumed a density of hBN of ρhBN = 2100 kg ·m−3.
This further shows that this mode is unlikely to be associated with the much heavier
Si3N4 membrane and that it is indeed confined to the hBN drum.

We have done similar investigations regarding the fundamental modes of the
other samples shown in Fig. 5.13; the observed fundamental modes are shown in
Fig. 6.3.

Fortunately, we were successful in separating the fundamental hBN modes from
the ones of the Si3N4 membrane for most devices. This is evident by the effective
masses shown in Fig. 6.3, but it also becomes obvious when looking at the overview
spectrum in Fig. 6.1, where the resonances are clearly separated. Only the thermal
spectrum in (c) reveals a higher effective mass and also a higher resonance frequency.
This spectrum belongs to the hBN drum with a crack, shown in Fig. 5.13 (e). We note
that the frequencies of resonances associated with the Si3N4 membranes are very
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FIGURE 6.3: Spectra of the fundamental modes of the remaining de-
vices shown in Fig. 5.13 (b), (d), and (e) in order. So far, no spectrum

of the sample shown in Fig. 5.13 (c) could be recorded.

consistent across different devices, usually presenting a gap in the spectrum similar
to Fig. 6.1.

In Fig. 6.4, we show the resonance frequencies of the Si3N4 membrane and the
ones of the hBN drum, simulated with Comsol. The simulation for the Si3N4 mem-
brane is the same we already used in Fig. 5.4. The parameters match the device
measured here (Fig. 5.13 (a)). While there are visible modes of the Si3N4 membrane
at around 2.5 MHz, there is still a low enough density of Si3N4 resonances for the
hBN drum modes to be well separated in this interval. In principle, there are addi-
tional modes associated with the Si3N4 membrane at around 1.8 MHz. But those are
the ones exhibiting a node in the middle of the membrane, making them not observ-
able in our spectra (see Fig. 6.1), which should also result in a low interaction with
the hBN drum.

FIGURE 6.4: Simulated mechanical spectrum of the Si3N4 membrane
(red) and a hBN drum (blue). Device parameters match the one

shown in Fig. 5.13 (a).

6.2 Mode Imaging of Higher Order Modes

Having characterized the fundamental mode of our hBN resonator, we now turn to
the higher order modes. At the higher frequencies where these modes are expected,
the density of the modes associated with the Si3N4 membrane will drastically in-
crease, as seen in Fig. 6.4. In such a scenario, mode imaging becomes an indispens-
able tool to identify the hBN drum modes.

Aside from the identification of the drum modes, one should pay attention to
two different aspects when investigating how close to an ideal system the resonator
performs. The first is how well the mode shapes match between simulation and
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Exp

Sim

FIGURE 6.5: Mode images and spectrum obtained for the sample
shown in Fig. 5.13 (a). The top row shows the measured mode images
while the second row shows mode images simulated with COMSOL.
Since often more than one mode could be found with matching mode
shapes, the modes are represented with a shaded area rather than
with a specific peak in the thermal spectrum shown in the middle.
The last two mode images are beyond the frequency range of the ther-
mal spectrum shown, therefore, no shaded area is indicated. Arrows
highlight modes of the Si3N4 membrane that did not hybridize with
any hBN drum modes, starting with the fundamental Si3N4 mode.
The last row shows an example of a series of apparently identical
modes in one of the shaded areas. m∗, Q and fm are displayed on
each of the six graphs. The dashed circle shows the drum outline

with a diameter of 30 µm.

measurement. In general, mode images of mechanical resonators based on 2D mate-
rials tend to show mode shapes that deviate significantly from theory [44, 96, 97]. We
have thus compared all modes we could identify in the thermal overview spectrum
(middle of Fig. 6.5) with the expected mode shapes simulated with Comsol. The
results are shown in the top two rows of images in Fig. 6.5. In our measurements,
there is very good agreement in this regard, showing that this sample exhibits mode
shapes in agreement with a geometrically ideal membrane. This remains to be the
case up to high order modes, only limited by our ability to find these modes in a
thermal spectrum. While the observed mode shapes of the drum are also in good
agreement with the analytical ones shown in Fig. 2.3, the simulation takes into ac-
count additional interactions with the Si3N4 membrane, as we will discuss below in
section 6.2.1.

To show that the sample fabrication procedure outlined in chapter 5 can reliably
produce samples with such well defined mode shapes, we show another series of
mode images in Fig. 6.6. This series of measurements was performed with the sam-
ple shown in Fig. 5.13 (d). The thermal spectrum of the fundamental mode of this de-
vice (Fig. 6.3 (b)) revealed a surprisingly low resonance frequency around 1.38 MHz,
hinting at a low tension in the hBN flake, and a relatively high Q of 3400. Naturally,
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samples with obvious defects, as in Fig. 5.13 (e), do not show such predictable mode
shapes.

FIGURE 6.6: Mode images similar to the ones shown in the top row
of Fig. 6.5, but performed on the sample shown in Fig. 5.13 (d). Scale

bars correspond to 10 µm.

The second aspect is whether the mode spacings in frequency match well be-
tween experiment and simulation. Unfortunately, this question is difficult to answer
in our case, as we observe a multitude of copies for a single expected mode shape
of our drum resonator over a relatively large frequency interval. Such a series of
modes is shown at the bottom of Fig. 6.5. We have highlighted the intervals in which
modes of the same mode family can be found in the thermal overview spectrum in
Fig. 6.5 as red shaded areas. These shaded areas also include some uncertainty due
to temperature drifts in our setup, leading to shifts in resonance frequencies between
measurements.

6.2.1 Comsol simulation of a hybrid hBN-Si3N4 device

To gain more insight into our measurements, we will now take a closer look at the
Comsol simulations mentioned before, where we simulate the combined hBN-Si3N4
device. Regarding the geometry of the simulation shown in Fig. 6.7 (a), we sim-
ply approximate the hBN flake as a rectangle covering the central hole of the Si3N4
membrane, while the Si3N4 membrane itself could be accurately reproduced due
to its well-defined dimensions. The shape of the rectangle was chosen instead of a
square to break the symmetry, which should be more in line with the real shape of
the hBN flake. Here we again focus on the sample shown in Fig. 5.13 (a) and use the
thickness extracted from the AFM measurements shown in Fig. 5.8 of 48 nm.

The combined system is simulated as a union, and the mode shapes are evalu-
ated as a shell model instead of a membrane model to take bending stiffness into
account. We introduce asymmetry into the system with a 1% distortion of the shape
of the Si3N4 membrane. This asymmetry leads to a better match with our measure-
ments and is well within the fabrication tolerances of our Si3N4 devices.

We match the simulated frequency of the fundamental mode of the hBN drum
to the one we observe experimentally using the pre-tension of the flake. As noted in
chapter 5, the reported values for the Young’s modulus of hBN vary greatly, and we
tentatively chose the average value of 392 GPa reported in Ref. [44]. With this value,
we have to set the pre-tension to 0.36 N/m.
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FIGURE 6.7: (a) Simplified geometry used for our simulations. (b),
(c) Top and side view of the two fundamental modes of the Si3N4
membrane and the hBN drum, respectively. The simulations match

the experimentally measured mode images in Fig. 6.2 well.

However, for a Young’s modulus of 700 GPa, which is still within the range of re-
ported values and closer to theoretical predictions [72], we have to use a pre-tension
of only 0.15 N/m. With this set of values, the simulation matches the measured
higher order modes much better. However, it is difficult to match the simulations
perfectly to our measurements due to the aforementioned interval over which drum
modes repeat themselves and our inability to image the involved Si3N4 membrane
modes. We have nevertheless switched to the latter combination of parameters.

Simulated mode shapes for the fundamental mode of Si3N4 and the one of the
hBN drum are shown in Fig. 6.7 (b) and (c), and they match the experimental data
in Fig. 6.2 well. Interestingly, it is expected that even for the Si3N4 mode, there is a
clear motional peak in the hBN drum. Such an effect is not entirely unexpected due
to the difference in mechanical properties between the two materials. This effectively
serves as an amplification of the motional amplitude of the Si3N4 membrane and can
also be observed as a bright spot in the middle of the drum in Fig. 6.2 (a). The same
conclusion has also been drawn in [174], where the motion of a Si3N4 membrane
was amplified with a thin graphene drum.

The hBN mode is expected to be entirely confined to the drum, and its profile
appears to be more focused compared to the mode shape within the drum simulated
for the fundamental Si3N4 mode. This also matches our previous measurements,
especially the value of m∗, which is in agreement with the calculated value for the
isolated drum, implies no additional motion in the Si3N4 membrane.

Regarding higher order modes, the simulations predict a vast number of such
modes, much larger in quantity than the ones we can observe in our thermal spec-
trum. In addition, they are spread over even larger frequency intervals than we
observe in our spectra.

