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I. EXPERIMENTAL DETAILS

A. Sample

Our sample consists of low density self-assembled InGaAs/GaAs quantum dots (QDs) grown by molec-

ular beam epitaxy embedded in the intrinsic region of an n-type GaAs Schottky diode (see Fig. S1). The

layers in the heterostructure are:

I. Back gate: 50 nm Si-GaAs, doping n = 1.7× 1018 cm−3

II. Tunnel barrier: 25 nm i-GaAs

III. Active region: InGaAs QDs

IV. Capping layer: 434.3 nm i-GaAs

V. Blocking barrier: 64 periods of 3 nm/1 nm AlAs/GaAs

VI. Top cap: 10 nm i-GaAs

VII. Top gate: 3 nm/7 nm Ti/Au
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FIG. S1. Sample structure. (a) Layer structure of our sample. (b) Associated band structure. Applying a voltage

Vg between top gate and back gate allows the QD energy levels to be tuned relative to the Fermi energy, which is

determined by the n+-doping of the back gate. Here the ground state of the X1− is shown. The lever arm (distance

between top and back gate divided by the thickness of the tunnel barrier) is 28.6.
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FIG. S2. Top view of sample. (a) Shadow masks are used to deposit back contact, top gate and SiO2 spacer layer.

Microwire and markers for positioning the solid immersion lens are fabricated in one photolithography step. We

minimize the overlap of the microwire and the top gate to reduce the risk of electrical shorts. Reducing the area of the

SiO2 layer circumvents adhesion problems. (b) Zoom in on the microwire. A hole in the wire enables optical access

to the QD emission. Triangular markers facilitate the positioning of the sample in the microscope.

To generate the longitudinal radio frequency (RF) field we fabricate a gold microwire directly on the

sample. With a shadow mask we first deposit a 464 nm (= 3
4λ, λ= 950 nm) thick SiO2 spacer onto the top

gate, which serves as an electrical and thermal insulator and as an anti-reflection coating. We then deposit

a 10/200 nm Ti/Au microwire with a photolithography procedure. The wire is 20 µm long, 6 µm wide and

has a 2 µm by 6 µm hole, through which QD emission is detected (Fig. S2). On top of the structure, a ZrO2

solid immersion lens (SIL) (refractive index 2.15) is used to increase the detection efficiency by a factor of

∼ 5. Markers fabricated together with the microwire allow the SIL to be centred precisely. To contact the

back gate we deposit 120 nm AuGe and 10 nm Ni and anneal the sample at 450 ◦C.

B. Set-up

The sample is cooled down to 4.2 K in a helium bath cryostat (see Fig. S3). A superconducting magnet

provides a static field Bz up to 9 T along the growth direction (Faraday geometry).

Initialization and read-out of the nuclear spin polarization is performed optically. We use resonant

excitation of the X0 transition which leads to the creation of a single electron-hole pair with no excess

carriers. The resonance fluorescence is detected with a confocal dark-field microscope [1]. At Bz = 0 T, the

ultra-high quality of the sample is revealed by the small measured linewidth of 1.2 µeV, close to the ideal

transform limit of ∼ 0.9 µeV (see Fig. 2 of main paper). At Bz = 6 T sweeping the laser energy across the

© 2014 Macmillan Publishers Limited. All rights reserved. 
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FIG. S3. Experimental set-up. The sample is mounted on a stack of X/Y/Z-piezo positioners and held at T = 4.2 K.

Polarizing beam splitters (PBS), a polarizer and a quarter wave plate (λ/4) within the resonance fluorescence head

enable high quality cross polarization between detection and excitation. A spatial filter in front of the single photon

avalanche diode ensures a low dark count rate of ∼ 10 counts/s. AWG 1 controls the laser intensity (via an AOM

setup) and the laser detuning by sweeping the gate voltage. AWG 2 generates the the chirped RF pulses which are

then sent to a current amplifier (AMP). High pass (HP) and low pass (LP) filters eliminate any unwanted noise and

attenuators (AT) are used to adjust the amplitude. The signal is then sent through a splitter which induces a 180 ◦

phase shift between the different arms, thereby minimizing the electric field at the wire.

blue Zeeman transition of the X0 leads to dynamical nuclear spin polarization via the so called “dragging

effect” [2, 3]. The result is a characteristic flat-top spectrum. In practice, the detuning is achieved by

sweeping the voltage applied to the gate,Vg. For the X0, the Stark shift amounts to 0.447± 0.002 µeV/mV.

Two arbitrary waveform generators (AWGs) control and synchronize the experiment. The first one

controls the voltage applied to the gate, as well as the laser intensity via an acousto-optic modulator (AOM)

double passage set-up. The second one generates chirped pulses at radio frequencies. Its 512 MB internal

memory allows for a maximum pulse duration of 1.3 s at a maximum sampling rate of 200 MHz. The

© 2014 Macmillan Publishers Limited. All rights reserved. 
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output voltage is sent to a RF amplifier and corrected for the frequency dependent gain of the amplifier.

