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S1. MECHANICAL PROPERTIES OF THE NANOWIRE

We calculate the lowest order flexural vibrations and
the induced dynamic strain of the nanowire (NW) using a
finite element model (FEM) of the experimental system.
We approximate the NW structure as an isotropic and
homogeneous hexagonal prism of AlGaAs, with a den-
sity given by the average of the densities of the different
GaAs and AlGaAs layers, each weighted according to its
thickness (see main text). The dimensions of the NW as
well as its length that is tightly glued to the Si substrate
on a lateral facet are measured by scanning electron mi-
croscopy (SEM).

The FEM provides the eigenfrequencies of the NW
flexural vibrations and the corresponding mode shapes.
While a symmetric clamping of the NW would result in
doubly degenerate vibrational modes, the asymmetry of
the actual clamping geometry, i.e. with only one lateral
facet in contact with the substrate, splits each mode into
a doublet of flexural vibrations oriented either parallel
or perpendicular to the Si surface, with the former hav-
ing the lower eigenfrequency. Figure S1 shows the mode
shape of the lowest four non-degenerate vibrations. The
spectral separation between two non-degenerate modes
in each doublet depends, aside from the nature of the
clamping, on the symmetry of the NW geometry: a di-
latation of the hexagonal cross-section by only 1% along
one axis is enough to invert the spectral positions of the
two modes.

As discussed in the main text, in this experiment we
focus our attention on the lowest order perpendicular
mode. This orientation is preferentially driven by the
piezoelectric transducer attached to the sample, is more
easily detected by the interferometer, and driving higher
order modes requires higher mechanical excitation power
or a more sensitive displacement detection. The calcu-
lation of the mode shape of the favored flexural mode
u⊥(r) as a function of the position r allows us to de-
termine the corresponding motional mass m at the NW
free-end, according to the definition:

m ≡
∫
ρ |u⊥(r)|2 dV, (S1)

where the integral is calculated over the entire NW vol-
ume V , ρ is the NW density, which in our model does not
depend on r, and u⊥(r) is normalized so that its max-
imum value is unity1. The result is m = (3.5 ± 0.7) ×
10−15 kg, where the error is dominated by the measure-
ment imprecision of the NW thickness.

The flexural vibrations produce a time-varying mate-
rial strain in the NW, which translates into a dominant
uniaxial stress along the NW growth direction ([1 1̄ 1]
in crystallographic notation). This oscillating material
strain is responsible for the modulation of the QD emis-
sion energy, therefore it is important to evaluate its
strength and its spatial distribution. For this purpose,
it is necessary to determine the values of the Young’s

modulus EY and of the Poisson’s ratio ν, which fully
characterize the elastic properties of isotropic materials2.

To our knowledge, for a GaAs/AlGaAs nanostructure
grown along 〈1 1 1〉, EY has not yet been measured. The
only reference is the value along this axis measured for
bulk GaAs (141.2 GPa)3. For this reason, we initially set
EY as a free parameter in our FEM, while calculating the
NW eigenfrequencies. We then tune EY in the FEM un-
til the calculated resonance frequency of the lowest per-
pendicular mode matches our experimentally measured
value of 795.4 kHz. The corresponding Young’s modulus
is EY = 153 GPa, which is 8% larger than the aforemen-
tioned value measured for bulk GaAs. Possible reasons
for this increase of the stiffness of our NW reside in its fi-
nite size and in its core-shell structure, which introduces
an additional intrinsic material strain.

The Poisson’s ratio expresses the relative strength of
the strain tensor components. By setting an xyz refer-
ence system with ẑ oriented along the NW growth direc-
tion, the strain tensor in our case assumes the following
form:

εij =

 ε⊥ 0 0
0 ε⊥ 0
0 0 ε‖

 . (S2)

In this reference system, the Poisson’s ratio can be writ-
ten as follows:

ν = −ε⊥
ε‖
. (S3)

Signorello et al.4 have recently measured ν for Zinc-Blen-
de GaAs/AlGaAs core-shell NWs grown along 〈1 1 1〉, as
in our case, at a temperature of 100 K (see Table S1).

Once these fundamental parameters have been inserted
into our FEM, we compute the strain distribution along
the NW structure. Figure S1 shows in color scale ε‖ for
the lowest four non-degenerate flexural vibrations, for a
NW free-end displacement of 1 nm. The largest strain
is obtained at the clamped end of the NW, at the bor-
ders of its hexagonal cross-section perpendicular to the
oscillation direction. The mode doublet described by the
indices n = 2 and 3 results in a maximum strain at the
clamped end that is a factor 6 larger than the value of
the lower index doublet. As confirmed by the FEM anal-
ysis, flexural modes of even higher index result in a fur-
ther increase of the strain at the clamped end. Improve-
ments in the detection of these higher modes should pro-
vide an opto-mechanical coupling parameter increased as

Parameter Value Unit

ν 0.16± 0.04
a −8.6± 0.7 eV
d −5.2± 0.7 eV

Table S1. Electro-mechanical material parameters. The val-
ues have been measured for Zinc-Blende GaAs/AlGaAs core-
shell NWs grown along 〈1 1 1〉, at a temperature of 100 K.
Taken from Ref. 4.