6.3 Mechanical Mode Hybridization in a hBN-Si3N4 Device

We will now turn to discuss the copies of hBN drum modes within one mode family
observed before. We attribute the presence of these copies to hybridization between
an hBN drum mode and several modes of the Si3N4 membrane that are close in fre-
quency. When taking a closer look at the bottom row in Fig. 6.5, it becomes apparent
that some of the mode images show motion surrounding the typical double maxima
of the drum mode, hinting at hybridization with the surrounding Si3N4 membrane.
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FIGURE 6.8: Top and side views of three examples of the (m=1, n=1)
drum modes present in our simulation at different frequencies. The
modes show differences in the surrounding Si3N4 membrane, imply-
ing different degrees of hybridization but also different Si3N4 modes.

Comparing this to our simulation, we observe that each of the simulated modes
show differences mostly in the surrounding Si3N4 membrane, consistent with our
assumption that a hBN mode hybridizes with many Si3N4 modes, as can be seen
when comparing, e.g., the first two mode images in Fig.6.8. The drum modes shown
here match the ones at the bottom of Fig. 6.5.

The last mode image shows a case with especially strong hybridization. The
drum mode is additionally rotated with respect to the other modes, but not enough
for it to be clearly attributed to the second (m = 1, n = 1) drum mode rotated by
90◦ predicted by theory (see section 2.1.2). So the hybridization not only results
in a much larger number of modes compared to a bare hBN drum, but it can also
affect the rotational orientation of the hBN drum modes, explaining why some of
the orientations of the modes in Fig. 6.5 differ from an ideal isolated drum.

Modes where the motion is confined to the hBN drum alone, i.e., those that are
not hybridized with the Si3N4 membrane, were almost not present in the simulation
towards higher frequencies. Most likely, the density of Si3N4 modes is simply too
large for an hBN mode to be isolated, underlining the importance of our choice to
employ high stress Si3N4 membranes with higher resonance frequencies.

We can again use the measured thermal spectra to characterize the mechanical
properties of the modes in question, in particular their m∗ and Q. The values ob-
tained like this are displayed for each mode at the bottom of Fig. 6.5, showing a
large range of different values. As expected, the mode with the lowest Q-factor (sec-
ond image) shows no motion in the surrounding Si3N4 membrane, while the one
with the highest Q-factor (last image) shows strong motion that even merges with
the mode shape of the hBN drum across its edge.

To further investigate this hybridization, we extract m∗ and Q for all the modes
observed in the thermal spectrum in Fig. 6.5. In Fig. 6.9 (a), we show Q as a function
of the resonance frequency. A first observation is that there is a large spread of dif-
ferent values of Q, which tend to be lowered towards higher frequencies. The large
spread can be understood as an effect of hybridization. Knowing that the hBN drum
has a much lower Q (6 × 103 for the fundamental mode) than the Si3N4 membrane
(1.8 × 105 for the fundamental mode), it is expected that any value within this inter-
val can be observed depending on the degree of hybridization. This is confirmed by
the fact that among the modes shown in the bottom row of Fig. 6.5, we have found
Q-factors in excess of 1 × 105, almost reaching the value of the Si3N4 membrane’s
fundamental mode.



6.4. Characterization at Cryogenic Temperatures 85

(a) (b) (c)

FIGURE 6.9: (a), (b): Q and m∗ as a function of the resonance fre-
quency for all observed modes at room temperature. The six modes
shown at the bottom of Fig. 6.5 are represented by star shaped mark-
ers. (c) Q vs. m∗, revealing an apparent correlation between both
quantities. The dashed lines in (b) and (c) indicate m∗

th for the funda-
mental modes of the hBN drum and Si3N4 membrane.

Of course, the higher order modes of the two resonators do not need to have
the same Q as the fundamental modes but might tend towards lower values, which
matches our observations regarding empty Si3N4 membranes. The maximum in Q
for the observed modes can be found at around 4 MHz, since below this value only
the fundamental hBN mode can be found, which is not yet hybridized with the Si3N4
membrane as pointed out before. And at higher frequencies, the Q starts to diminish,
leading to a tapering off of the observed values.

Finally, for a small frequency interval, there are often many modes at different
Q’s that almost appear in a vertical line, representing groups of modes such as the
one shown at the bottom of Fig. 6.5. This is again a sign of the hybridized modes
clumping around a hBN drum mode that is hybridized with many nearby Si3N4
modes.

For m∗, we expect a similar dependency on the degree of hybridization as with
Q. Similar to the theoretical value for the effetive mass of the hBN drum’s fundamen-
tal mode that we estimated before (m∗

th = 1.89 × 10−14 kg), we can estimate a value
for the Si3N4 membrane of m∗

th = 1.14 × 10−11 kg, giving us the upper and lower
bounds in Fig. 6.9. As can be seen in Fig. 6.9 (b), we find that the measured values
fall into this interval. Note that these values for m∗

th are only estimates, especially
when evaluating higher order modes for the circular hBN drum. The effective mass
of a circular drum changes depending on the mode in question [130], and can differ
significantly from the value of the fundamental mode. Unsurprisingly, the funda-
mental mode of the hBN drum has the lowest effective mass of all observed modes
since it is the only one not expected to hybridize with the Si3N4 membrane.

Since both m∗ and Q should depend on the degree of hybridization, we would
expect a correlation between the two quantities. We plot the observed Q vs. m∗

in Fig. 6.9 (c), where we indeed find that the modes with higher Q tend to have a
higher m∗. From this observation, we can conclude that, via hybridization, the Si3N4
membrane can lend its high Q-factor to the hBN at the cost of a higher effective mass.

6.4 Characterization at Cryogenic Temperatures

We now investigate the behavior of this device at low temperatures. To this end,
we mount the sample in our probe using the confocal microscope configuration (see
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section 3.1.2) and cool it down in our bath cryostat. We will perform similar charac-
terizations as before, both in liquid nitrogen (77 K) and liquid helium (4 K).

Upon cooling down, we immediately observe drastic changes in the behavior of
our resonator. Bulk hBN is known to have a negative thermal expansion coefficient
[175], so, as in graphene, it is reasonable to expect that this property is preserved or
even enhanced in the 2D limit [176]. Therefore, we expect a bulging of the mem-
branes at low temperatures.

(a) (b)

5um 5um

300K 200K

300K 4K 4K
FIGURE 6.10: Reflected intensity maps that show the topography of
the drum due to the interferometric nature of the measurement setup.
The data was tilt corrected, leading to visible artefacts, this was nec-
essary due to deviations in the scanner movements. The room tem-
perature map in (a) shows no obvious features, while the one at lower

temperatures in (b) has a clearly bulged shape.

In Fig. 6.10, we plot reflected intensity maps of the drum resonator. These maps
reveal the topography due to static interference between the fiber facet of the con-
focal microscope and the sample and can be used to test our hypothesis. When
comparing the room temperature map in (a) with the one at 200 K shown in (b), it
becomes apparent that bulging of the drum has taken place. While no such effect
was observed for monolayer hBN [45], the sample presented here is not thin enough
to be clearly in the membrane regime, where the drum would be expected to stay
under tension by adhering to the side walls of the underlying substrate [44].

In the raw scanned data, we observe an additional interference pattern corre-
sponding to a tilt in the scan. This tilt is not caused by an actual tilt of the membrane
but by deviations in the motion of the membrane scanner. After correcting for this
tilt, the observable vertical artefacts are left in Fig. 6.10.

Mode imaging reveals that the modes we observed at room temperature are re-
placed with entirely different mode shapes. All the modes we could observe now
show motion mostly in one of three small circular regions of the drum.

In Fig. 6.11 (b), a mode is shown that exhibits motion in all three mentioned re-
gions (see green arrows), serving as an overview. Most other modes can be imagined
as a subset of the regions shown in this image. An example is shown in Fig. 6.11 (c).
As can be seen when comparing these regions to the fundamental mode at room tem-
perature (Fig. 6.11 (a)), the area of motion appears to be significantly reduced at low
temperature. Most of the deformation happens early on in the cooldown, consistent
with the expected thermal expansion coefficient of hBN [175], which has a relatively
constant value at higher temperatures but approaches zero between liquid nitrogen
and liquid helium temperatures.
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(a) (b) (c)300K 4K 4K

10um

FIGURE 6.11: (a) Fundamental hBN mode at room temperature as a
comparison. Two different modes of the bulged drum at 4 K (b) and
(c). The image in (b) shows a complex mode that spans a large area,
for which thermal motion could not be observed. The image on the
right is a more typical mode, representing the ones that we were able
to characterize (see Fig. 6.12). Most modes show motion in only one
of the three circular regions in (b), highlighted by the green arrows.
Dashed circles show the drum edge while the white squares in the

last two images indicate the limited scan window at 4 K.