High pass (HP) filters at 25 MHz and low pass filters (LP) at 150 MHz eliminate possible noise. The signal

is then split into two co-axial cables of the same length which go down into the cryostat. The last ∼ 5 cm

of the connection is made by a twisted pair. In one arm, the phase of the signal is shifted by π to avoid

electric fields at the microwire which could influence the QD signal via the Stark effect. The DC-resistance

measured at the top of the cryostat is R = 3.5 Ω. The amplitude of the output voltage at the top of the cryostat

is measured over a 50 Ω resistance and kept at Vµwire = 10 V for all data presented in this work.

We sometimes observe random “rigid” shifts in the QD spectrum. For high voltages (Vµwire ≥ 12 V)

these shifts become disruptively large (up to 100 µeV to both higher or lower energy). We attribute these

rigid shifts to a reorganisation of the defect charges in the vicinity of the QD. Importantly, our read-out

technique allows us to distinguish between the these rigid shifts and the nuclear spin effects. In particular,

the Overhauser shift is measured by the width of the dragging plateau which does not depend on the absolute

frequency of the QD resonance. The data in Fig. 2 are corrected from these rigid shifts.

II. SUPPORTING EXPERIMENTAL RESULTS

A. Depolarization procedure

In order to randomize the QD spin ensemble, we use a series of short pulses whose frequencies cover the

whole 55 MHz bandwidth spanned by the QD nuclei at Bz = 6 T. After a few minutes, the system reaches

a stationary state, which corresponds to complete depolarization of the sample. This is reported in Fig. S4,

where we plot the dragging plateau width as a function of the number of cycles. Before each measurement

the system is initialized by dragging the QD transition from the blue, as described in the main article. The

pulse duration is set to 4µs, with a repetition rate of 25 kHz.

B. Nuclear-spin lifetime

A measurement of the nuclear spin relaxation in the lab frame shows that, after 22 hours, less than 30%

of the initial polarization has relaxed (Fig. S5). The T1 time of the nuclear spin ensemble clearly exceeds

one day (we note that the decay is not a simple exponential). This extremely long decay time arises as a

consequence of the suppression of nuclear spin diffusion into the bulk due to the strained environment of

the QD [4] and the low temperature. Hence we can neglect relaxation on the time scale of our experiments.

© 2014 Macmillan Publishers Limited. All rights reserved. 
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FIG. S4. Randomization of the QD nuclear spin ensemble. The randomization signal is obtained with current

pulses in the wire at 25 kHz, with a duty cycle of 10% (see inset). The frequency is swept over 55 MHz to cover the

complete bandwidth spanned by the QD nuclear spins. After ∼ 600 s the system reaches a stationary state.
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FIG. S5. Nuclear spin relaxation in the laboratory frame. The change in Overhauser shift following the decay of

nuclear spin polarization is extremely slow and can be neglected on the few minute time scale of our experiments.

C. Measurement of Rabi oscillations and estimate of Bx

In order to estimate the magnitude of the radio frequency (RF) transverse magnetic field Bx produced

by the microwire used in our optical experiments, we performed nutation measurements using a similar

microwire in a magnetic resonance force microscope (MRFM). Using the method described in Poggio et

al. [5], we measure the transverse field experienced by an ensemble of ∼ 106 115In spins 350 nm from the

microwire. These spins are contained within an InP nanowire in a 6 T magnetic field at a temperature of

© 2014 Macmillan Publishers Limited. All rights reserved. 

 



7

1 µm 

FIG. S6. Nutation measurement for 115In at T = 1 K. (a) SEM micrograph of the 260 nm thick Au microwire with

integrated FeCo tip used in the MRFM measurements. The microwire is 900 nm wide and 2.87 µm long. The structure

is patterned on a Si chip. (b) Resonant force noise from 115In spins (points) is measured as a function of pulse length

according to the protocol described in [5]. A frequency of 233 kHz is obtained from a decaying sinusoidal fit (solid

line) to the Rabi oscillations, resulting in Bx = 50 mT.

1 K. The experiment is carried out with an adiabatic rapid passage pulse protocol similar to the one used

in the optical experiment at a carrier frequency of 57.25 MHz. To contact the microwire similar lengths of

exactly the same type of coaxial lines and twisted pairs are used. Identical hardware is used to generate,

split and filter the chirped pulses.