S3

n = 1

 ǁ
(×

10
-6

)

-1.9

+1.9

0

n = 3

 ǁ
(×

10
-6

)

-11

+11

0

n = 0

n = 2

Figure S1. FEM of the NW mechanical properties. Each subfigure shows the mode shape of the lowest four non-degenerate
vibrations, n being the mode index. The color scale is proportional to the component ε‖ of the material strain in the NW, for
a 1-nm displacement of its free end.

the strain. However, the coupling rate λ defined in the
main text also depends on the NW’s zero-point motion
xZPF =

√
~/ (2mnΩn). While the mode motional mass

mn does not depend in our geometry on n, the mode
resonance frequency Ωn increases with n, by a factor 6
for the second order doublet with respect to the first one.
This dependence implies an increase of λ by a factor 2 (or
bigger) for the second order (or higher) flexural modes of
the NW.

S2. EFFECT OF STRAIN ON THE EXCITON
TRANSITION ENERGY

The application of mechanical strain to the NW alters
the lattice constant and the symmetry of the solid. These
effects, in turn, cause significant changes in the electronic
band structure that manifest themselves in the optical
properties. The hydrostatic and shear components of the
strain both contribute to such opto-mechanical coupling,
with a weight given by their respective deformation po-
tential, conventionally indicated as a for the hydrostatic
deformation and d for the shearing induced by a stress
along 〈1 1 1〉5,6. The aforementioned work of Signorello et
al.4 has obtained these deformation potentials for NWs
similar to ours (but without embedded QDs); the mea-
sured values are reported in Table S1.

The brightest exciton transition in our QDs concerns
the conduction and the heavy-hole bands, each respond-
ing in a different way to the applied strain. The variation
of the energy gap between these bands (∆EC-HH) un-
der mechanical excitation can be connected to the strain

component ε‖ through the following model5:

∆EC-HH =

[
(1− 2ν) a+

1√
3

(1 + ν) d

]
ε‖. (S4)

From the FEM of the NW, we extract the profile of
ε‖ along ẑ corresponding to the lowest order perpendic-
ular mode, for a given displacement of the NW free end.
The graph in Fig. S2 shows such a plot for ε‖ at 10 nm
below the NW surface, a distance where the QDs best
coupled to strain are located. The red spot, in particu-
lar, marks the position where the QDs analyzed in the
main text are placed, 2.0±0.3µm away from the clamped
edge of the NW. Inserting the value of ε‖ at the QD posi-
tion into the Eq. S4, we obtain a displacement-dependent
energy shift of 13 ± 2µeV/nm. Though this estimation
does not take into account the detailed QD band struc-
ture, the value we have found is close to our experimen-
tal result (9.9 ± 0.7µeV/nm), therefore confirming the
strain-dependence of the band structure as the dominant
coupling mechanism.

S3. DISTRIBUTION OF THE EXCITON ENERGY
SHIFTS

We analyze the distribution of energy shifts of PL lines
from QDs located in the same position along the NW
length (within the laser detection spot), and emitting in a
spectral range of 30 meV centered around 1.860 eV. This
relatively narrow energy window restricts our analysis to
QDs with similar size and composition. We consider the
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Figure S2. Strain profile along ẑ. The strain component ε‖
at 10 nm below the NW surface is plotted for the NW free-
end displaced through u⊥ by 1 nm along x̂. The shaded area
from z = 0 to z = 5µm marks the region of the NW which is
clamped to the substrate. The red spot at z = 2.0 ± 0.3µm
from the edge of the clamped region marks the position where
the QDs analyzed in the main text are located. The upper
inset shows the mode shape in consideration, with the strain
amplitude in color scale as in Fig. S1.

energy shift induced in the QDs by a resonant mechan-
ical excitation of the NW. In order to exclude the effect
of asymmetric energy modulation, due to the different
response of the QD band structure under compressive or
tensile stress4,7, we consider energy shifts only towards
higher energies. The distribution of the data is plotted
in Fig. S3(a).

The experimental result is compared to two different
models for the spatial distribution of the QDs in the shell
of the NW. The first model, illustrated in Fig. S3(b), as-
sumes QDs located at the apexes of the NW hexagonal
cross-section. The histogram in Fig. S3(c), instead, re-
sults from a model of QDs uniformly distributed along
the shell perimeter.

