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Abstract

Over the past few years, a wide variety of nuclear spin preparation techniques using hyperfine interaction-

mediated dynamics have been developed in systems including gate-defined double quantum dots, self-assembled

single quantum dots and nitrogen-vacancy centers in diamond. Here, we present a novel approach to nuclear

spin state preparation by harnessing the naturally occuring stochastic fluctuations in nanoscale ensembles of

nuclear spins in a semiconductor nanowire. Taking advantage of the excellent sensitivity of magnetic resonance

force microscopy (MRFM) to monitor the 1/
√
N statistical polarization fluctuations in samples containing very

few nuclear spins, we develop real-time spin manipulation protocols that allow us to measure and control the

spin fluctuations in the rotating frame. We focus on phosphorus and hydrogen nuclear spins associated with

an InP and a GaP nanowire and their hydrogen-containing adsorbate layers. The weak magnetic moments of

these spins can be detected with high spatial resolution using the outstanding sensitivty of MRFM. Recently,

MRFM has been used to image the proton spin density in a tobacco mosaic virus with a sensitivity reaching

up to 100 net polarized spins. We describe how MRFM together with real-time radio frequency (RF) control

techniques can also be used for the hyperpolarization, narrowing and storage of nuclear spin fluctuations and

discuss how such nuclear spin states could potentially be harnessed for applications in magnetic resonance and

quantum information processing.

In addition to presenting the experimental results on nuclear spin order, the theory of nuclear spin resonance

and nanomechanical resonators is briefly discussed. The physical concepts explained provide the necessary

background for the understanding of our MRFM experiments. The MRFM experimental apparatus, both sample-

on-cantilever and magnet-on-cantilever, is also presented in considerable detail.

xi





Chapter 1

Introduction

The weak magnetism of nuclear spins can be observed by polarizing them in a large external magnetic field. In

thermal equilibrium, this results in an average macroscopic magnetization (or polarization) directed along the

applied field, where the spin states are populated according to the Boltzmann distribution. The nuclear spin

system can then be manipulated with a series of radio frequency (RF) pulses to extract the desired spectroscopic

and structural information about the studied sample. However, the spin system at equilibrium also exhibits

random magnetization fluctuations, the so-called “spin noise” [1], which can be detected continuously in time.

The spin noise can be observed without the application of RF pulses and the fluctuations exist along any random

direction in space. However, the noise signals are weaker compared to the mean signal obtained from Boltzmann

population difference in large nuclear spin ensembles (N > 1010).

Recently, the study of small-scale nuclear spin systems (N ∼ 104−106) has gained importance for understanding

electron spin decoherence in solid-state quantum systems and for application in nanoscale magnetic sensing and

magnetometry [2–6]. The stochastic spin polarization fluctuations, resulting from random spin flips, typically

exceeds the thermal polarization in such small spin ensembles. These fluctuations have random amplitude and

phase and have been observed in a wide variety of nuclear spin systems in the solid-state using a supercon-

ducting interference device (SQUID) [7], by force-detected magnetic resonance [8], or by nitrogen-vacancy (NV)

magnetometry [9, 15]. The ability to control and mitigate these nuclear spin fluctuations might find application

in nanoscale magnetic resonance imaging and quantum information processing (QIP). We describe a method

to harness the naturally occurring statistical fluctuations in small ensembles of nuclear spins by applying RF

electro-magnetic pulses. The experimental work reported in this thesis deals with harnessing the spin fluctua-

tions in a semiconductor nanowire sample using the technique of magnetic resonance force microscopy (MRFM).
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Magnetic resonance force microscopy, the mechanical detection of electron or nuclear magnetic moments using

an ultra-soft nanomechanical resonator, is a scanning probe technique actively pursued to push the limits of

nuclear magnetic resonance (NMR) detection in nanoscale samples [10–14]. With this technique, we can probe

ensembles containing few nuclear spins and measure the spin fluctuations in real-time. Detection of the magnetic

fields of statistically polarized nuclei is demonstrated recently for very small ensembles of proton spins extrinsic

to a diamond lattice using an intrinsic nitrogen vacancy center electron spin [9, 15]. Rather in MRFM, we detect

the longitudinal component of the statistical nuclear magnetization of the ensemble in the rotating frame using

the technique of adiabatic rapid passage (ARP).

Application in quantum information processing

Spin states of an electron can serve as a two-level quantum system or a qubit for encoding the quantum in-

formation. Advances in nanofabrication technology have allowed us to practically realize such spin qubits in a

variety of systems including gate-defined quantum dots, optically active self-assembled quantum dots, nitrogen

vacancy defects in diamond and phosphorous defects in silicon. Control over the electron spin states has been

achieved either through electrical and/or optical means. However, a solid-state electron spin qubit typically

interacts with its surrounding mesoscopic ensemble of nuclear spins in the host lattice through the hyperfine

interaction [16, 17]. This interaction mechanism is the leading source of decoherence and relaxation for an elec-

tron spin qubit, hindering its application in quantum computation scenarios. Several methods such as complete

polarization or narrowing of the nuclear spin ensemble have been proposed in order to address this issue. These

proposals have been realized in systems like quantum dots using an optical or electrical readout of the nuclear

hyperfine magnetic field [18–22]. Here we demonstrate a similar control over a nanoscale ensemble of spins

using the mechanical readout of MRFM. We employ the exceptional sensitivity of MRFM to perform real-time

measurement and control of an ensemble containing 104 − 106 nuclear spins in a semiconductor nanowire. We

create hyperpolarized and narrowed nuclear spin states by harnessing the statistical fluctuations of the ensemble

[23]. Furthermore, we capture large nuclear spin polarization fluctuations, store them for many seconds, and

read the polarization out.

Application in nanoscale magnetic resonance

MRFM overcomes the sensitivity limitations of conventional NMR to enable high spatial resolution detection

of nuclear spins in nanoscale sample volumes in two ways: first, MRFM relies on the detection of statistical

polarization and the power signal-to-noise ratio (SNR) is proportional to the number of spins in the sample.

Second, for small ensembles of spins, nanomechanical resonators offer excellent detection sensitivity compared

to electrical resonators and the measured signals are comparatively large [24].

2



State-of-the-art MRFM relies on the detection of randomly varying statistical polarization of the nuclear spins

in the detection volume whereas conventional inductively detected magnetic resonance involves the detection

of thermal (Boltzmann) polarization induced by the magnetic field. For small slice volumes, the fluctuating

polarization becomes strong and it becomes more natural to consider using the fluctuations as the “signal” [25].