The frequencies of the Si3N4 modes did not change significantly when cooling
down, while the modes of this hBN drum tend to react strongly to temperature
changes, even before the mode shapes are lost.

Despite these changes, we can again investigate the Q and m∗ of the observed
resonances. We plot these values together with the ones obtained before for room
temperature as comparison in Fig. 6.12.
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FIGURE 6.12: Measurements as presented in Fig. 6.9, but with the
additional data taken at 77 K (yellow) and at 4 K (blue).

At lower temperatures, there is no mode low enough in frequency that we can ex-
pect it to not show hybridization. The only mode at such a low frequency is still the
fundamental mode at room temperature, shown by the leftmost red dot in Fig. 6.12
(a).

In general, cooling down such 2D material resonators should result in an increase
in Q. While we do observe an increase in our highest observable Q at low tempera-
tures, the effect is not as big as in other published work [45, 80, 164, 177]. It would
naturally be beneficial to follow a certain mode and measure how its Q changes with
temperature, but due to the change in mode shapes, this is difficult in our case. For
example, we can not observe the evolution of the Q-factor of the fundamental drum
mode since no corresponding mode exists after buckling of the resonator occurs.
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Looking at Fig. 6.12 (b), m∗ tends towards lower values for lower temperatures.
It even falls well below the expected value for the fundamental mode of hBN, which
we used as a lower bound at room temperature. As mentioned before, this is ex-
pected from our mode images, which show a much smaller area of motion at low
temperatures, especially considering that most modes that exhibited observable ther-
mal motion were similar to the one shown in Fig. 6.11 (c) rather than the one in (b).

Unlike at room temperature, we do not observe m∗ reaching the upper limit
given by the motional mass of the Si3N4 membrane. We believe that this is due
to our inability to observe thermal motion for such modes. When looking at Eq. 2.6,
one notices that the thermal motion scales with T and inversely with m∗, ωm and
Γm. As already visible in Fig. 6.1 (a), the thermal peak of the fundamental mode
of hBN is much higher in amplitude than the one of Si3N4 . This is due to the fact
that the difference in Q (and thus Γm) is not nearly as large as the several orders of
magnitude difference in m∗ between the two resonators. Because of this, strongly
hybridized modes are more difficult to observe for this device. With the additional
reduction in signal due to the lower temperature, this lowers the cutoff of observ-
able thermal motion, leading to the disappearance of modes at higher frequencies
but also at high degrees of hybridization (i.e. high Q and m∗).

Finally, when plotting Q vs. m∗ in Fig. 6.12 (c), we again find a similar correlation
due to hybridization. The main difference is the shift towards lower m∗ and higher
Q, especially when comparing the Q for a similar effective mass.

6.5 Force and Mass Sensitivities

As a last step in characterizing these mechanical resonators, we will estimate their
force and mass sensitivities. In particular, we would like to investigate how these
sensitivities depend on the degree of hybridization. The force and mass sensitivities
in units of [N/

√
Hz] and [kg/

√
Hz] are given by Eq. 2.10 and 2.11.

(a) (c)(b)

FIGURE 6.13: Force sensitivity as a function of Q, m∗ and fm. The
star shaped marker corresponds to the fundamental mode of the hBN

drum at room temperature.

In Fig. 6.13, the resulting force sensitivities for the mechanical modes character-
ized in Fig. 6.12 are shown as a function of Q, m∗ and their resonance frequency fm.
We have highlighted the fundamental mode of the drum with a star shaped marker.
Since no such mode exists at low temperatures, this only applies to the room tem-
perature dataset in red.

In Fig. 6.13 (a), no clear correlation can be observed between Q and
√

SF. The
only point that stands out at room temperature is the fundamental mode, which
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appears to show a much better force sensitivity than the other modes. Since SF ∝
T, it is not surprising that a decrease in temperature leads to a better sensitivity,
independently of the mechanical properties. This explains, in part, the difference in
sensitivity between the three datasets, not only in (a), but in all graphs in Fig. 6.13.
But we also observed an overall increase in Q (and thus a decrease in Γm) and a
decrease in m∗ in this device when cooling down. And since SF ∝ Γm, m∗, we expect
this effect to also play a role in the improved sensitivities at lower temperature.

This is illustrated by the trends seen in Fig. 6.13 (b), where we observed an im-
provement for modes with the same m∗ at lower temperature but also an improve-
ment for lower m∗ within each dataset. This shows that we can observe an effect
of the mechanical properties and not just the temperature. The fact that we do not
clearly observe such a dependency for Q might be caused by the fact that the change
in m∗ spans several orders of magnitude while the difference in Q is more moderate.

Looking at Fig. 6.13 (c), the room temperature data shows some correlation with
fm. While a similar trend appears to be visible for the datasets at low temperatures,
due to the lack of data points, it is difficult to be certain. This trend might be due
to the fact that at higher frequencies, while m∗ remains high, Q tends to decrease,
thus affecting the sensitivity. The good sensitivity of the fundamental mode can be
explained by the fact that it offers a reasonable Q at the lowest m∗. This indicates
that for our system, the gain in Q does not outweigh the increase in m∗ when hy-
bridization occurs. The fundamental mode of hBN has the lowest effective mass at
room temperature, i.e., it is the only mode that is clearly not hybridized.

This is also in line with our discussion in the previous section about thermal
motion, in which the fundamental mode had the highest amplitude of all observed
modes. Since thermal motion and these sensitivities are inherently connected, as
discussed in section 2.1.1, one would expect a similar trade off.

(a) (c)(b)

FIGURE 6.14: Mass sensitivity as a function of Q, m∗ and fm. The
star shaped marker corresponds to the fundamental mode of the hBN

drum at room temperature.

In Fig. 6.14, we show the mass sensitivity. It has an additional term 2
x0ω2

0
com-

pared to the force sensitivity (see Eq. 2.10 and 2.11), giving it a strong dependency
on frequency, as clearly visible by the trends shown in (c). This also explains why
the fundamental mode does not perform as well compared to the force sensitivity
estimations. Still, no increase in mass sensitivity can be observed for the strongly
hybridized modes with high values of Q and m∗. On the contrary, when looking at
Fig. 6.14 (b), we observe that the modes with lower m∗ still tend to perform best. The
temperature dependency naturally follows the same trend as before.
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While hybridization did not have a positive effect on the sensitivities of this de-
vice, this trade off depends on the properties of the two involved resonators. Bet-
ter Si3N4 resonators, as for example demonstrated in [49, 178], could improve the
sensitivity of such 2D resonators through hybridization. It was furthermore demon-
strated in a graphene-Si3N4 device that such hybridization can improve the signal
to noise ratio in a force measurement, especially for high Q Si3N4 resonators (see
SI of [171]). However, this requires precise control of the relative frequencies of the
hybridized modes.
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Chapter 7

Optomechanics with hBN Drum
Resonators

Having characterized the constituents of our FFPC-MIM system and developed the
necessary tools to control and measure them, we are now ready to explore the com-
plete system. First, we will discuss more practical aspects of aligning the system
using WL spectroscopy as well as red laser scans of the sample. We will then ex-
plore the viability of the hBN drum as a MIM system in our FFPC under high finesse
conditions and measure the static optomechanical interaction. Finally, we will take
a look at the dynamic interaction by measuring the OMIT effect.

7.1 Low Reflectivity Measurements

As a starting point, the sample is inserted into the cavity while the fibers are at a
distance of several mm. Before closing the system, we bring the fibers into closer
proximity around the sample. At this point, LCav is at several hundred µm, well be-
yond the range where a signal with the NIR laser could be observed (see Fig. 4.7).
This is necessary to protect the system when inserting the probe into the cryostat.
Especially due to the spring suspension, the probe can swing freely inside the vac-
uum can (see Fig. 3.3), leading to mechanical shocks that could destroy the system
when the constituents are in close proximity.

Without visual access to the system, we first perform a scan of the sample. We
use the x-y piezo scanner in the sample block to produce a map similar to the one
shown in Fig. 7.1. Here we use the red laser, bypassing the highly reflective window
of the coating, which still gives a signal at much greater distances compared to the
NIR laser. The purpose of this scan is mainly to navigate the sample.

The maps shown in (a) and (b) were measured when the system was already
closer, but these red light measurements still show a clear enough image at long dis-
tances. The main difference is a reduction in resolution and a drop in intensity in
transmission, but identifying the hBN drum or an empty hole is still easily possi-
ble. We then move the sample using the membrane positioners until the hBN drum
can be accessed within the scanning window of the membrane scanner. We usually
position the membrane in such a way that we also have access to an empty hole to
perform measurements without the interference of the membrane. For example, we
can measure LCav using WL spectroscopy through this hole, as in chapter 4.