As shown in Fig. S6, the microwire in the MRFM generates 50 mT of transverse magnetic field (25 mT

in the rotating frame). The amplitude of the drive voltage measured across 50 Ω at the same point at the top

of the cryostat for the MRFM and the optical experiments is 8.5 Vp-to-p and 10 Vp-to-p, respectively. Also,

the geometry of the microwire in the MRFM differs from that used in the optical experiment, as shown in

Fig. S6. Finally, the spin ensemble in the MRFM is located 350 nm above the microwire, while the QD in

the optical experiment lies 1.17 µm below the microwire. By taking these differences into account, we use

the magnitude of the transverse field measured by MRFM to estimate the field produced at the QD location

in the optical experiment. In particular, these differences result in different currents passing through the

two microwires and in different distances between the detection volume and the respective RF current. By

approximating the two microwires as infinite wires, which produce a field decreasing inversely with the

distance, we calculate the transverse field at the QD positon. For a drive of 10Vp-to-p across 50 Ω, the QD

microwire should generate Bx = 5 mT. The value Bx = 3.8 mT extracted from fits to our data is close to

this estimation.

© 2014 Macmillan Publishers Limited. All rights reserved. 
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III. THEORY

A. Concepts

A1. Hamiltonian of a single spin I

During the manipulation step of our experiment, the evolution of a spin I can be described by the time-

dependent Hamiltonian

H(t) = HZ +HQ +HRF (t). (1)

HZ is the Zeeman energy, HQ describes the interactions between the nuclear quadrupole moment and

the electric field gradient (EFG) for a spin I > 1
2 in a non-cubic lattice, and HRF (t) corresponds to the

coupling to the transverse radio-frequency field. This is most conveniently expressed in the frame rotating

at the Larmor frequency νL = γ Bz , where γ is the gyromagnetic ratio of the nuclei and Bz the magnetic

field applied along the z-direction (here the quantization axis). Using the rotating wave approximation to

neglect fast oscillating terms [6] and assuming cylindrical symmetry of the EFG, H(t) reduces to

H(1)(t) = h∆ν(t)Iz +
hνQ

6

[
3I2
z − I(I + 1)

]
+
hνRF

2
Ix (2)

where ∆ν(t) is the time-dependent detuning between the radio frequency and the Larmor frequency, νRF =

γBx the amplitude of the RF field and νQ the quadrupole frequency. νQ describes the strength of the

quadrupole interaction and depends on the nuclear quadrupole moment Q and on the EFG Vz’z’ along the

symmetry axis z′. Writing θ as the angle between z and z′, we find

νQ =
3eQVz’z’

4hI(2I − 1)
[3 cos2 θ − 1]. (3)

We are interested in the eigenvalues of the problem for I > 1
2 . As an example, Fig. S7 shows the energy

eigenstates for a spin I = 3
2 as a function of the detuning ∆ν(t). Six different transitions can be observed:

three first-quantum transitions (QTs), often referred to as the central peak and its two satellites, two second-

QTs and one third-QT, corresonding to a change in angular momentum of |∆m| = 1, 2 and 3, respectively.

We note that each transition is well isolated, a consequence of νQ � νRF . A clear hierarchy of avoided

crossings can be observed: the lower the order of the QT, the more pronounced the splitting. This result can

be derived analytically in the limit where νQ � νRF using an effective pseudo-spin 1/2 approach [7, 8],

which yields the following expression for the coupling strengths

νeff(∆m) = k(mi,mj)νRF

(
νRF
νQ

)|∆m|−1

(4)

© 2014 Macmillan Publishers Limited. All rights reserved. 
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FIG. S7. Energy level diagram for a spin I = 3
2

in the rotating frame. The calculation is carried out with
νRF

νQ
= 0.15. The eigenstates are labelled with the diabatic quantum number m in the limit of large detunings. The

numbers in colour represent the order ∆m associated with each transition.

where k(mi,mj) is a scaling factor associated with the |mi〉 → |mj〉 transition. As an example we show,

in Table I, the scaling factors associated with the 3
2 -spin. Since νQ � νRF it is clear from Eq. 4 that

νeff(∆m = 1) � νeff(∆m = 2) � νeff(∆m = 3). Remarkably, νeff(∆m = 1) does not depend on the

quadrupole frequency to first order.

mi / mj 3/2 1/2 −1/2 −3/2

3/2 −
√

3 7
2

3
2

1/2
√

3 − 2 7
2

TABLE I. Effective RF field scaling factors k(mi,mj) for the first and multiple-quantum transitions of I = 3
2

[8].

A2. Adiabaticity criteria for a quadrupolar nucleus

To quantify the degree of adiabaticity of the manipulation, we assign a probability to each type of

transition according to the Landau-Zener model (see Eq. 2 of the main paper)

PLZ(∆m) = exp

(
−π2 ν

2
eff(∆m)

α∆m

)
. (5)

Note that, for higher-order transitions, the sweep rate α is replaced by an effective sweep rate α∆m, which

accounts for the magnified detuning rate (steepness of the level crossings in Fig. S7) [9]. PLZ corresponds

© 2014 Macmillan Publishers Limited. All rights reserved. 
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to the probability that the system “tunnels” through the avoided crossing and stays on the same diabatic

state. The condition for adiabatic passage is thus PLZ � 1, which translates into low α and/or large νeff.