Here we show that mechanically detected NMR can be used to capture and create hyperpolarized states from

random fluctuations in nanoscale nuclear spin ensembles [23]. Once captured, these fluctuations can then be used

to initialize the polarization of nanoscale spin ensembles with a fixed sign and magnitude. Such initialization

schemes could provide the basis for enhancing signals from small samples and for realizing advanced pulse

protocols which can be borrowed directly from conventional NMR. We also demonstrate the long-term storage

of large polarization fluctuations in nanoscale nuclear spin ensembles. Finally, we note that the only prerequisite

for the proposed polarization capture and storage technique is the ability to detect nuclear spin polarization in

real-time, which makes it applicable in a wide range of structures beyond nanowires.
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Chapter 2

Spin Physics

This Chapter provides a theoretical description of the interaction of nuclear spins in a magnetic field (Section 2.1

and 2.2). The concept of adiabatic inversion of nuclear spin states is briefly described with quantum mechanical

equations of motion (Section 2.2). The cyclic nuclear spin inversions occurring in a magnetic field gradient gives

rise to an oscillating force on the cantilever (Section 2.3). The problem of relaxation of a nuclear spin resulting

from its perturbative coupling to the thermal bath of the cantilever is studied (Section 2.4). A Markovian model

for spin relaxation is described in detail (Section 2.5). The concepts of statistical polarization and distribution

of nuclear spins are briefly revisited (Section 2.6). All these physical concepts discussed in this chapter provide

the conceptual basis for the understanding of nuclear spin detection by magnetic resonance force microscopy

(MRFM) technique.

2.1 Spin in a static magnetic field

The Schrödinger equation for a nuclear spin in a static field B0 = B0ez is [26]

− h̄
i

∂

∂t
|Ψ〉 = −µ̂.B0 |Ψ〉

= −γh̄B0Îz |Ψ〉 . (2.1)

We can formally solve (2.1) as |Ψ(t)〉 = eiω0tÎz |Ψ(0)〉 where ω0 = γB0 is the Larmor frequency. We can compute

the expectation value of the observable µ̂z, the z-component of magnetic moment by means of |Ψ(t)〉. We have

〈µ̂z(t)〉 = 〈Ψ(t)| µ̂z |Ψ(t)〉

= γh̄ 〈Ψ(0)| e−iω0tÎz Îze
iω0tÎz |Ψ(0)〉 . (2.2)
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We shall employ the useful relations listed below to perform the transformations [26].

e−iϑÎz Îze
iϑÎz = Îz

e−iϑÎz Îye
iϑÎz = −Îx sinϑ+ Îy cosϑ (2.3)

e−iϑÎz Îxe
iϑÎz = Îx cosϑ+ Îy sinϑ .

Using (2.3) gives us 〈µ̂z(t)〉 = γh̄ 〈Ψ(0)| Îz |Ψ(0)〉 which is independent of time. Similarly we find

〈µ̂y(t)〉 = −〈µ̂x(0)〉 sinω0t+ 〈µ̂y(0)〉 cosω0t

〈µ̂x(t)〉 = 〈µ̂x(0)〉 cosω0t+ 〈µ̂y(0)〉 sinω0t . (2.4)

Both 〈µ̂y(t)〉 and 〈µ̂x(t)〉 oscillate in time at the Larmor frequency ω0. The equation of motion of the spin 〈µ̂(t)〉

is also given by

〈µ̂(t)〉 = (〈µ̂(0)〉 .ez)ez + [〈µ̂(0)〉 − (〈µ̂(0)〉 .ez)ez] cosω0t+ {[〈µ̂(0)〉 − (〈µ̂(0)〉 .ez)ez]× ez} sinω0t . (2.5)

In the simplest case of spin-1/2 systems, the eigenstates of operator Îz may be denoted by |↑z〉 and |↓z〉 with

eigenvalues ±1/2. The eigenstates |↑n〉, |↓n〉 of Î · en, where en is a unit vector lying in the xyz-plane that makes

a polar angle θ with the positive z-axis and an azimuthal angle φ with the positive-x axis, are given by [27]

|↑n〉 = cos
θ

2
|↑z〉+ eiφ sin

θ

2
|↓z〉

|↓n〉 = sin
θ

2
|↑z〉 − eiφ cos

θ

2
|↓z〉 . (2.6)

We have [27]

Îy = − i
2

[|↑z〉 〈↓z| − |↓z〉 〈↑z|]

Îx =
1

2
[|↑z〉 〈↓z|+ |↓z〉 〈↑z|] . (2.7)

If the spin is in the eigenstate |Ψ(0)〉 = |↑n〉 at t = 0 so that 〈µ̂z(0)〉 = γh̄
2 cos θ, 〈µ̂y(0)〉 = γh̄

2 sin θ sinφ and

〈µ̂x(0)〉 = γh̄
2 sin θ cosφ, we get

〈µ̂z(t)〉 =
γh̄

2
cos θ

〈µ̂y(t)〉 =
γh̄

2
sin θ sin (−ω0t+ φ) (2.8)

〈µ̂x(t)〉 =
γh̄

2
sin θ cos (−ω0t+ φ) .

We see that 〈µ̂(t)〉 behaves as does a vector, which precesses at an angular velocity Ω = −γB0ez with respect

to the laboratory frame, making a fixed angle θ with the z-direction. The equation of motion of the expectation
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Figure 2.1: The effective field vector ωeff = γBeff and its components, ∆ω(t) and ω1(t) = γB1(t), in a rotating
frame of reference. The three conditions shown correspond to (a) far below resonance (ω(t) < ω0, ∆ω(t)� ω1(t)),
(b) at resonance (ω(t) = ω0, ∆ω(t) = 0), and (c) far above resonance (ω(t) > ω0, -∆ω(t)� ω1(t)).

value is [26]

d 〈µ̂〉
dt

= 〈µ̂〉 × γB0 . (2.9)

2.2 Spin in a rotating magnetic field

We shall consider a radio frequency (RF) field

B1(t) = B1(t) [cos (ωt− ϕ(t))ex − sin (ωt− ϕ(t))ey] (2.10)

in addition to the static field B0ez [28, 29]. The Schrödinger equation of motion of a nuclear spin including the

effects of both the fields is [26]

− h̄
i

∂

∂t
|Ψ〉 = −γh̄

[
B0Îz +B1(t)

(
Îx cos(ωt− ϕ(t))− Îy sin (ωt− ϕ(t))

)]
|Ψ〉 . (2.11)

By using (2.3) of the preceding section, we can write the equation (2.11) as

− h̄
i

∂

∂t
|Ψ〉 = −γh̄

[
B0Îz +B1(t)ei(ωt−ϕ(t))Îz Îxe

−i(ωt−ϕ(t))Îz
]
|Ψ〉 . (2.12)
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Figure 2.2: Description of the hyperbolic secant (HS) pulses for adiabatic inversion. (a) Amplitude dependence

versus time B1(t)
B1

= A(t) = 1
cosh (β( 4t

Tc
−1))

, and (b) the frequency sweep ∆ω(t)
∆ω =

tanh (β( 4t
Tc
−1))

tanh β . Tc
2 = 0.1 ms and

β = 10 where Tc is one cantilever cycle and β is truncation factor.