Fig. 7.1 (c) shows the corresponding sample region as a microscope image for
reference. Comparing this image to the scans in (a) and (b), we notice that we can
differentiate the empty hole from the one covered with the hBN flake as a difference
in, e.g., the transmitted intensity. We further observe lines where the flake boundary
and the edges of the holes are situated.
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(a) (b) (c)

FIGURE 7.1: Sample scanned in the orthogonal plane to the cavity
axis using the red laser, reflected signal in (a) and transmitted signal
in (b). (c) shows a microscope image of the scanned region for refer-

ence.

Having aligned the sample in the orthogonal plane with respect to the cavity
axis, we can now use WL spectroscopy to bring the constituents of the MIM-FFPC
system into close proximity.

We begin by moving the sample close to the fixed input fiber. To this end, we
position the sample in such a way that either the hBN drum or the Si3N4 membrane
is in front of the input fiber. The transmission fiber is at a far enough distance to not
contribute significantly to the reflected WL spectrum, typically around 100 µm.

The WL spectra in reflection usually have higher levels of noise due to additional
reflections from, e.g., the fiber couplers. But as shown in Fig. 7.2 (a), we can still
find the peak positions in the spectrum reasonably well. However, this is only true
for some intervals of the spectrum, which is why the one shown only covers 610
to 680 nm, a much smaller range compared to Fig. 4.5. At this length, this subset
of the measured spectrum still features more than enough resonances to perform
the fit. The measurement is again evaluated as described in chapter 4, the results
of the fits are shown in Fig. 7.2 (b)-(e). Due to the higher levels of noise in these
measurements, the evaluation of the mode number is not consistent across all lines,
resulting in jumps of λ/2. This results in the three lines visible in Fig. 7.2 (d).

We have again performed a comparison with microscope images while the sys-
tem was open to test the reliability of this technique. An example of such a micro-
scope image is shown in Fig. 7.3 (a), where the transmission fiber is also visible to
the right (red arrow). Since the dark surface of the sample is almost invisible and the
distance would be difficult to estimate given the orientation, we use the reflection of
the input fiber on the sample instead (white arrows). This gives a measurement of
twice the distance between the sample and the input fiber.

While the spectra suffer from higher levels of noise, surprisingly, the deviations
between image based estimations of the length and WL spectroscopy shown in (b)
are very small. This could imply that the larger discrepancies shown in Fig. 4.6 (b)
are due to a less reliable image based estimation of LCav, and that the WL measure-
ment is as reliable for measurement of the fiber-fiber distance as for the fiber-sample
distance.

After bringing the sample in close proximity, usually about 10-15 µm so as to po-
sition the sample close to LCav/2 for our typical cavity lengths, we move the sample
to position the empty hole in front of the input fiber. We then perform WL measure-
ments as in chapter 4 and incrementally reduce LCav to about 20-30 µm.

At these distances, a signal under high finesse conditions with the NIR laser
should be observable, but often the transmission fiber is not well enough aligned
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(a)

(b) (c)

(d) (e)

FIGURE 7.2: Whitelight measurement as in Fig. 4.5, but this time per-
formed in reflection with the sample in front of the input fiber. The
transmission fiber is kept at a long distance for these measurements.
(a) Spectrum with peak positions in red. (b) and (c) show the initial
fit and the corresponding mode number, (d) and (e) show the final fit
and the corresponding mode number. The extracted length between

the fiber and the sample (LCav,1) is displayed in (d).

with the input fiber in x-y. We have found that maximizing the contrast of the cav-
ity signal in transmission with the red laser is a good first step to align the FFPC.
At such low reflectivities, the cavity signal approaches a simple sine wave that is
easy to observe on an oscilloscope while continuously scanning the cavity length
with the piezo positioner. Typically, this sine wave is combined with a relatively
large constant offset. One might think that maximizing the overall signal intensity
in transmission would be a good choice, but this point of optimal fiber coupling
does not coincide with a good alignment of the FFPC for us. We instead have more
success when aligning for maximal contrast of the sine wave, ignoring the overall
signal strength. This might be due to a small error in crater centering with respect to
the fiber core or other geometrical imperfections. After these steps, we can usually
observe a signal using the NIR laser through the hole in the sample, which can then
be used to optimize the alignment and operate the cavity as in chapter 4.
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113μm

(a) (b)

WL: 59μm

FIGURE 7.3: (a) Microscope photograph of the FFPC with the inserted
sample. The length (white arrows) between input fiber and sample
is measured by looking at the fiber’s reflection on the sample sur-
face, not to be mistaken for the transmission fiber (red arrow). The
measured distance is thus roughly twice the distance of the WL mea-
surement (displayed bottom right). (b) Relative (blue) and absolute
(orange) deviation between the visually and spectroscopically mea-

sured values.

7.2 High Finesse Operation and Static Optomechanical In-
teraction

Having aligned the system, we are now interested in the viability of our sample for
high finesse optomechanics. As pointed out in section 2.3.1, even moderate levels of
scattering losses and absorption in the membrane have a big impact in such a system
and quickly lead to a complete loss of the cavity signal. While hBN is predicted
to show low levels of absorption [69] and has recently been placed inside a high
finesse cavity [70], cleanliness and surface quality of the sample can still play a major
role. We again perform scans of the sample in the x-y plane while also scanning the
cavity length. The simultaneous scanning of the cavity length is performed over
more than one FSR to record a long range cavity spectrum as in Fig. 4.1. For these
measurements, the membrane is positioned close to a node in the cavity field, where
the losses should be minimal. We then plot the minimal signal in reflection and
the maximal signal in transmission in Fig. 7.4 (a) and (b), which corresponds to the
highest observable cavity signal in both cases.

While not useful in reflection, due to the constant maximal signal, we can adjust
the gain of the transmission detector to boost the signal when it drops to lower levels.
This adjustment is done automatically throughout the scan, the order of magnitude
of this gain is shown in (c). Note that due to this gain adjustment, (b) is plotted using
a logarithmic scale while (a) is shown on a linear scale.

The empty hole on the bottom right of each scan serves as a reference for the
undisturbed cavity signal; ideally, we would hope to reach a similar signal through
the hBN drum, signifying minimal losses. The broad bright (dark) regions in the re-
flected (transmitted) signal show areas where the cavity signal is largely lost. Here,
scattering losses are high due to edges in the sample topography. While these re-
gions are centred around thin features such as flake boundaries or hole edges, they
are broadened due to the waist size of the cavity field. We see a rather sharp con-
trast, implying that even if the edge is only present in the outer parts of the Gaussian
mode profile, the cavity signal is lost. Even though the gain is adjusted to the high-
est possible value, as indicated by the bright regions in (c), no signal is present in
transmission in these regions.
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(a) (b) (c)

FIGURE 7.4: Sample scan covering the same region of the sample as
in Fig. 7.1, but with the NIR laser (i.e., high finesse operation). Shown
is the peak cavity signal in a scan of the cavity length over more
than one FSR. Since the cavity signal is a dip in reflection (a) and a
peak in transmission (b), the color is inverted between the two maps.
The gain setting of the transmission diode is automatically adjusted
throughout the measurement the order of magnitude of the gain is

shown in (c).

While we generally observe a reduction in signal outside of the empty hole and
away from boundaries, there are areas on both the Si3N4 membrane and the hBN
drum that reveal high signal levels. Notably, the gain is lowered to the same value as
for the empty hole in the middle of the hBN drum. This shows that the loss in signal
does not exceed one order of magnitude, a manageable change in signal. We also
observe a high signal in the area to the top right, where we measure through Si3N4
and hBN, and on the bottom left of the scan, where we measure through only Si3N4.
This indicates that the hBN drum does not appear to cause larger losses compared
to the Si3N4 membrane. This is a good sign considering Si3N4 is a well established
material in the optomechanics community, not only due to its mechanical properties
but also because it causes low optical losses [51, 201].

We can now perform cavity scans covering a length corresponding to several FSR
for different sample positions along the cavity axis z. Like this, we can experimen-
tally reproduce maps as shown in Fig. 2.10 and fig. 2.12, mapping the static effect of
the membrane on the cavity’s resonance length. The result is shown in Fig. 7.5.

We perform these measurements through the empty hole, through the Si3N4
membrane, and through the hBN drum, where we observed high levels of signal
before. In these measurements, the cavity length is kept at 20 to 25 µm. We only
show the transmitted cavity signal since the reflected signal is complementary and
reveals no additional insights, but has higher levels of background noise. We expect
different levels of interaction for each of these measurements due to the different
reflectivities of the materials (or lack thereof). The measurement through the hole
mostly serves as a check that the system behaves as intended; naturally, the sample
position along z should not have any effect on the cavity spectrum in this case. We
observe the expected horizontal lines corresponding to the fundamental modes of
the cavity spaced by the FSR, highlighted by the white arrows in Fig. 7.5. We also
observe a slight non-linearity at the edge of the scan, which we attribute to non lin-
ear piezo motion. We will exclude this interval of the data in our following analysis.
We can also see some fainter features that correspond to higher order modes of the
cavity, highlighted by green arrows in Fig. 7.5 (a).