Generally speaking, from Eqs. 4 and 5 it is clear that nuclei experiencing large quadrupole interactions are

harder to manipulate. However, to first order, adiabatic passage is independent of the quadrupole interaction

if it is possible to prepare the spins in their ground state, since the first QTs do not depend on νQ (see also

end of the section).

In order to study the dynamics of the Landau-Zener problem in more detail we solve numerically the

time-dependent von Neumann equation. Neglecting dissipation operators, the time-evolution of the density

matrix ρ(t) obeys

ih̄ρ̇(t) = [H(t),ρ(t)] . (6)

In the following, we return to the example of a spin I = 3
2 to illustrate some concepts of adiabatic

passage for a quadrupolar nucleus. We first focus on the evolution of the average spin projection 〈Iz(t)〉 =

Tr[Izρ(t)] as we proceed with a linear sweep from ∆ν(t = 0) = −ν0 to ∆ν(t = τ) = +ν0. Fig. S8

shows the result for four different initial conditions corresponding to the pure states of the system. In (a),

the adiabatic conditions are fulfilled for the first QTs only. This is evidenced by the exchange of population

at the transitions associated with the central peak (∆ν = 0) and its two satellites (∆ν = ±νQ). On the

contrary, nothing happens at the second QTs (∆ν = ±νQ
2 ). In (b), the “opening” of the second QTs is

evidenced by two additional steps at ∆ν = ±νQ
2 . As a consequence of the smaller coupling strength, these

transitions are sharper compared to the ones observed for the first QTs.

In the next step we retain only the polarization 〈Iz(τ)〉 after the sweep is complete and study the effect

of a decreasing sweep rate. We first focus on the same set of initial conditions as in Fig. S9. At high sweep

rates (here, α ≥ 105 GHz/s) the passage is sudden, PLZ ' 1, and the polarization remains unchanged

after the sweep. For lower values of α, the polarization is modified by the RF pulse. We identify the three

thresholds corresponding to fulfilling the adiabatic conditions for the first, second and third QT, respectively.

In Fig. S9b, we turn to a more realistic thermal distribution at t = 0. The evolution of 〈Iz(τ)〉 shows a step-

like behaviour, with the steps corresponding to the ∆m = 1, ∆m = 2 and ∆m = 3 thresholds.

Several comments should be made. First, if υRF
υQ
∼ 1, the different transitions identified in Figs. S7 and

S8 are no longer isolated one from the other, and the step-like behaviour of Fig. S9 vanishes. Second, the

efficiency of the manipulation for a given sweep rate is not only related the quadrupole field but also to

the initial polarization. To clarify this point, let us consider an initial thermal distribution described by a

temperature T . In the high temperature limit (kBT � hνL, with hνL the Zeeman energy), it is possible

to show analytically that the manipulation efficiencies associated with the successive opening of the first,

© 2014 Macmillan Publishers Limited. All rights reserved. 
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FIG. S8. Evolution of the average nuclear spin projection 〈Iz〉 for a linear RF sweep. The RF field is swept from

negative to positive detunings (left to right). In (a), PLZ(∆m = 1) = 1.4 % and PLZ(∆m = 2) = PLZ(∆m =

3) = 100%. In (b), PLZ(∆m = 1) = 0, PLZ(∆m = 2) = 0.5% and PLZ(∆m = 3) = 99.8%. For both cases four

different initial conditions are considered, corresponding to the pure states of the system. Black: |ψ(t = 0)〉 = |+ 3
2 〉,

red: |ψ(t = 0)〉 = |+ 1
2 〉, blue: |ψ(t = 0)〉 = |− 1

2 〉 and green: |ψ(t = 0)〉 = |− 3
2 〉

.

second and third QTs are 60%, 90%, and 100%, respectively. Conversely, in the limit where kBT � hνL,

complete inversion is achieved as soon as the adiabatic condition is satisfied for the first QT, which does

not (to first order) depend on νQ.

B. Quantitative analysis

The nuclear spin ensemble in an InxGa1−xAs QD is highly inhomogeneous. The first obvious reason is

the presence of various isotopes, mainly 75As, 115In, 69Ga and 71Ga (see Table II). A second reason, which

is intrinsic to self-assembled QDs, is the strain which is not homogenously distributed over the QD [10].

This results in a position dependent electric-field gradient, and thus a distribution of quadrupole frequencies

over the spin ensemble. This inhomogeneity, associated with the exact chemical composition of the QD,

influences the overall degree of adiabaticity that can be reached for a given experiment. In the following

we derive the effective nuclear spin temperature following optical polarization, a quantitative value for the

chemical composition, as well as the isotope dependent quadrupole frequency distribution in the QD.