The time dependence of B1 can be eliminated by moving to a frame rotating with the RF field by making the

transformations

|Ψ〉 = ei(ωt−ϕ(t))Îz |Ψ̃〉
∂

∂t
|Ψ〉 = i(ω − ϕ̇(t))Îze

i(ωt−ϕ(t))Îz |Ψ̃〉+ ei(ωt−ϕ(t))Îz
∂

∂t
|Ψ̃〉 . (2.13)

Substituting (2.13) into (2.12) and multiplying both sides from the left by e−i(ωt−ϕ(t))Îz , we obtain

− h̄
i

∂

∂t
|Ψ̃〉 = −γh̄

[(
B0 +

ϕ̇(t)− ω
γ

)
Îz +B1(t)Îx

]
|Ψ̃〉 . (2.14)

With such a transformation, (2.14) means that in the rotating frame, the spin acts as though it experiences

effectively a magnetic field Beff(t) =
(
B0 + ϕ̇(t)−ω

γ

)
ez + B1(t)ex. Defining the instantaneous frequency as

ω(t) = ω − ϕ̇(t) and the instantaneous frequency modulation as ∆ω(t) = ω0 − ω(t), the effective magnetic field

is simply

Beff(t) =
∆ω(t)

γ
ez +B1(t)ex . (2.15)

In the MRFM technique, the frequency modulation of the external RF magnetic field causes the periodic reversals

of the effective magnetic field acting on the nuclear spins (Fig. 2.1, Fig. 2.2 and Fig. 2.3). If the conditions of

adiabatic motion are satisfied
(
|γBeff(t)| �

∣∣∣dα(t)
dt

∣∣∣ where tanα(t) = γB1(t)
∆ω(t)

)
[30], the nuclear spins in the sample
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Figure 2.3: Configuration of the nuclear spin MRFM experiment. The sample (containing nuclear spins) at
the end of an ultrasensitive silicon cantilever is positioned approximately 100 nm above the magnetic tip. The
resonant slice represents those points in the sample where the field from the magnetic tip Btip (plus an external

field Bext) matches the condition for magnetic resonance B0 = Bext +Btip = ω(t)
γ . As the external RF magnetic

field is frequency modulated, the resonant slice swings back and forth through the sample causing cyclic adiabatic
inversion of the nuclear spins. The cyclic spin inversions causes a slight shift of the cantilever amplitude owing
to the magnetic force exerted by the spins on the cantilever.

attached to the cantilever tip follow the effective magnetic field. The forces due to the nuclear spin inversions in

a magnetic field gradient acting on the cantilever cause a small change in the amplitude of its vibrations.

2.3 Spin in a magnetic field gradient

Here, a single spin is described as a classical object obeying the classical equations of motion. In general, the

magnetic field Btip produced by the magnetic tip has an arbitrary magnitude and orientation with respect to

the external magnetic field Bext = Bextez acting on the spin [31]. We assume that the magnetic moment of the

spin µ points initially in the direction of the magnetic field B0 = Bext +Btip. In a new system of coordinates

(ex̃, eỹ, ez̃) whose z̃ axis points in the direction of B0, µ = µz̃ez̃ and B0 = B0ez̃. The nuclear magnetic moment

in a magnetic field will possess a potential energy E = −µ.B0 = −µz̃B0. The x-component of the magnetic

force acting on the nuclear spin is Fx = µz̃
∂B0

∂x . B0 is obtained from (B0,x, B0,y, B0,z) by an expression

B0 = B0,x cosαx +B0,y cosαy +B0,z cosαz

= Btip,x cosαx +Btip,y cosαy + (Bext +Btip,z) cosαz (2.16)

where αi (i=x, y, z) are the direction cosines relating ez̃ to ei. In the limit Bext � Btip,i, B0 ≈ (Bext +Btip,z)ez

and the gradient G = ∂B0

∂x ≈
∂Btip,z

∂x .

9



Next we consider how the x, y, z components of the spin magnetic moment respond to the modulation of the

effective field. The equation of motion for the nuclear spin in the rotating system of coordinates has the form

dµ
dt = µ× γBeff(t). We have

µ̇x = ∆ω(t)µy

µ̇y = γB1(t)µz −∆ω(t)µx (2.17)

µ̇z = −γB1(t)µy .

Assuming the conditions of adiabatic inversion, µ quasistatically follows the effective field Beff(t). Putting in

(2.17) dµ
dt = 0, we obtain

µx =
γB1(t)

[(∆ω(t))2 + (γB1(t))2]
1
2

µ

µy = 0 (2.18)

µz =
∆ω(t)

[(∆ω(t))2 + (γB1(t))2]
1
2

µ .

2.4 Spin relaxation induced by a mechanical resonator

This section describes how the relaxation of nuclear spins is determined by the magnetic coupling to the thermal

excitations of a cantilever [32–36]. The spins in the sample attached to the cantilever experience a magnetic

field noise Bn(t) = Gx(t)ez due to the motion x(t) of the cantilever. The total magnetic field at the position of

the spin is B
′

0(t) = B0 +Bn(t). A circularly polarized RF field B1(t) = B1 [cosωtex − sinωtey] is applied in

a direction perpendicular to B0. Then, in the rotating reference frame that rotates with frequency ω, the spin

experiences an effective magnetic field (Fig. 2.4)

B
′

eff(t) =

(
B0 −

ω

γ
+Gx(t)

)
ez +B1ex . (2.19)

The Hamiltonian of a spin in the rotating frame is

H(t) = H0 +H1(t) (2.20)

where

H0 = −µ̂.Beff = −γh̄
[(
B0 −

ω

γ

)
Îz +B1Îx

]
and

H1(t) = −µ̂.Bn(t) = −γh̄Gx(t)Îz . (2.21)