The measurement performed through the Si3N4 membrane (b) and the one through
the hBN drum (c) share similar qualities. The main difference is the smaller mod-
ulation in the case of the Si3N4 membrane, which is expected due to a difference
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(a) (b) (c)

FIGURE 7.5: Cavity scans covering several FSR for different sample
positions, only the cleaner transmission signal is shown. The funda-
mental cavity resonances reveal themselves as narrow lines (white ar-
rows) while some higher order modes also appear to be visible (green
arrows). The measurement is performed through the hole (a), the
Si3N4 membrane (b) and the hBN drum (c), revealing different lev-
els of interaction between membrane and FFPC. The bright vertical
stripes are due to an increase in the gain setting of the photodiode

and indicate regions with a lower cavity signal.

in reflectivity. While the hBN drum has an estimated reflectivity of |rm|2 = 0.225
at λ = 920 nm according to Eq. 2.58, the Si3N4 membrane only has a value of
|rm|2 = 0.08. From our data, we not only see the periodic modulation of the cav-
ity resonance length as a function of the sample position, but we also notice the
asymmetric shape of the two slopes as predicted in Fig. 2.10 (b), due to the fact that
we only move one cavity mirror.

We further observe changes in signal strength as a function of the sample posi-
tion. These changes are difficult to observe in the graphs due to the narrow linewidth
of the cavity, but the gain of the transmission photodiode gives a clear indication.
The brighter shaded vertical stripes in Fig. 7.5 (b) and (c) correspond to higher levels
of background, which is a result of the higher gain setting, and thus correspond to a
lower cavity signal in transmission. These areas match the regions that are predicted
to show high levels of scattering losses according to the beamsplitter model intro-
duced in section 2.3.1 (Fig. 2.12), being the regions where a higher field is present
within the membrane.

From these measurements, we can also extract both the frequency pull parameter
G as well as the dissipative interaction of the system. The latter becomes accessible
when fitting each cavity spectrum, i.e., each vertical line in Fig. 7.5, and fitting the
cavity lineshape to extract the linewidth, as we did in chapter 4. An increase in
linewidth corresponds to a higher dissipation in the system. Similar to the frequency
pull parameter G, we can quantify this effect with a parameter Gκ in units of GHz ·
nm−1 as well.

In Fig. 7.6, we show the extracted values for the measurement through the hBN
drum. For each vertical line, we use a peak finder to extract the peak positions of the
fundamental resonances; the resulting positions are plotted in (a) for one of the three
observable fundamental cavity modes in Fig. 7.5. Since the scan covers several FSR,
we can easily obtain the normalized cavity detuning ∆LCav/LFSR or ∆ωCav/ωFSR.
We fit this data with a model corresponding to Eq. 2.65, shown in orange in Fig. 7.6
(a). However, we replace the sample position zm with a function f (zm) that includes
a scaling factor zV and an exponent νNL.
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FIGURE 7.6: Values extracted from the measurement shown in Fig. 7.5
through the hBN drum. (a) Modulation of the cavity resonance length
due to the sample position, normalized by LFSR. Fit according to
Eq. 2.61 in orange. (b) Extracted frequency pull parameter (Eq. 2.66)
by taking the derivative of (a), note that the red line is the derivative
of the fit in (a) and not a fit itself. (c) Linewidth (finesse) of the cavity
as a function of sample detuning. (d) Dissipative coupling obtained

by taking the derivative of (c).

f (zm) = zV(zm)
νNL (7.1)

The purpose of the scaling factor is to convert from the voltage detuning to units
of length normalized by λ/2, as used in Fig. 7.6. The exponent νNL is necessary to
account for the non-linear motion of the piezo, a problem already observed e.g. in
Fig. 4.1. This νNL is left as a free parameter and is adjusted by the fit to a value of
∼ 1.25.

In Fig. 7.6 (b), we show the derivative of the data points in (a) as well as the
derivative of the fit function itself in red. From this, we can estimate a maximal
frequency pull parameter |G|/2π of 30 GHz. It is important to note that since we
perform this measurement by detuning one of the cavity mirrors, the observed fre-
quency pull parameter shares the asymmetry of the signal in (a). This asymmetry
affects the slopes of the signal and thus the magnitude of G, effectively leading to
an increase in the |G| on one side and a decrease on the other side of the signal. A
measurement based, e.g., on the laser frequency would not show such an effect and
would result in a different maximal value of G.

The extracted linewidth and finesse are shown in Fig. 7.6 (c). We have removed
outliers where the identification and fitting of the cavity resonance failed. This leads
to a gap in the middle of the graph corresponding to the area with the lowest signal
in Fig. 7.5. As the trend surrounding this gap indicates, the linewidth appears to
increase towards this gap, as expected in an area with higher losses. Apart from this
area, we can maintain a linewidth of around 2 GHz.

In Fig. 7.6 (d), we extract a dissipative coupling parameter Gκ by taking the
derivative of the data in (c). Due to the difficulty of evaluating the interval where
the broadening of the cavity linewidth is the strongest and the noise in the data in
(c), a clear trend is hard to observe.
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FIGURE 7.7: We compare the frequency shift (blue) and the frequency
pull parameter G (orange) in the experimental reference frame (a)
where only one cavity mirror is moved, and in the symmetric refer-
ence frame (b), where both are moved around the central membrane
position. The graphs are based on the analytic expressions given in
section 2.3 using parameters in line with our experiment (λ = 920 nm,
|rm|2 = 0.225 and LCav = 20 µm). We see that the maximal value of G

is around a factor of 2 lower in the symmetric case.

To estimate the value of G in the symmetric case, which is more in line with
commonly cited values in literature, we compare the two analytical expressions for
the different scenarios given in section 2.3. In Fig. 7.7 (a), we plot the resonance
shift of our MIM-FFPC system according to Eq. 2.65, where only one cavity mirror
is displaced. This model is equivalent to the fit in Fig. 7.6 (a), except for the afore-
mentioned non-linearities of the piezo. In (b), we plot Eq. 2.61, corresponding to
the symmetric case, using the same parameters as in (a). In both cases, we take the
derivative to extract a value of G, shown in orange. In the symmetric case, we find a
maximal value of |G|/2π = 15 GHz · nm−1, which is approximately a reduction by
a factor of 2 compared to the asymmetric case.

Since we have characterized our mechanical resonator in depth in chapter 6, we
are well equipped to estimate the resulting optomechanical single photon coupling
strength g0 as defined in Eq. 2.66. For the fundamental mode of this hBN resonator,
we can estimate an upper limit for the coupling strength of g0/2π = 460 kHz, based
on the highest value for G in the asymmetric measurement. For the symmetric case,
we can expect a value of g0/2π = 230 kHz, according to the conversion shown in
Fig. 7.7.

To estimate not only the values achievable with this hBN drum device but for
other similar devices, we explore the optomechanical coupling strength as a func-
tion of drum diameter and thickness in Fig. 7.8. In (a), we first plot the zero point
fluctuations of the drums estimated using Eq. 2.9, where we compute the resonance
frequency for the fundamental mode according to Eq. 2.14 and the effective mass
with Eq. 2.18. The value of G given in (b) was obtained as in Fig. 7.7, assuming the
symmetric case. Combining these two values then gives the single photon coupling
strength in (c).

We see that the zero point motion is maximized for small and thin devices. While
such small devices might not have the lowest resonance frequency, the reduction in
effective mass appears to be the key property. The frequency pull parameter G,
on the other hand, requires high reflectivity and thus favors a much larger drum
thickness. For even thicker drums, the reflectivity is then again reduced, leading
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FIGURE 7.8: Shown are the zero point fluctuations (a), the maximal
frequency pull parameter G (b) and the resulting single photon cou-
pling strength g0 (c) for different drum diameters and thicknesses.
The estimations are based on the symmetric reference frame for G.
The maximal value of g0 is displayed in (c) and is achieved for a drum

diameter of 10 µm and a hBN thickness of 27 nm.

to the darker region at the right edge of the graph. This, in conjunction with the
opposing trend seen in the magnitude of zero point fluctuations, leads to a maximal
g0 between a drum thickness of 20 and 60 nm, depending on the drum diameter, as
seen in (c). While smaller drum diameters appear to be advantageous, the effect is
rather modest compared to the thickness. We can also observe that for large drum
diameters, the highest coupling g0 tends towards slightly thicker drums, which is
especially obvious when following the contours.