© 2014 Macmillan Publishers Limited. All rights reserved. 
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FIG. S9. Average spin projection 〈Iz〉 as a function of the sweep rate. The simulations are carried out on 71Ga

with Bz = 6 T, Bx = 16 mT and νQ = 1 MHz for different initial polarizations. In (a), we consider the same pure

states as in Fig. S8. For α ≥ 105 GHz/s the passage is sudden. After the first threshold, the adiabatic condition is

satisfied for the first QTs (|∆m| = 1). We observe, for example, |+ 3
2 〉 → | −

3
2 〉 and | − 3

2 〉 → |+−
1
2 〉 as expected

from the energy level diagram in Fig. S7. After the second (third) threshold, the adiabatic condition is also satisfied

for |∆m| = 2 (|∆m| = 3). This has no impact if the population was initially all in the | + 3
2 〉 state (black line), but

now | − 3
2 〉 → |+

1
2 〉
(
| − 3

2 〉 → |+
3
2 〉, green line

)
. In (b) we start with a thermal distribution with T = 20 mK. The

vertical lines correspond to PLZ = 1% for the first, second and third quantum transitions.

I C [%] γ [MHz/T] A[µeV] Q [mb]
69Ga 3/2 60.18 10.219 74 171
71Ga 3/2 39.89 12.984 96 107
75As 3/2 100 7.219 86 314
113In 9/2 4.29 9.310 110 759
115In 9/2 95.71 9.330 110 770

TABLE II. Relevant parameters of the QD main isotopes: Nuclear spin number I , natural abundance C, gyro-

magnetic ratio γ, contact hyperfine coupling strength A and quadrupole moments Q for the relevant isotopes. Since
113In abundance is only 4.3% and its difference in γ compared to 115In is beyond the resolution of our experiment we

neglect this isotope in our analysis. Data taken from [11].

B1. Chemical composition and nuclear spin temperature

Since the orbital part of the hole wave function is predominantly p-like, the contact interaction of the

nuclear spin ensemble with the hole spin can be neglected. Initialization and read-out thus depends primar-

ily on the contact hyperfine interaction between the nuclear spin ensemble and the electron spin. The effect

© 2014 Macmillan Publishers Limited. All rights reserved. 
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of the nuclear spin ensemble on the electron spin is described by an effective magnetic field BN , the Over-

hauser field, which shifts the energy levels of the electron spin states. This Overhauser shift is given by OHS

= geµBBNSz , where ge is the effective electron g-factor, µB the Bohr magneton and Sz the electron spin

quantum number along the z-direction. For a spin ensemble of isotope j with average polarization 〈Iz,j〉,

OHS =
∑
j
A〈Iz,j〉Sz , where A is the hyperfine coupling constant[11, 12]. The experiments presented in

the main article are all carried out on the blue transition such that Sz = −1
2 . Each nuclear spin interacts

with the same pumped electron spin so that it is safe to assume that the initial populations of the nuclear

spin levels for each isotope can be described with a temperature. It is not necessarily the case that each

isotope can be described with the same temperature. For simplicity, we describe all isotopes with the same

nuclear spin temperature and we return to this assumption in Section IIID. We now show that measurements

of OHS, the initial Overhauser shift, and ∆OHS(∆m = 1), the change in Overhauser shift measured at the

first plateau (Fig. 3 of the main paper), we can determine the In composition x and the initial nuclear spin

temperature T .

Using Boltzmann statistics the occupation probability of the mth level for isotope j is

pj,m =
1

Zj
exp

(
−Ej,m
kBT

)
(7)

where Ej,m = −mhγjBz is the Zeeman energy of the mth level [13] , Zj =
∑
m

exp(−Ej,m/kT ) is the

partition function, kB is the Boltzmann constant and m = 3
2 ,

1
2 ,−

1
2 ,−

3
2 for I = 3

2 spins (m = 9
2 ,

7
2 , ...,−

9
2 ,

for I = 9
2 spins). Thus the average nuclear spin polarization for jth isotope amounts to

〈Iz,j〉 =
∑
m

pj,mm. (8)

By weighting each 〈Iz,j〉 with its corresponding coupling coefficient Aj (see Table II) and relative concen-

tration cj the initial Overhauser shift for each isotope is

OHSj = −1

2
cjAj〈Iinitialz,j 〉. (9)

Since Ga substitutes to In, the 75As concentration is known and equals to 50%, whereas the other concen-

trations depends on x.

An adiabatic sweep leads to a change in nuclear spin polarization

∆Iz,j = 〈Ifinalz,j 〉 − 〈I
initial
z,j 〉. (10)

Thus the related change in Overhauser shift is

∆j
OHS =

1

2
cjAj∆Iz,j . (11)
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For 3
2 -spins, assuming adiabatic conditions for the first order QTs only, one can determine the final nuclear

spin polarization (see energy level diagram of Fig. S7):

〈Ifinalz,j 〉(∆m = 1) = +
3

2
pj, 1

2
+

1

2
pj,− 1

2
− 1

2
pj,− 3

2
− 3

2
pj, 3

2
(12)

The same is done analogously for the 9
2 -spins of indium.