Without any time-dependent perturbation, the spins are quantized along the effective field, the energy spacing
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Figure 2.4: The magnetic field experienced by the spin.

h̄ωeff being

h̄ωeff = γh̄Beff = γh̄

[(
B0 −

ω

γ

)2

+B2
1

] 1
2

. (2.22)

Let the spin state at t = 0 is the energy eigenstate |↑n〉 where the polar angle θ is given by tan θ = B1

B0−ωγ
. We

wish to find C↑n(t) and C↓n(t) such that

|Ψ(t)〉 = C↑n(t)ei
ωeff
2 t |↑n〉+ C↓n(t)e−i

ωeff
2 t |↓n〉 (2.23)

where |Ψ(t)〉 stands for the state ket at time t. The transition probability for |↑n〉 → |↓n〉 is obtained from the

first-order time-dependent perturbation theory by P↑n↓n(t) = |C↓n(t)|2 [27], where

C↓n(t) = − i
h̄

∫ t

0

eiωefft
′

〈↓n|H1(t
′
) |↑n〉 dt

′

= iγG

∫ t

0

eiωefft
′

x(t
′
) 〈↓n| Îz |↑n〉 dt

′

=
iγG sin θ

2

∫ t

0

eiωefft
′

x(t
′
)dt
′

. (2.24)

The transition probability per unit time or the spin-flip relaxation rate is:

1

T
=

d

dt

(
C↓n(t)C∗↓n(t)

)
=

(
d

dt
C↓n(t)

)
C∗↓n(t) + C↓n(t)

(
d

dt
C∗↓n(t)

)
=

(
γG sin θ

2

)2(
eiωefftx(t)

∫ t

0

e−iωefft
′

x(t
′
)dt
′
+ e−iωefftx(t)

∫ t

0

eiωefft
′

x(t
′
)dt
′
)
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=

(
γG sin θ

2

)2(∫ t

0

eiωeff(t−t
′
)x(t)x(t

′
)dt
′
+

∫ t

0

e−iωeff(t−t
′
)x(t)x(t

′
)dt
′
)

(2.25)

Due to the random thermal (Brownian) motion x(t) of the cantilever, it is possible to only calculate stochastic

expectation values
〈
x(t)x(t)

′
〉

. If the stochastic process is assumed to be stationary and τ = t
′ − t, then

1

T
=

(
γG sin θ

2

)2(∫ 0

−t
e−iωeffτ 〈x(t)x(t+ τ)〉dτ +

∫ 0

−t
eiωeffτ 〈x(t)x(t+ τ)〉dτ

)
=

(
γG sin θ

2

)2(∫ t

−t
e−iωeffτ 〈x(t)x(t+ τ)〉dτ

)
≈
(
γG sin θ

2

)2(∫ ∞
−∞

e−iωeffτ 〈x(t)x(t+ τ)〉dτ
)

=

(
γG sin θ

2

)2

2πSx(ωeff) (2.26)

The assumption of the approximate equality may be justified because the relevant times t can be significantly

longer than the correlation time of the thermal motion. Therefore, the spectral density of the thermal cantilever

motion at the Larmor frequency in the rotating frame determines the relaxation time T . Further analysis of the

spin-flips induced by the magnetic coupling to the thermal excitation of the cantilever modes is identical to that

presented in [32].

2.5 Spin relaxation - Kubo-Anderson model

In this section, a simplified mathematical model based on Kubo-Anderson type statistical fluctuations is de-

veloped to derive the power spectral density of the nuclear spin-I signal measured in magnetic resonance force

microscopy (MRFM) is developed. The conclusion is that the line shape is Lorentzian-shaped. It is assumed

that each spin switches energy levels in a random manner in time due to the interactions with the environment

and the spectral width is estimated from this time variation.

The mathematical model assumes that the cyclically inverted moments giving rise to a periodic force on the

cantilever undergo random, instantaneous jumps in time, because the interactions act to change the magnetic

moment of the nuclear spin [37]. Assuming that the spin jumps are very rapid compared to the length of time

between them, the random modulation of the magnetic moment is “Markoffian”. This Markov model is solved

by making the simplifying assumption that the jumps lead to a completely randomized magnetic moment dis-

tribution.

The nuclear spin fluctuations are accompanied by a change of a large number of microscopic degrees of freedom

characterizing the reservoir. Therefore, the time interval between consecutive spin jumps must be many times
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greater than the times that are necessary for the microscopic parameters to adjust to change of the nuclear spin

energy. As on the time scale of spin jumps, the microscopic parameters can be considered as completely adjusted

to the instantaneous value of the nuclear spin magnetic moment. For each jump, the spin exchanges its energy

with the reservoir within a very short equilibration time. That is why the ‘spin’ forgets its previous history long

before the next jump occurs, the probability of which depends therefore on its present position only. Thus, the

jumping motion of spins is usually approximated as a Markov random process.

The fluctuations experienced by a nuclear spin can be modeled by a continuous-time discrete-state stochastic

process with the set of allowed values for the random variable m(t) (nuclear spin quantum number) being

−I,−I + 1, ..., I [38]. Suppose we observe this discrete-state process from time t0 up to time tk, and let t0 ≤

t1 ≤ ... ≤ tk−1 ≤ tk. The observed value mk at tk is the “present spin state” of the process, and m0,m1, ...,mk−1

is its observed “past history”. Then, mk+1,mk+2, ..., for time instants tk+1 ≤ tk+2 ≤ ..., represents the unknown

“future”. In a Markov process, the future is conditionally independent of the past history and the entire past

history is summarized in the present spin state. This fact is referred to as the memoryless property since (a) all

past spin state information is irrelevant, and (b) how long the spin has been in the current spin state is irrelevant,

to probabilistically predict the future. The Markov process {m(t)} is formally defined as

P [m(tk+1) = mk+1|m(tk) = mk,m(tk−1) = mk−1, ...,m(t0) = m0] = P [m(tk+1) = mk+1|m(tk) = mk] (2.27)

for any t0 ≤ t1 ≤ ... ≤ tk ≤ tk+1 where P [...] is the conditional probability.