We can deduce that the parameters of the device presented here are already close
to optimal, especially considering that much smaller drums than the lower limit of
10 µm assumed in Fig. 7.8 (c) would lead to clipping losses and degrade the cavity
signal. The maximal coupling within the displayed parameter space is g0,max/2π =
298 kHz, and would be achieved with a drum diameter of 10 µm and a thickness of
27 nm. For a drum diameter of 30 µm, as the hBN drum used for the measurements
shown here, the highest value would be g0,max/2π = 257 kHz with a drum thickness
of 42 nm, close to the 48 nm of our device.

7.3 Dynamical Measurements and Optomechanically Induced
Transparency

We now move on to measurements where we do not look at a static offset caused
by the position of the membrane but instead at the dynamic interaction of the FFPC
and the motion of the hBN drum. We first lock the cavity on resonance with the
hBN drum in the middle of the cavity, employing the PDH feedback scheme used in
section 4.2. We can then observe the fundamental mode of the hBN drum resonator
with the LI-A, similar to the measurements with the RT interferometer in chapter 6
(e.g., Fig. 6.1), but using our cavity instead of the interferometer. Such a measure-
ment is shown in Fig. 7.9.

Locking the cavity like this is much more challenging compared to the empty
FFPC due to the additional noise and losses introduced by the membrane. While the
lock quality in this state is not as good as in chapter 4, it is sufficient to perform more
complex measurements.

To observe OMIT, we require several input tones to perform a pump-probe mea-
surement, as outlined in section 2.3.2. We generate these tones by applying a phase
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FIGURE 7.9: Thermal motion of the fundamental mode of the hBN
drum measured using the FFPC. The signal is recorded using the LI-

A while the cavity is locked.

modulation with our EOM (see section 3.1.3), using a similar measurement proce-
dure as in [198, 202]. An overview of the involved resulting frequency components
is shown in Fig. 7.10.

4 3 2 1 0 1 2
Frequency/

PDH m

Cav

Laser

FIGURE 7.10: Overview of the different frequencies that are involved
in the OMIT measurement. The central laser is shown in blue, and
the two sidebands for the PDH locking scheme are shown in green.
One of the sidebands is locked to the cavity, representing our pump
tone, with mechanical sidebands shown in orange. The probe tone
shown in red is an additional sideband obtained by phase modulation
from the main laser tone, but we define its frequency detuning Ω with

respect to the pump.

As a starting point, we always employ our main laser tone (shown in blue) with
sidebands (green) spaced by ∆PDH for our PDH locking scheme. These sidebands
are spaced by several GHz to separate them from the main cavity peak. Unlike
before, we now lock one of the sidebands of the cavity instead of the central peak.
We furthermore use the angle error signal instead of the regular PDH error signal, as
shown in Fig. 2.8. As discussed in section. 2.2.3, this is only an option when locking
on a sideband and is preferable due to the larger usable interval of the error signal
and the robustness against changes in laser power.

Regarding the different tones shown in Fig. 7.10, we use the sideband as our
pump, while the main laser tone and the other sideband are off resonance with re-
spect to the cavity. This allows us to scan a second probe tone (red in Fig. 7.10),
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which is also obtained via phase modulation from the central laser, over the entire
cavity resonance (χCav). The pump can be detuned from the cavity by changing
the setpoint of the lock; this detuning is shown as ∆ in Fig. 7.10. Such a measure-
ment setup is in contrast to a measurement procedure where the probe is produced
by modulating the pump tone directly (e.g., as in [141]), potentially leading to two
sidebands within the cavity envelope.

The stronger pump tone produces sidebands through its interaction with the me-
chanics at ±ωm, shown in orange. The OMIT signal is obtained when the probe is
scanned around this region and interacts with a mechanical sideband, leading to
a transparency window superimposed on the cavity response given by χCav. The
shape of this transparency window is determined by the mechanical susceptibility
χm modified by the optomechanical interaction. As such, a fit with the model pre-
sented in section 2.3.2 should be able to characterize many of the parameters of the
system, many of which we have already characterized by other means and can use
for comparison.

It is important to note that in our case, κ ≫ ωm, and while we are able to keep ∆
reasonably stable compared to the cavity linewidth κ, we cannot stably set the cavity
detuning with respect to ωm as in [141], where OMIT was also measured in the unre-
solved regime. However, the frequencies of all the tones shown in Fig. 7.10 are stable
with respect to each other, given that they are derived from the same source. This
still allows us to observe their interaction around ωm and thus the OMIT feature.
We use the VNA to produce the probe tone and record the signal, and we define the
probe tone frequency Ω with respect to the pump tone (i.e., we subtract the offset
from the main peak ∆PDH). In this configuration, the noise in ∆ affects the measure-
ment by its influence on the optomechanical spring and damping effect, as well as
by modulating the overall signal since our probe tone measures χCav(Ω + ∆).
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FIGURE 7.11: OMIT measured as a response using the VNA. The
dip caused by the interaction with the mechanical resonator is visible
close to ωm, the cavity lineshape is much too broad to be observed
on this scale. The free parameters of the fit are listed and are in good
agreement with the system parameters established in chapter 4 and
chapter 6. The measurement was taken with the sample close to a

node of the cavity field and an input power of 20 µW.
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A measurement revealing a clear OMIT feature is shown in Fig. 7.11, where the
much broader cavity response only appears as a constant background signal. Since
the effect of the thermal motion of the drum on the cavity resonance frequency (given
by the product of xth and G) approaches the value of κ for our maximal |G|/2π =
15 GHz · nm−1, it is not trivial to keep the cavity lock stable. We tend to avoid this
issue by positioning the hBN drum closer to the node of the cavity field, where the
system experiences a more moderate coupling strength.

Because the coupling efficiency of the optical input is on the order of a few per-
cent, the photon number in the cavity is only around |α|2 = 650. The number of
photons is estimated from the input power in a similar way as in section 4.2.3, but
since we are locking using the PDH sideband, the number of photons is further re-
duced by the ratio between the main peak and the sidebands. This shows that we
can observe the OMIT effect at very low power.

The fit shown in Fig. 7.11 is performed according to the model developed in sec-
tion 2.3.2, but since we measure the signal with the VNA, it appears as a peak with
the OMIT feature as a dip. This is because the modulation of the VNA is applied as
a phase modulation to the laser, which in turn is transduced into an intensity mod-
ulation by the cavity that can be measured by the detector. When off-resonant with
the cavity, the phase modulation is not transduced into an intensity modulation, and
the typical constant signal when measuring a cavity in reflection is absent [198].

We further include a scaling factor to match the signal level outside of the OMIT
dip to the model, given by the regular cavity response χCav. Aside from this addi-
tional parameter, we use the cavity detuning ∆, the linewidth of the cavity κ, the
frequency pull parameter G, as well as the mechanical resonance frequency ωm as
fit parameters. Other parameters, such as the effective mass m∗ and the mechanical
linewidth Γm are kept fixed, and we use the values characterized in earlier chapters.
We in particular keep G and ∆ and κ as free parameters since they are critical for the
shape of the OMIT signal, and we do not have a good calibration for these quantities
since they are either unstable (∆) or rely heavily on the exact sample position (G and
κ). The mechanical frequency, on the other hand, is detuned by the optomechanical
spring effect and heavily affected by temperature, making it difficult to give a pre-
cise estimation. This prompted us to leave it as a free fit parameter as well. On the
other hand, the mechanical linewidth Γm and the effective mass of the fundamental
mode m∗ were carefully measured in chapter 6 and should not significantly change.

The resulting values shown in Fig. 7.11 are in agreement with the system param-
eters we observed before. We set the lock setpoint to 1

4 of the maximal angle error
signal. According to Fig. 2.8, this should result in a detuning of about κ/4, in close
agreement with the observed value. The linewidth is within the range shown in
Fig. 7.6 (c), even though a precise comparison is difficult due to the large spread in
values. The lower G is in line with our intention of measuring closer to the node
of the cavity field, where the system is more stable. Finally, the mechanical reso-
nance frequency only slightly deviates from the values measured in chapter 6, and
is within the deviations due to temperature that we observed before.

A notable difference between the fit and the data in Fig. 7.11 can be observed re-
garding the depth of the OMIT feature. We are currently uncertain about the origin
of this discrepancy. It is possible that the model used here is incomplete and does not
include some effects, as, for example, pointed out in [179, 180], where an increased
depth of the OMIT dip in the deep unresolved sideband regime is predicted. At
the same time, further measurements are necessary to rule out improper calibration.
In particular, the measurement chain involving the VNA and the microwave elec-
tronics is difficult to characterize since a calibration in our current setup requires the
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cavity as a transducer. Like this, it is difficult to differentiate the broad cavity signal
from background noise originating from other sources.