We are finally left with the following set of equations

OHS =
∑
j

OHSj (13)

∆OHS(∆m = 1) =
∑
j

∆j
OHS(∆m = 1) (14)

where T and x as the only unknowns. Solving the system with inputs from the experiment OHS =

(27.0 ± 0.85) µeV and ∆OHS = (28.8 ± 0.85) µeV, we obtain an initial temperature T = 8.2 ± 0.8 mK

and an In concentration for this specific QD of x = 0.202 ± 0.057.

B2. Quadrupolar field

In section A, we showed how we use the von Neumann equation to simulate the evolution of the (pro-

jected) nuclear spin polarization with a linear sweep of the radio-frequency. Now assuming an initial spin

temperature of 8.2 mK, we are in a position to model the NMR spectra measured in our experiment.

We first plot the expected change of polarization in the case of a single 71Ga spin for different quadrupole

frequencies, Fig. S10. The simulations show clear steps associated with the transfer of population at the first

and second quantum transitions. As expected, the total 〈∆Iz〉 reduces as νQ increases, a consequence of

the smaller νeff for the high order QTs. In order to account for the inhomogeneity in the sample, we then

average this behaviour over a distribution of quadrupole frequency (νQ = 0 → νmaxQ ) using (truncated)

Gaussian distributions of the form

p(νQ) = λ exp

[
(νQ − ν0

Q)2

2σ2
Q

]
with νQ > 0, (15)

where λ normalizes the distribution,
∫ νmax

Q

0 p(νQ)dνQ = 1. The result is shown in Fig. S10b. We note

in particular that the steps associated with the satellite peaks are smeared out as the distribution spreads.

Ultimately, the NMR spectrum of the 3
2 -spin reduces to one step at the position of the central frequency

surrounded by a steady (almost linear) increase due to the satellite transitions.

For In, the situation is similar, Fig. S11b. After the averaging however, no step remains, a consequence

of the large number of transitions.
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FIG. S10. NMR spectrum of 3
2

-spins. (a) Change in polarization for a single 71Ga spin. The sweep rate is set to

α = 0.04 GHz/s (first and second QTs opened). Three different quadrupole frequencies are shown: black circles

νQ = 0.5 MHz, open diamonds νQ = 2.5 MHz and gray triangles νQ = 4.5 MHz. (b) Change in polarization for

an inhomogeneous ensemble of 71Ga spins. In black, red and blue, the distribution of quadrupole frequencies are

Gaussian functions centered around ν0Q = 2 MHz. In green we consider a flat distribution. Insets: the quadrupole

frequency distributions. For all calculations, Bz = 6 T,Bx = 3.8 mT and the initial temperature is set to T = 8.2 mK.

We finally compute an average quadrupole frequency 〈νQ〉 =
∫ νmax

Q

0 p(νQ)νQdνQ, which slightly differs

from ν0
Q if p(νQ) is truncated.

In order to describe the experimental data, we derive such spectra using the experimental sweep rate

α = 0.09 GHz/s for 3
2 -spins, and a slightly larger value α = 0.25 GHz/s for 9

2 -spins [14]. Weighting each

isotope’s contribution with its concentration determined in section B1, and multiplying by the corresponding

coupling coefficient (see Table II), we obtain the theoretical spectra shown in Fig. 4 of the main paper. In
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FIG. S11. NMR spectrum of 9
2

-spins. Change in polarization for In, with α = 1 GHz/s. In black, the signal

associated with a single spin with νQ = 1.2 MHz; in red, an inhomogeneous ensemble with a Gaussian distribution

of quadrupole frequencies centred around ν0Q = 1.2 MHz (see inset).

the case of 75As and 71Ga, the resonances are well isolated and it is straightforward to adjust p(νQ) to fit

the data. On the other hand, for 115In and 69Ga, the spectra overlap. Assuming a homogeneous distribution

of both Ga isotopes within the QD (and thus similar electric field gradient distributions), we can however

predict the 69Ga spectrum simply by the ratio of both isotope’s nuclear quadrupole moments using Eq. 3

(see also Table II). The remaining signal is then due to In. With this procedure we can thus determine an

approximate distribution of quadrupole frequencies for all the main isotopes, see Table III and inset of Fig 4.

75As 115In 69Ga 71Ga

ν0Q [MHz] 0 1.5 2.9 1.8

σQ [MHz] 4.0 0.4 1.6 1.6

〈νQ〉 [MHz] 3.0 1.5 3.1 2.1

TABLE III. Parameters of the (truncated) Gaussian distributions used in the description of the experimental data,

Fig. 3 of the main paper. ν0Q is the central frequency, corresponding to the highest density, σQ is the width of the

distribution and 〈νQ〉 is the average quadrupole frequency, which differs from ν0Q when the distribution is truncated.
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C. Discussion and conclusions

Now using the temperature and In concentration determined in section B1, with the average quadrupole

frequencies for each isotopes determined in section B2 , we can simulate the expected change in the av-

erage nuclear spin polarization as a function α (data of Fig. 3 in the main paper). With Bx = 3.8 mT, the

calculations show remarkable agreement with the experimental data. In particular the plateau associated

with the first QTs is reproduced, a signature of a large quadrupole field for all isotopes. One can note

that the first QTs are not reached at the same α for all isotopes. This is due to different gyromagnetic

ratios (see Table II) and, in the case of In, to the different spin number. As can be seen from the isotope

selective α-dependency, the second step-like feature at low α arises due to In spins reaching the plateau

associated with the second QTs before the 3
2 -spins. The large contribution of the In spins along with the

small dispersion in In quadrupole frequencies explain the observed second step-like feature.