In a continuous-time process, spin transitions may occur at any time. We need to specify a transition probability

matrix P (τ) whose (i, j)th entry, pij(τ), is the probability of a transition from quantum state mi to quantum

state mj within a time interval of duration τ for all possible τ . The time-dependent transition probabilities are

defined as follows:

pij(t, s) ≡ P [m(s) = mj |m(t) = mi], t ≤ s . (2.28)

We will refer to pij(t, s) as a transition function. For a homogeneous Markov process, all transition functions

pij(t, s) are independent of absolute time instants t, s, and depend only on the difference τ = s − t. Then,

homogeneity requires that, for any time t,

pij(τ) ≡ pij(t, t+ τ) = P [m(t+ τ) = mj |m(t) = mi] . (2.29)

The transition functions satisfy the forward Chapman-Kolmogorov-Smoluchowski (CKS) matrix differential equa-
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tion

dP (τ)

dτ
= P (τ)Q (2.30)

where Q ≡ [qij ] is called the Transition Rate Matrix of the Markov process. For any state i and time instant τ :

∑
j

pij(τ) = 1 (2.31)

since we are summing over all possible mutually exclusive events causing a transition from mi to some new state.

We also have the following initial conditions (assuming that a spin transition from any mi to mj 6= mi cannot

occur in zero time):

pij(0) =


1 if mj = mi

0 if mj 6= mi .

(2.32)

The Poisson counting process is an essential building block in the stochastic modeling and analysis of Markov

processes. The Poisson process counts events that occur in a very random but time-invariant way. The Poisson

process possesses the memoryless property and is characterized by exponentially distributed interevent times (T )

P (T > t) = e−λt where λ is the average rate at which events occur per unit time. There is an useful result that

the superposition of n independent Poisson processes, each possibly modelling a different event, with parameters

λi, i = 1, ..., n is also a Poisson process with average rate parameter

Λ =

n∑
i=1

λi . (2.33)

Let Ti denote the amount of time spent at state mi whenever this state is visited by the spin, which we also

refer to as the spin dwell time. It is a fundamental property of continuous-time discrete-state Markov processes

that the distribution of the spin dwell time Ti, P [Ti > t], t ≥ 0, is exponential. Thus, P (Ti > t) = e−Λit where

Λi > 0 is a parameter generally dependent on the state mi. This is a direct consequence of the memoryless

property and in fact, there exists a close connection between Poisson counting processes and Markov processes.

The interpretation of the parameter Λi is that it is the sum of the Poisson rates of all possible events which lead

to a spin transition from state mi. Each event is generated by a Poisson process with rate λij which causes a

spin transition from state mi to state mj 6= mi. Then,

Λi =
∑
j

λij . (2.34)

The individual scalar differential equations for the CKS matrix equation are:

dpij(τ)

dτ
= pij(τ)qjj +

∑
r 6=j

pir(τ)qri . (2.35)
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This is a set of 2I + 1 equations for a fixed i. The matrix element qii represents the instantaneous rate at which

a spin transition out of mi takes place and satisfies the relation qii = −Λi. The interpretation of qij is the

instantaneous rate at which a spin transition from mi to mj takes place and satisfies the relation qij = λij . In

addition, we have

∑
j

qij = 0 . (2.36)

Suppose spin transitions occur at random time instants T1 < T2 < ... < Tk < ... and let the spin state following

the transition at Tk is denoted bymk. The transition probability, Pij , is defined as Pij = P [mk+1 = mj |mk = mi]

and is expressed in terms of elements of Q as Pij =
qij
−qii , j 6= i. Moreover, we have

∑
j 6=i

Pij = 1 (2.37)

and Pii = 0.

The spin state probability is defined as πj(t) ≡ P [m(t) = mj ] and accordingly, we have a spin state probability

vector π(t) = [π0(t), π1(t), ...]. A continuous-time discrete-state Markov process is completely specified by the

state space m0,m1, ... and the transition matrix P (τ), and an initial spin state probability vector π(0) which

provides the probability distribution of the initial spin state m(0). Using the rule of total probability, we can

obtain a relationship in matrix form π(t) = π(0)P (t). The steady state solution of this equation is the stationary

distribution or the equilibrium distribution to which the ensemble of our nuclear spins must approach starting

from any arbitrary distribution.

The fundamental task is to calculate the probability of finding m(t) at state m at time t, that is, P [m(t) = m]

to probabilistically assess which energy levels are more likely than others. The power spectrum of the spin signal

is given by the Fourier transform

S(f) = F [〈µz(t)µz(t+ τ)〉] (2.38)

where µz(t) = 2µm(t) is the time-dependent spin z-component. The problem is to find S(f) under the assump-

tion that µz(t) is Markovian.

The simplest possible case is that of a nuclear spin with I = 1
2 in which it has only two possible spin z-

magnetic moment components, which we take to be ±µ, and these moments are equally probable so that
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P [µ(t) = µ] = P [µ(t) = −µ]. The only possible “transition rate matrix” Q for this case is

Q =

 −λ λ

λ −λ

 (2.39)

where λ is a parameter specifying the rate at which jumping takes place back and forth between the two spin

states.

In the case of spin-I, the magnetic moment spectrum consists of a series of 2I + 1 equally spaced moments

µi = −2Iµ,−2(I − 1)µ, ..., 2(I − 1)µ, 2Iµ . (2.40)

Let us suppose that the possible z-magnetic moments of a nuclear spin are numbered as µ1, µ2, ..., µ2I+1. In

the simplest case, we say that transitions are equally likely to all other spin states (we assume a symmetrical

Q-matrix) [39, 40]

Q =



−Λ Λ
2I

Λ
2I ... ... ... Λ

2I

Λ
2I −Λ Λ

2I ... ... ... ...

Λ
2I

Λ
2I −Λ ... ... ... ...

... ... ... ... ... ... ...

... ... ... ... ... ... ...

... ... ... ... ... ... ...

Λ
2I ... ... ... ... ... −Λ



. (2.41)

The transition rate from each state is Λ. For a fixed i, equation 2.35 can be written in a more compact form

dpi(τ)

dτ
= Qpi(τ) (2.42)

where pi(τ) is a (2I + 1)-dimensional transition function vector. To solve this differential equation is equivalent

to find the eigenvalues and associated eigenvectors of the matrix Q.