The experimental distribution conforms more closely
to the model of QDs located at the apexes of the cross-
section. Though not conclusive, this analysis lends sup-
port to the interpretation of the QD spatial distribution
in our NW structures originally given by Heiss et al.8 and
recently confirmed by Fontana et al.9. The observed de-
viations from such a model can be explained as weak fluc-
tuations of size and composition of the analyzed QDs10,
and to different distances from the center of the cross-
section.

S4. INTERFEROMETRIC DISPLACEMENT
DETECTION

We use a 780-nm laser interferometer to detect the dis-
placement of the NW free-end. Due to the low finesse of
our cavity, the interferometer fringe as a function of the
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Figure S3. Distributions of energy shifts. (a) Experimental
distribution of energy shifts for QDs emitting within a 30-
meV spectral range and located at the same position along
the NW length. (b) Model distribution for QDs located at the
apexes of the NW shell. (c) Model distribution for QDs uni-
formly distributed along the shell perimeter. The two model
distributions are normalized to the total exciton count of the
experimental analysis.

cavity length or of the laser wavelength is well approx-
imated by a sinusoid. The NW oscillation modulates
the interferometer response in a small range around the
fringe average, where the response becomes linear. We
stabilize the interferometer in this linear regime, by con-
trolling the laser wavelength via a PID feedback loop.

The cavity free spectral range measures (2.6 ± 0.1) ×
10−13 m, from which we derive a cavity length of 118 ±
5 cm. Measurements of the NW displacement are cali-
brated by an accurate determination of the laser wave-
length. In order to double-check this calibration, we mea-
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Figure S4. Interferometer test. Amplitude of the positioning
stage displacement oscillation at 117 Hz as a function of the
amplitude of the drive voltage, measured at a temperature of
4.2 K. The error bars correspond to the peak-to-peak ampli-
tude of the interferometric noise. The red line is a linear fit,
from which we extract a conversion factor of 11.6±0.1 nm/V.

sure the displacement amplitude Aosc of the positioning
stage along x̂, while the stage is driven by a low-frequency
oscillation (117 Hz). As shown in Fig. S4, the measure-
ment is repeated for several drive voltages in order to
extract, through a linear fit, a conversion factor for the
piezoelectric positioning stage equal to 11.6± 0.1 nm/V.
The entire procedure is repeated with the interferometer
aligned to a variety of different positions on the yz plane,
including the position of the NW free end. The values
measured using our interferometer are close to the speci-
fications of the positioning stage, which provide a rough
conversion factor of 8 nm/V.

S5. DISPLACEMENT, FORCE, AND STRAIN
SENSITIVITIES

The sensitivity of the QDs in our system to the res-
onant vibration of the NW could be used to reveal dis-
placement variations due to the application of electrical
or magnetic forces or to a change of the NW mass.

We estimate the sensitivity of our apparatus as a dis-
placement transducer and as a force or strain detector.
To this purpose, we first measure, for a QD emission line,
the intrinsic fluctuation in time of the photon count in
a narrow spectral bin around the transition energy E0

ex.
The amplitude of such fluctuation depends on the bin
size and on the integration time τ . An external force
applied to the NW produces, through the deformation
potential coupling, a variation of the QD photon count
in a given spectral interval. For such a force to be de-
tectable, the induced photon count variation has to be
bigger than the intrinsic fluctuation. This count varia-
tion is in turn a direct consequence of the emission energy
modulation, whose amplitude δEex can be calculated
through the model described in the main text. From the

opto-mechanical coupling parameter ∂Eex

∂x

∣∣
x=0

measured
for QD 2, we are then able to convert the emission en-
ergy modulation into a root-mean-squared displacement
xrms of the NW free-end. Finally, by multiplying such
displacement to the square root of τ , we obtain a dis-
placement sensitivity ≈ 3 nm Hz−1/2. Note that this
result is limited, in particular, by the resolution of our
spectrometer, equal to 60µeV. On the other hand, the
sensitivity could be improved by 4 orders of magnitude
by means of resonant laser spectroscopy11.

The applied force is proportional to the NW displace-
ment xrms through the spring constant k = mΩ2

0 =
90±20 mN/m. Therefore we are able to estimate a force
sensitivity ≈ 300 pN Hz−1/2.

Our setup is also sensitive to strain variations in the
NW. The finite element model described in Section S1
relates the strain to the NW displacement. It is then
possible to express a strain sensitivity of our setup,
≈ 5×10−6 strain Hz−1/2. This result is of the same order
of the sensitivity recently estimated for strain-mediated
coupling of a diamond cantilever to the spin of an em-
bedded nitrogen-vacancy center12.
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