In Fig. 7.12, we repeat the measurement for different input powers (a) and mem-
brane positions (b). Both parameters affect the effective optomechanical coupling
strength since G depends on the sample position and the coupling strength g is
scaled by |α| compared to g0. This results in similar behavior for both measurement
series, where the OMIT feature becomes more pronounced.

The detuning ∆ is kept at around −κ/4, as in Fig. 7.11. In (a), the sample is
detuned by 30 mV from the cavity node (see Fig. 7.5), while in (b), the input power
is kept at around 20 µW. Since the measurement shown in Fig. 7.11 is the same as
the one shown in Fig. 7.12 (a) for 20 µW, we can assume similar values as shown in
the fit. However, for Fig. 7.12 (b), the sample position will have a large effect on both
G and κ.
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FIGURE 7.12: (a) OMIT measurement as a function of input power.
The data sets are offset for clarity, the dashed lines indicate the zero
level of each measurement. (b) OMIT measurement as a function of
sample position along the cavity axis. At 0 mV, the sample is posi-
tioned at the node of the cavity field, corresponding to no optome-
chanical coupling. With higher voltages applied to the piezo, the
sample is moved towards the antinode. However, even at 50 mV, the
sample is still relatively close to the node, and we expect a moderate

coupling.

In (a), the OMIT feature is barely observable at low optical input powers. When
the power is increased, a clear dip manifests with increasing contrast. A slight shift
in frequency towards lower |ωm| can also be observed with an increase in input
power. The contrast of the dip appears to approach 100%, resulting in an even more
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drastic deviation from the model used to fit Fig. 7.11 and motivating further inves-
tigation in the future. When detuning the sample position in (b), we begin at the
node of the cavity field (0 mV) where there is essentially no coupling (G = 0) and no
dip can be observed. Moving away from the node of the cavity field, a clear OMIT
feature can once again be observed. Here a more drastic shift towards lower |ωm|
appears to take place.

Both the spring effect δωm and the damping effect δΓm are proportional to the
coupling strength g2, and as such a shift in resonance frequency is expected. Unfor-
tunately, we do not currently have access to temperature stabilization in the cavity
probe at room temperature, and the resonance frequency ωm of our hBN drums is
very sensitive to temperature changes. It is difficult to disentangle drifts due to the
temperature from the optomechanical interaction. To give the reader an idea of the
expected frequency shift due to δωm, we plot Eq. 2.86 as a function of the photon
number |α|2 and G in Fig. 7.13. We also plot Eq. 2.87, the optomechanical damping
effect, for completeness.
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FIGURE 7.13: Optomechanical spring effect (blue) and optomechani-
cal damping (orange) as a function of photon number |α|2 (a) and as

a function of frequency pull parameter G (b).

The graphs in Fig. 7.13 assume similar parameters as the ones we established in
Fig. 7.11. In general, we expect deviations on the order of a few kHz which amounts
to changes below 1% of ωm, this can explain some of the frequency shifts in Fig. 7.12.
However, when attempting to fit the different datasets, we cannot assume a consis-
tent ωm across the different measurements, indicating that the temperature drift can-
not be ignored. This is especially obvious when comparing the average frequency
between Fig. 7.12 (a) and (b), which are drastically different even for measurements
where the optomechanical coupling would be rather low.

This measurement nonetheless illustrates our ability to perform dynamical op-
tomechanical measurements with our MIM-FFPC system and showcases the viabil-
ity of hBN as a material for cavity optomechanics. We achieve very high coupling
strengths due to the miniaturization of both the cavity and the mechanical resonator.
OMIT in particular can be the foundation for further exotic phenomena [143], as for
example the generation of slow light [141]. It also allows us to determine many pa-
rameters of the system that would be difficult to access without moving the sample,
such as ∆ or G. It further provides an alternative way to characterize the mechanical
properties with our cavity setup instead of the interferometric measurements shown
in chapter 6.
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Chapter 8

Conclusion and Outlook

In this thesis, we have presented and characterized an optomechanical membrane-
in-the-middle system based on a fiber-based cavity and a hBN drum resonator. Re-
garding the optical cavity, we have demonstrated a fiber-based design that combines
high finesse, stability, tunability, and cryo-compatibility. We have employed and in-
troduced different techniques to utilize this system, some of which are notable im-
provements over existing protocols. First, a precise white light spectroscopy proce-
dure that allows us to characterize not only the cavity length but also the position of
a membrane in the middle of the cavity. This is especially important when pushing
cavities to the micro scale, and when integrating them into cryostats, where visual
access is often limited. Second, measures to improve the passive mechanical stability
and active PDH stabilization allowed us to lock the cavity length to a reference laser.
This resulted in a stability much better than the cavity linewidth κ, corresponding to
only 3 pm at room temperature and 5 pm at 4 K, while maintaining the tunability of
the system. The FFPC can also maintain a finesse as high as 104 over a large range
of cavity lengths.

The hBN drum devices presented show excellent mechanical properties when
compared to other similar devices and exhibit mode shapes that are consistent with
theory up to high mode orders. We believe that the most important reason for this
good performance is a combination of the fabrication procedure and the high stress
Si3N4 substrates. The wet transfer technique allows the flakes to gently settle onto
the substrate, avoiding inhomogeneous stress in the drum and maintaining its ideal
mode shape. The high stress Si3N4 membrane avoids hybridization with the fun-
damental hBN drum mode, and if hybridization takes place, the high quality of the
Si3N4 membrane does not cause a detrimental effect on the mechanical properties.
While the thickness does not appear to have an effect on the Q of similar devices [43,
44, 46, 60, 93], there may be a positive effect due to the large drum diameter of our
drums [181]. Another factor that is known to influence Q is the tension [164], which
we estimate in our samples to not be any higher compared to similar published work
[44, 45, 80]. This analysis is supported by recent measurements, where we tune the
temperature of the devices, as shown in Fig. 8.1. This not only allows us to tuned the
hybridization between the two resonators as in [171, 172], but also lets us affect the
stress of the hBN membrane. Like this, we were able to lower the stress until the ob-
served mode shape distorted and the mechanical properties deteriorated. We were
also able to significantly increase the stress, recovering the ideal mode shapes. This
increase in tension also leads to a large increase in resonance frequency, but only a
moderate increase in Q.

When characterizing the full MIM-FFPC system, we have demonstrated a large
dispersive coupling of up to |G|/2π = 15 GHz · nm−1, resulting in g0 = 230 kHz for
the fundamental mode of our hBN drum resonator. For hBN, a value of G/2π =
0.4 MHz · nm−1 was reported in [60], while a value of G/2π = 2.5 GHz · nm−1 and
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FIGURE 8.1: Temperature tuning experiments of the hBN device
shown in Fig. 5.13 (b). hBN has a negative thermal expansion co-
efficient, causing an increase in tension at higher temperatures. In (a),
each column shows one mode, and each row is a mode image taken at
a different temperature. Only at slightly elevated temperatures do the
mode shapes match those of a standard circular membrane. (b) Evo-
lution of the resonance frequency of several hBN modes. The Si3N4
modes experience little modification as a function of temperature and
appear as faint vertical lines. Several anti-crossings between the hBN
and the Si3N4 modes can be observed. A minima in resonance fre-
quency appears since the membrane-to-plate transition also depends

on the tension.

g0/2π = 1.2 kHz has been demonstrated in [70]. In systems based on graphene
resonators, reported values are g = 70 Hz in [61] and g0/2π = 0.83 Hz (g/2π =
14 kHz) in [62]. This comparison shows that the coupling achieved in our system
stands out among 2D material based implementations. To further demonstrate the
potential of hBN as a MIM material, we performed OMIT with this system. While
we had to lower the coupling strength in these measurements, the observed value of
|G|/2π = 7.68 GHz · nm−1 still results in a remarkably high single photon coupling
strength of g0/2π = 120 kHz. We plan to further investigate the observed deviations
between our theoretical model and the OMIT measurements.

Moving forward, there are several ways to improve our system. The finesse of
the FFPC is currently limited by the fiber mirror coating, which is designed for a fi-
nesse of 1.5× 104. The fabrication of new fiber mirrors with an ultra-low-loss coating
should lead to a reduction in the linewidth of the empty cavity from κ/(2π) ≈ 500
to 50 MHz and, consequently, to an increase of the finesse by an order of magnitude.
The bandwidth of the active stabilization is partially limited by the low-frequency
cantilever mode of the overhanging fiber mirrors. By slightly modifying the design
of the fiber supports, this overhang can be drastically reduced, leading to improved
active stabilization. Given the current performance of the stabilization, we expect to
be able to reliably lock a cavity with a finesse of around 105, while maintaining all
other advantages of the system.