Q is a 2I + 1× 2I + 1 circulant matrix fully specified by one column vector q. The eigenvalues of Q are given by

λj = −Λ +
Λ

2I
ωj +

Λ

2I
ω2
j + ...+

Λ

2I
ω2I
j , j = 0, 1, ..., 2I (2.43)

λj =


0 if j = 0

−Λ
(
1 + 1

2I

)
if j 6= 0

(2.44)
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where ωj = ei
2πj
2I+1 are the (2I + 1)-th roots of unity. The corresponding orthonormal eigenvectors are given by

Ψj =
1√

2I + 1

(
1, ωj , ω

2
j , ..., ω

2I
j

)T
. (2.45)

The block matrix U that diagonalizes Q is given by (Ψ0Ψ1...Ψ2I) and is also unitary and orthogonal. Let the

diagonal matrix be denoted by D. The solution is given by [41]

pi(τ) = eQτpi(0)

= UeDτU−1pi(0)

= U



1 0 0 ... ... ... 0

0 e−Λ(1+ 1
2I )τ 0 ... ... ... ...

0 0 e−Λ(1+ 1
2I )τ ... ... ... ...

... ... ... ... ... ... ...

... ... ... ... ... ... ...

... ... ... ... ... ... ...

0 ... ... ... ... ... e−Λ(1+ 1
2I )τ



U−1pi(0)

= Ue−Λ(1+ 1
2I )τIU−1pi(0) +U



1− e−Λ(1+ 1
2I )τ 0 0 ... ... ... 0

0 0 0 ... ... ... ...

0 0 0 ... ... ... ...

... ... ... ... ... ... ...

... ... ... ... ... ... ...

... ... ... ... ... ... ...

0 ... ... ... ... ... 0



U−1pi(0) . (2.46)

The transition function is given by

pij(τ) = e−Λ(1+ 1
2I )τδij +

1

2I + 1

(
1− e−Λ(1+ 1

2I )τ
)

. (2.47)

Assuming a uniform distribution among the initial states P [m(0) = mi] = 1
2I+1 , the probability P [m(t) = mj ]

is

πj(t) =
∑
i

pij(τ)πi(0) =
1

2I + 1
. (2.48)

The spin state probabilities remain uniform at any later time. Using the Markov properties, the two-time

autocorrelation function between the values of µz(t) at time t and time t+ τ can be evaluated as

〈µz(t)µz(t+ τ)〉 =
∑
i,j

µiµjP (µi, t;µj , t+ τ)
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Figure 2.5: The power spectral density of a two minute record of 31P spin fluctuations measured using MRFM
technique. It fits well to a Lorentzian and the correlation time extracted from the fit is given by τm = 2.5 s.

=
∑
i,j

(2µmi)(2µmj)pij(τ)πi(t)

=
4µ2

2I + 1

∑
i,j

mimj

[
e−Λ(1+ 1

2I )τδij +
1

2I + 1

(
1− e−Λ(1+ 1

2I )τ
)]

=
4µ2

2I + 1

e−Λ(1+ 1
2I )τ

∑
i

m2
i +

1

2I + 1

(
1− e−Λ(1+ 1

2I )τ
)∑
i,j

mimj


=

4µ2I(I + 1)

3
e−Λ(1+ 1

2I )τ (2.49)

which is a simple exponential in form. From the Wiener-Khinchin theorem, the single-sided power spectral

density is the Fourier transform of the autocorrelation function (Fig. 2.5)

S(f) = 2

∫ ∞
−∞

dτe−i2πfτ 〈µz(t)µz(t+ τ)〉

=
4µ2I(I + 1)

3

4Λ
(
1 + 1

2I

)
Λ2
(
1 + 1

2I

)2
+ 4π2f2

. (2.50)

It determines the connection between fluctuations in the value of µz(t) and the frequency distribution of the

time variations of µz(t).

2.6 Spins - polarization and distribution

The volume of the resonant slice studied in our MRFM experiment is typically tiny (∼ 100 nm3) and contains

N ∼ 104 − 106 randomly oriented nuclear spins. For such small number of spins in the slice, the time-varying

18



Figure 2.6: An ensemble of randomly polarized nuclear spins has a resultant magnetic moment because of
statistically incomplete cancellation.

statistical fluctuations of the polarization generated by random spin flips far exceeds the mean Boltzmann

polarization. This section describes the derivation of the statistical polarization and distribution of a nuclear

spin ensemble using different methods (Fig. 2.6).

2.6.1 Multinomial distribution

Let us consider an ensemble containing N spin-I nuclei placed in a magnetic field B and is in thermodynamic

equilibrium at a temperature T . For the sake of illustration, we shall consider nuclei with half-integer spin, i.e.,

I = 2k−1
2 where k is a natural number. Each spin occupying a state j (ranging from − 2k−1

2 to 2k−1
2 in steps of

one) possesses an energy Ej = −2jµB where µ = γh̄
2 . Let the total number of spins N be divided among the

2I + 1 spin states, so that N =
∑
j

Nj where Nj represents the occupation number of state j. The probability pj

of occupation of each state is determined by the Boltzmann factor

pj =
e
−

Ej
kBT

2I + 1
≈ 1

2k

(
1 + 2j

µB

kBT

)
. (2.51)

The vector random variable N =
(
N− 2k−1

2
, ..., Nj , ..., N 2k−1

2

)
follows a multinomial distribution with parameters

N and p where p = (..., pj , ...) and
∑
j

pj = 1. The properties of the multinomial distribution such as the expected

value, the variance and the covariance are given by

E(Nj) = pjN

Var(Nj) = pj(1− pj)N (2.52)
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Cov(Ni, Nj) = −pipjN .

The total magnetization ∆M of the ensemble is given by

∆M =

2k−1
2∑

j=− 2k−1
2

2jNjµ . (2.53)

The variance σ2
∆M of the typical magnetization fluctuations will be

σ2
∆M = 4µ2

 2k−1
2∑

j=− 2k−1
2

j2V ar(Nj) +

2k−1
2∑

i=− 2k−1
2

2k−1
2∑

j 6=i,j=− 2k−1
2

ijCov(Ni, Nj)


= 4Nµ2

 2k−1
2∑

j=− 2k−1
2

j2pj(1− pj)−

2k−1
2∑

i=− 2k−1
2

2k−1
2∑

j 6=i,j=− 2k−1
2

ijpipj

 . (2.54)

Substituting equation (2.51) in the above equation, we get

σ2
∆M = 4Nµ2

 2k−1
2∑

j=− 2k−1
2

j2 1

2k

(
1 + 2j

µB

kBT

)(
1− 1

2k

(
1 + 2j

µB

kBT

))