Finally, we gather all the results obtained from our calculations and compare them with the experimental

data. The results are shown in Fig. S12 and Table IV and commented hereafter:

Initial polarization: The initial polarization for each isotope 〈Iz,j〉/Imaxz,j is determined solely by T . Due

to the different gyromagnetic ratios and the much higher spin number of In, the polarization is not equally

distributed among the different isotopes (Table IV). For example, the initial polarization of As is only 21%,

whereas the initial polarization of In reaches 50%. Weighting each isotope with its concentration yields a

value of 32% for the initial polarization of the ensemble. Finally, using the coupling coefficients Aj from

Table II and our measured value ge = −0.71 ± 0.05 of the electron g-factor, we calculate the Overhauser

field corresponding to 32% polarization, BN = 2.0 T.

Efficiency of the nuclear spin manipulation: The inversion efficiency for each isotope is defined as

∆Iz,j/(2I
initial
z,j ) = ∆j

OHS/(2OHSj). The efficiency depends on three parameters, first the spin quantum

number I , second the initial polarization, and third the quadrupole frequency. 75As has the lowest initial

polarization, a broad quadrupole frequency distribution and a large 〈νQ〉, thus the inversion efficiency (75%)

is lower than that for 71Ga (94%), which has a higher initial polarization and a smaller 〈νQ〉 with a narrower

distribution. Conversely, In has a much more complex level structure and despite the high initial polariza-

tion the inversion efficiency is only 64%. By weighting the efficiency for each isotope with its concentration

we compute the efficiency for the whole ensemble, which is 72%.

Sensitivity of the measurement: The sensitivity to the change in Overhauser shift is obtained from the sta-

tistical distribution of the experimental results. Averaging over more than 20 measurements, we obtain a

standard deviation of 0.85 µeV for ∆OHS. Using the value OHSmax = 81.8 µeV for the maximum Over-
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FIG. S12. Comparison of the measured change in Overhauser shift ∆OHS with the single spin model at first

and second quantum transitions. The results indicate that, for the slowest rate, we achieve inversion at the second

QT for In and 71Ga. The second QT is however not yet opened for As and 69Ga. Input parameters to the model are

T = 8.2 ± 0.8 mK and x = 0.20 ± 0.06.

hauser shift and 105 nuclei [12], we conclude that we are sensitive to the Overhauser field generated by the

full polarization of ∼ 1, 000 nuclei. The errors in x and T correspond to the statistical fluctuations in the

change of the plateau width. For all numbers deduced from the model the errors in the change of dragging

plateau width were propagated to find the error in a particular quantity.

- 75As 69Ga 71Ga 115In total

OHS [µeV] -6.6± 0.6 -3.80± 0.4 -4.0± 0.4 -12.6± 3.6 -27.0± 0.9

Initial Polarization [%] 21± 3 29± 3 36± 3 50± 3 32± 1

∆OHS(∆m= 1) [µeV] 8.4± 0.8 5.1± 0.6 5.5± 0.7 9.8± 4.8 28.8± 0.9

Inversion efficiency (∆m= 1) [%] 63.0± 0.5 66.3± 0.7 68.8± 0.9 39.2± 1.3 55.0± 2.3

∆OHS(∆m= 1,2) [µeV] 12.1± 1.1 7.1± 0.8 7.5± 0.9 16.2± 4.8 42.9± 5.3

Inversion efficiency (∆m= 1,2) [%] 91.6± 0.2 92.9± 0.3 93.9± 0.3 64.5± 1.5 81.3± 2.4

∆OHS(measured) [µeV] 9.5± 0.9 5.9± 0.9 7.2± 0.9 15.4± 0.9 38± 0.9

Inversion efficiency (measured) [%] 75± 9 71± 14 94± 15 64± 19 72± 10

TABLE IV. Initial polarizations and manipulation efficiencies for the main isotopes. Values in red are obtained

from Figs. 2, 3 and 4. Values in black are deduced from the single spin model described in Section B1 with T =

8.2 mK and x = 20%.
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D. Nuclear spin temperature

The analysis so far has assumed an isotope-independent initial nuclear spin temperature. An alternative

assumption is that the polarization for all spin-3
2 nuclei is the same such that there is a spread of tempera-

tures in accord with the spread in gyromagnetic ratios. This second Ansatz would hold if the only significant

interaction is the first-order contact hyperfine interaction [15]. We have attempted to describe the experi-

mental data also with this assumption, explicitly that the ratio β = (Ej,m+1 − Ej,m)/kBT (ratio Zeeman

energy to thermal energy) is the same for all isotopes. We find with this approach that β = 0.302± 0.033,

x = 0.221 ± 0.067 with temperatures 75As: (6.9 ± 0.8) mK; In: (8.9 ± 1.0) mK; 69Ga: (9.7 ± 1.1) mK;
71Ga: (12.4± 1.4) mK. Some important comments are in order.