While the gain in Q does not outweigh the increase in m∗ when estimating the
sensitivity of our hBN devices, Si3N4 membranes with higher Q or lower m∗ have
been demonstrated and could make this trade-off more favorable [49, 178]. In par-
ticular, since the placement of hBN on our membranes resulted in only a modest
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drop in Q of the fundamental Si3N4 mode, we are optimistic that hybrid modes
with much higher Qs are feasible. It was demonstrated theoretically and experimen-
tally that hybridization can increase thermally limited sensitivity in a similar system
[171], which, together with the temperature control showcased in Fig. 8.1, would
improve the estimated sensitivity of the devices further.

The ongoing miniaturization of mechanical systems in an effort to increase their
sensitivity and approach the quantum regime causes cavities to follow suit, to in-
crease coupling strength, and exhibit a sufficiently small mode volume. The system
presented here is one such example that shows remarkable performance. We have
achieved a strong optomechanical interaction reaching values observed in whispering-
gallery mode resonators [24, 182] or photonic crystal cavities [27, 28, 183], while
maintaining the open and flexible design of a Fabry-Perot cavity. The unresolved
sideband regime often becomes unavoidable in these endeavors, and many new
measurement protocols have been developed with this in mind. Among other ex-
amples, sensing of the mechanics approaching the quantum limit [3], cooling the
mechanics close to the quantum ground state [137], even from room temperature
[184], or achieving exotic phenomena such as slow light with OMIT [141] has been
demonstrated experimentally. Further new measurement protocols for improved
sensing and cooling schemes in the unresolved sideband limit are continuously pro-
posed [138–140], some of which could be explored with our system.

Hybridization of a Si3N4 resonator with a 2D membrane can also boost its mo-
tional amplitude, allowing for larger optomechanical coupling in a cavity or giv-
ing access to non-linear mechanical effects such as signal amplification and noise
squeezing [47, 172, 174]. This highlights the potential of the presented hybrid device
to further increase the performance of Si3N4 based MIM optomechanics.

We see the presented hBN devices not only as interesting mechanical systems by
themselves but as a platform for further experiments. The fact that other 2D materi-
als can be combined with our hBN drum resonators, using the hBN as a mechanical
element and for encapsulation, opens up countless avenues. In addition, hBN itself
can host defects that serve as single photon emitters [167]. The ability to study high-
Q mechanical modes in a variety of 2D materials opens possibilities for studying
their mechanical properties, for strain coupling to embedded quantum emitters, or
even for measuring the magnetic properties of 2D materials via the magnetic torques
and forces acting on 2D magnets encapsulated in suspended hBN drum resonators.

Because of its high sensitivity and versatility, the FFPC platform introduced here
is also suitable for studying a broad range of other nanomechanical resonators, in-
cluding silicon carbide nanowires [59], nanowires with embedded emitters [104],
carbon nanotubes [58], or functionalized membranes [185].
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Appendix A

Constants for eigenvalues of the
circular plate under tension

Here we give the constants αmn, βmn, ηmn and γmn used in Eq. 2.15 to calculate the
eigenvalues of the drum modes. The values are taken from [128] and are for the first
15 modes, assuming a clamped circular plate under tension. Note that we have kept
the naming scheme of the mode number consistent with [190], as in Fig. 2.3, where
n > 0.

(m,n) α β η γ

(0,1) 5.7832 10.215 0.1148 0.4868
(0,2) 14.682 21.260 0.0613 0.5273
(0,3) 26.375 34.877 0.0444 0.5334
(1,1) 30.471 39.771 0.0428 0.5315
(0,4) 40.707 51.030 0.0360 0.5307
(1,2) 49.219 60.829 0.0341 0.5282
(0,5) 57.583 69.666 0.0303 0.5284
(1,3) 70.850 84.583 0.0283 0.5265
(2,1) 74.887 89.104 0.0278 0.5260
(0,6) 76.939 90.739 0.0258 0.5278
(1,4) 95.278 111.02 0.0239 0.5271
(0,7) 98.726 114.21 0.0223 0.5290
(2,2) 103.50 120.08 0.0232 0.5268
(1,5) 122.43 140.11 0.0204 0.5296
(0,8) 122.91 140.06 0.0193 0.5316
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Appendix B

Michelson interferometer with
balanced detection

Here we will discuss the working principle of a polarization based balanced Michel-
son interferometer. We assume a plane wave Ein⃗ = Einekz−ωtP⃗ as in our earlier treat-
ment of the simple Fabry-Perot cavity in section 2.2, but now we will also include a
vector for the polarization state P⃗ = aP⃗v + bP⃗h, written in linear polarization basis.
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FIGURE B.1: Sketch of the polarization based Michelson interferome-
ter with balanced detection.

Following the sketch given in Fig. B.1, we start at the input (Ein⃗ ). This input is
split by the first PBS by a ratio ϵ1, which is determined by the polarization state P⃗.
The two split signals travel through the sample arm and the reference arm, respec-
tively, and are then reflected back. We assume the reflectivity of the reference mirror
to be unity, while the sample has a reflectivity of r. The two components will also
acquire phases ϕ and ψ from the sample arm and the reference arm, respectively. We
place a λ/4 plate in each of the two arms to rotate the phase by π/2, so that the light
that was transmitted by the PBS at first is now reflected and vice versa.

After recombining at the PBS, we now have two contributions from the two arms
of the interferometer.

E⃗s+r = E0ekz−ωt[r(1 − ϵ1)eiϕP⃗h + ϵ1eiψP⃗v] (B.1)

Before reaching the second beamsplitter, the two contributions, which are still in
two orthogonal polarization states, need to be mixed. This is done by a λ/2 plate
rotated by an angle θ with respect to the horizontal axis, which can be described by
the following Jones matrix:
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J(θ) = e−iπ/2

(︄
cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

)︄
(B.2)

Since our goal is a balanced detection scheme in which both detectors see an
equal contribution from the sample arm and the reference arm, we choose θ so that

J(θ)P⃗h =
1√
2

(︄
e−iπ/2

e−iπ/2

)︄
, J(θ)P⃗v =

1√
2

(︄
e−iπ/2

e+iπ/2

)︄
(B.3)

This shows that the λ/2 plate not only mixes the signals from the sample arm
and the reference arm, but that it also introduces a phase shift of π in one of the four
terms that contribute to the final signal. This is the reason that the balanced signal
does not average to zero but retains the interference signal. The π shift here replaces
the one in a simple Michelson interferometer due to the beamsplitter, or, to put it in
other terms, we replace the single regular beamsplitter of a Michelson interferometer
with two PBS cubes and a λ/2 plate.

After adjustment of the polarization state, the second PBS splits the signal ac-
cording to ϵ2(P⃗) and we detect a power I =

∫︁
E⃗E⃗

∗
dt on each photodiode of our

balanced detector. We also introduce a factor η characterizing the degree of spa-
tial overlap between the interfering beams on the detectors, which we can adjust
by overlapping the two arms of the interferometer by aligning the reference mirror,
as well as ensuring that the two beam paths are of equal lengths, resulting in equal
beam waists.

The two intensities are thus given by

I1 = Iin(1 − ϵ2)
2η[r2(1 − ϵ1)

2 + ϵ2
1 + 2r(1 − ϵ1)ϵ1 cos(ψ − ϕ)]

I2 = Iinϵ2
2η[r2(1 − ϵ1)

2 + ϵ2
1 − 2r(1 − ϵ1)ϵ1 cos(ψ − ϕ)]

Subtracting the two detected signals to obtain the difference signal and assuming
balanced detection (ϵ2 = 0.5), we get

IB = Iinηr(ϵ1 − ϵ2
1) cos(ψ − ϕ) (B.5)

The phase ψ, originating from the exact distance of the reference mirror, can be
adjusted so that a good contrast can be achieved. To this end, the reference mirror is
mounted on a disc piezo for fine length adjustment, allowing us to span well over
λ/2 in displacement. Assuming that the phase originating from the sample is in the
form of small fluctuations around a constant offset ϕ = ϕconst + δϕ, the condition for
optimal sensitivity is ψ − ϕcont =

π
2 .

It is also noteworthy that there is an optimum for ϵ1 = 0.5, independent of the
sample reflectivity r, assuming that Iin remains constant and is not increased to com-
pensate for the power lost at the sample. This is a reasonable assumption in our mea-
surements since we want to avoid any heating of the sample and thus have to limit
the power. The samples presented in this work are also intended for optomechanics
measurements and are designed to have a relatively high reflectivity.

Finally, we arrive at the following expression for our detected signal:

IB =
1
4

Iinηr sin(δϕ) (B.6)

where δϕ contains the signal of interest.
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