−

2k−1
2∑

i=− 2k−1
2

2k−1
2∑

j 6=i,j=− 2k−1
2

ij
1

2k

(
1 + 2i

µB

kBT

)
1

2k

(
1 + 2j

µB

kBT

)
= 4Nµ2

 2k−1
2∑

j=− 2k−1
2

j2 1

2k

(
1 + 2j

µB

kBT
− 1

2k

(
1 + 2j

µB

kBT

)
− 1

2k
2j

µB

kBT
− 1

2k
4j2

(
µB

kBT

)2
)

−

2k−1
2∑

i=− 2k−1
2

2k−1
2∑

j 6=i,j=− 2k−1
2

ij
1

(2k)2

(
1 + 2(i+ j)

µB

kBT
+ 4ij

(
µB

kBT

)2
)

=
4Nµ2

(2k)2

 2k−1
2∑

j=− 2k−1
2

j2

(
(2k − 1) + (2k − 2)2j

µB

kBT
− 4j2

(
µB

kBT

)2
)

−

2k−1
2∑

i=− 2k−1
2

2k−1
2∑

j 6=i,j=− 2k−1
2

(
ij + 2(i2j + ij2)

µB

kBT
+ 4(ij)2

(
µB

kBT

)2
)

=
Nµ2

k2

(2k − 1)

2k−1
2∑

j=− 2k−1
2

j2

+

4(k − 1)
µB

kBT

2k−1
2∑

j=− 2k−1
2

j3


−

4

(
µB

kBT

)2
2k−1

2∑
j=− 2k−1

2

j4

−
 2k−1

2∑
i=− 2k−1

2

i

 2k−1
2∑

j 6=i,j=− 2k−1
2

j


−

4
µB

kBT

2k−1
2∑

i=− 2k−1
2

i2

 2k−1
2∑

j 6=i,j=− 2k−1
2

j

−
4

(
µB

kBT

)2
2k−1

2∑
i=− 2k−1

2

i2

 2k−1
2∑

j 6=i,j=− 2k−1
2

j2

 . (2.55)
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Noting that

2k−1
2∑

j=− 2k−1
2

j = 0 and

2k−1
2∑

j=− 2k−1
2

j3 = 0, we can simplify the above expression as

σ2
∆M =

Nµ2

k2

(2k − 1)

2k−1
2∑

j=− 2k−1
2

j2

−
4

(
µB

kBT

)2
2k−1

2∑
j=− 2k−1

2

j4

−
 2k−1

2∑
i=− 2k−1

2

i(−i)


−

4
µB

kBT

2k−1
2∑

i=− 2k−1
2

i2(−i)

−
4

(
µB

kBT

)2
2k−1

2∑
i=− 2k−1

2

i2

 2k−1
2∑

j=− 2k−1
2

j2

− i2


=
Nµ2

k2


2k

2k−1
2∑

j=− 2k−1
2

j2

− 4

(
µB

kBT

)2
 2k−1

2∑
j=− 2k−1

2

j2

2


=
Nµ2

k2

[
2k

(
k(2k − 1)(2k + 1)

6

)
− 4

(
µB

kBT

)2(
k(2k − 1)(2k + 1)

6

)2
]

= Nµ2

[
(2k − 1)(2k + 1)

3
−
(
µB

kBT

)2(
(2k − 1)(2k + 1)

3

)2
]

=
4I(I + 1)Nµ2

3

[
1− 4I(I + 1)

3

(
µB

kBT

)2
]

=
4I(I + 1)Nµ2

3

[
1− ∆MB

NkBT

]
(2.56)

where ∆M is the thermal or Boltzmann magnetization.

2.6.2 Density matrix

Consider an ensemble of N spins with the spin quantum number I and the magnetic quantum numbers m =

−I,−I+ 1, ..., I. The ensemble has an instantaneous statistical magnetization excess ∆M due to the incomplete

cancellation of the nuclear spin magnetic moments. The Hamiltonian of a single spin in the presence of a magnetic

field B along the z-direction is

H = −µ̂zB = −2µBÎz (2.57)

where µ̂z is the z-component of the magnetic dipole moment operator; and the energies of the different spin

states are no longer equal. Statistical mechanics predicts the equilibrium distribution at a temperature T to

be a Boltzmann distribution over the energies of the spin states and the density matrix ρ̂ = 1
Z e
− H
kBT where

Z = Tr{e−
H
kBT } contains all the information about the nuclear spin polarization in the system [26, 42]. The

density matrix of the spin system can be used to compute the mean ∆M and the fluctuation variance σ2
∆M

∆M = NTr{µ̂z ρ̂}

σ2
∆M = N

[
Tr{µ̂2

z ρ̂} − (Tr{µ̂z ρ̂})2
]

(2.58)
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Figure 2.7: Boltzmann and statistical polarization in an ensemble of N proton spins at a temperature T = 0.4
K and a magnetic field B = 4 T.

of the z-magnetization. In the high-temperature limit, Z = 2I + 1 and

e
− H
kBT ≈ 1− H

kBT
= 1 + 2

(
µB

kBT

)
Îz . (2.59)

Since

Tr{Îz} = 0

Tr{Î2
z} =

I(I + 1)(2I + 1)

3
(2.60)

Tr{Î3
z} = 0

we have

∆M =
4I(I + 1)

3

(
µB

kBT

)
Nµ

σ2
∆M =

4I(I + 1)

3
Nµ2

[
1− 4I(I + 1)

3

(
µB

kBT

)2
]

. (2.61)

Therefore, the equation for σ2
∆M derived here agrees with that obtained in the equation (2.56). Even at high

magnetic fields and cryogenic temperatures, µB << kBT and the statistical magnetization fluctuations have the

variance σ2
∆M = 4I(I+1)

3 Nµ2. One can define the statistical nuclear spin polarization as

SNP =
σ∆M

2INµ
=

√
I + 1

3I

(
1√
N

)
(2.62)
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Figure 2.8: Boltzmann (black) and statistically polarized spins (red) in an ensemble of N proton spins at a
temperature T = 0.4 K and a magnetic field B = 4 T.

and the Boltzmann nuclear spin polarization as

BNP =
∆M

2INµ
=

2(I + 1)

3

(
µB

kBT

)
. (2.63)

The term in the denominator 2INµ corresponds to 100% polarization of the nuclear spins. The dominance of sta-

tistical nuclear spin polarization, as defined by SNP > BNP , occurs for sample volumes V < 3
4I(I+1)

(
µB
kBT

)−2

ρ−1
N

where ρN = N
V is the spin number density (Fig. 2.7 and Fig. 2.8).