First, the indium concentration from the common polarization assumption is the same to within the

random error as before (common temperature assumption). The random error is determined by noise in the

initialization/read-out process. In other words, the random error is larger than any systematic error arising

from assumptions on the temperature.

Secondly, the temperatures for 75As, In and 69Ga are also the same as before to within the random error:

the common temperature and common polarization assumptions do not lead to significant differences. In

principle, the experiment is capable of determining a nuclear spin temperature for each isotope separately.

In practice, the present resolution is insufficient to reveal small differences.

Thirdly, the two assumptions, common temperature versus common polarization, lead to significantly

different temperatures for 71Ga. A detailed comparison of the two models is shown in Fig. S13 which plots

∆OHS, measured and calculated. The 71Ga result from the common polarization model is significantly too

small, and this discrepancy cannot be resolved by including full inversion at the second quantum transition

or by reducing the In concentration. The conclusion is that the common temperature assumption is more

realistic than the common polarization assumption. This points to the presence of another interaction in the

initialization process. A likely explanation is that the electron spin in the exciton provides a mechanism

by which all the nuclear spins are coupled together, a second-order process, in the presence of spontaneous

emission of the exciton which blurs energy conservation of the electron-nuclear interactions by up to 1 µeV.
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New model with constant beta = hf/kT 
Quadrupolar effects not included 

Old model with constant T  
Quadrupolar effects included 
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FIG. S13. Comparison of the measured change in Overhauser shift ∆OHS with the single spin model at first

and second quantum transitions with the common polarization assumption. As in Fig. S12, for the slowest rate

we achieve inversion at the first and second QT for In and 71Ga but inversion at the first QT only for As and 69Ga.

Input parameters to the model are β = 0.302 and x = 0.221. The calculations for 71Ga lie below the experimental

result and in this respect, the common polarization assumption is inferior to the common temperature assumption of

Fig. S12.
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[3] Högele, A. et al. Dynamic nuclear spin polarization in the resonant laser excitation of an ingaas quantum dot.

Phys. Rev. Lett. 108, 197403 (2012).

[4] Maletinsky, P., Badolato, A. & Imamoglu, A. Dynamics of quantum dot nuclear spin polarization controlled by

a single electron. Phys. Rev. Lett. 99, 056804 (2007).

[5] Poggio, M., Degen, C. L., Rettner, C., Mamin, H. & Rugar, D. Nuclear magnetic resonance force microscopy

with a microwire rf source. Applied Physics Letters 90, 263111 (2007).

[6] Harris, R. & Roderick, W. (eds.) NMR of Quadrupolar Nuclei in Solid Materials (Wiley, 2012).

[7] Vega, S. Fictitious spin 1/2 operator formalism for multiple quantum NMR. The Journal of Chemical Physics

68, 5518–5527 (1978).

[8] van Veenendaal, E., Meier, B. H. & Kentgens, A. P. M. Frequency stepped adiabatic passage excitation of

half-integer quadrupolar spin systems. Molecular Physics 93, 195–213 (1998).

[9] Haase, J., Conradi, M., Grey, C. & Vega, A. Population transfers for NMR of quadrupolar spins in solids.

Journal of Magnetic Resonance, Series A 109, 90–97 (1994).

© 2014 Macmillan Publishers Limited. All rights reserved. 

 



21

[10] Bulutay, C. Quadrupolar spectra of nuclear spins in strained ingaas quantum dots. Phys. Rev. B 85, 115313

(2012).

[11] Coish, W. A. & Baugh, J. Nuclear spins in nanostructures. physica status solidi (b) 246, 2203–2215 (2009).

[12] Kloeffel, C. et al. Controlling the interaction of electron and nuclear spins in a tunnel-coupled quantum dot.

Phys. Rev. Lett. 106, 046802 (2011).

[13] Corrections to the level spacings due to first order quadrupolar effects (Eq. 1) were included in a mean approach

by using the average quadrupole frequency determined in section B.2 for each isotope. Note that, given 〈νQ〉 �

γBz , the effect on T and x are small and fall within the error bars.

[14] By doing so we significantly speed up calculations without modifying the expected result since both rates belong

to the second plateau for In, see Fig. 3.

[15] Abragam, A. Principles of Nuclear Magnetism (Oxford University Press, 2002).

© 2014 Macmillan Publishers Limited. All rights reserved. 

 