Magnetization Polarization Net polarized spins

Boltzmann 4I(I+1)
3

(
µB
kBT

)
Nµ 2(I+1)

3

(
µB
kBT

)
2(I+1)

3

(
µB
kBT

)
N

Statistical
√

4I(I+1)
3

√
Nµ

√
I+1
3I

(
1√
N

) √
I+1
3I

√
N

Table 2.1: Boltzmann vs Statistical.

2.6.3 Gaussian distribution

Consider a system of N independent spins, each bearing a magnetic moment µ which may be directed either

parallel or antiparallel to an external magnetic field B [43, 44]. Let the average polarization of the nuclear spin

system be p = µB
kBT

. The ensemble averaged density matrix of single spin with spin-1/2 is

ρ =

 1+p
2 0

0 1−p
2

 . (2.64)
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Let us calculate the probability distribution of the total magnetic moment ∆M of the polarized system. The

average value of ∆M in these conditions is pNµ, and we are interested in the probability distribution P (∆M).

The projection of each moment is likely to be +µ with the probability 1+p
2 and −µ with the probability 1−p

2 .

We are interested in the probability of arrangements which result in N↑ = N+n
2 moments being positive and

N↓ = N−n
2 being negative. The probability of a net moment ∆M = nµ is given by

P (∆M) = P (nµ) =
N !(

N+n
2

)
!
(
N−n

2

)
!

(
1 + p

2

)N+n
2
(

1− p
2

)N−n
2

. (2.65)

An approximation to the binomial distribution for large N can be obtained by expanding about the value ∆M

where P (∆M) is a maximum, i.e., where dP (∆M)
dn = 0. Since the logarithm function is monotonic, we can instead

choose to expand the logarithm. Let n = n+ δn, then

ln [P (∆M)] = ln [P (∆M = nµ)] +B1δn+
1

2
B2(δn)2 +

1

3!
B3(δn)3 + ... (2.66)

where

Bk ≡
[

dk ln [P (∆M)]

dnk

]
n=n

. (2.67)

But we are expanding about the maximum, so, by definition,

B1 ≡
[

d ln [P (∆M)]

dn

]
n=n

= 0 . (2.68)

This also means that B2 is negative, so we can write B2 = −|B2|.

Now, taking the logarithm of 2.63 gives

ln [P (∆M)] = lnN !− ln

(
N + n

2

)
!− ln

(
N − n

2

)
! +

N + n

2
ln

(
1 + p

2

)
+
N − n

2
ln

[
1− p

2

]
. (2.69)

For large N+n
2 and N−n

2 , we can use Stirling’s approximation

ln

(
N + n

2

)
! ≈ N + n

2
ln

(
N + n

2

)
− N + n

2
, (2.70)

so

d ln
(
N+n

2

)
!

dn
≈ 1

2

[
ln

(
N + n

2

)
+ 1

]
− 1

2
=

1

2
ln

(
N + n

2

)
, (2.71)

d ln
(
N−n

2

)
!

dn
≈ −1

2
ln

(
N − n

2

)
, (2.72)

24



-400 -200 0 200 400
0.000

0.001

0.002

0.003

0.004

0.005

Pr
ob

ab
ili

ty
 d

is
tri

bu
tio

n

Net nuclear spins

   N↑+N↓=10000 

(N↑-N↓) 

Figure 2.9: The probability distribution of a nuclear spin ensemble containing N = 10000 protons at a temper-
ature T = 0.4 K and a magnetic field B = 4 T (p ≈ 0.01).

and

d lnP (∆M)

dn
≈ −1

2
ln

(
N + n

2

)
+

1

2
ln

(
N − n

2

)
+

1

2
ln

(
1 + p

2

)
− 1

2
ln

(
1− p

2

)
. (2.73)

Setting this expression to 0, we get n = pN .

We can now find the terms in the expansion,

B2 ≡
[

d2 lnP (∆M)

dn2

]
n=n

= −1

2

(
1

N + n
+

1

N − n

)
= − 1

(1− p2)N
. (2.74)

Now, treating the distribution as continuous,

lim
N→+∞

N∑
n=−N

P (∆M) ≈
∫
P (∆M)dn =

∫ ∞
−∞

P (∆M + δM)dδn = 1 . (2.75)

Ignoring terms higher than B2, we get

P (∆M) = P (∆M)e−
|B2|(δn)2

2 . (2.76)
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The probability must be normailzed, so

∫ ∞
−∞

P (∆M)e−
|B2|(δn)2

2 dδn = P (∆M)

√
2π

|B2|
= 1 (2.77)

and

P (∆M) =

√
|B2|
2π

e−
|B2|(δn)2

2

=
1√

2π(1− p2)N
e
− (n−pN)2

2(1−p2)N . (2.78)

The binomial distribution is therefore approximated by a Gaussian distribution for any fixed p (even if p is

small) as N is taken to infinity (Fig. 2.9). The mean and the variance of the polarization for this probability

distribution is identical to that derived using the two methods described earlier.
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Chapter 3

Nanomechanical Resonators

This Chapter deals with the determination of the power spectra of the mechanical resonators which are driven

by random thermal forces and amplitude modulated periodic forces generated by nuclear spin inversions.

3.1 Brownian motion

The harmonic Brownian motion of an eigenmode of the mechanical resonator is well-described by the stochastic

Langevin equation [33, 45]

ẍ = −Ω0

Q
ẋ− Ω2

0x+
F (t)

m
(3.1)

where x is the displacement of the resonator, Ω0 is the natural frequency and Q is the quality factor. The force

acting on the resonator is divided into three parts. The first part is the frictional force and is proportional to the

velocity of the resonator. The second part of the force is the harmonic force proportional to the displacement.

The third part is the random force acting independent of the motion of the resonator.

We Fourier-expand the random force and the displacement as stationary stochastic processes,

F (t) =

∞∑
n=−∞

Fne
iΩnt,x(t) =

∞∑
n=−∞

xne
iΩnt . (3.2)

Then the stochastic differential equation is converted into the relation

xn =
1

Ω2
0 − Ω2

n + iΩnΩ0

Q

Fn
m

(3.3)

between the Fourier components. If we write the power spectra of F (t) and x(t) as SF and Sx respectively, we
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obtain

Sx(Ω) =
1∣∣∣Ω2

0 − Ω2 + iΩΩ0

Q

∣∣∣2
SF (Ω)

m2

=
1

(Ω2
0 − Ω2)

2
+
(

ΩΩ0

Q

)2

SF (Ω)

m2
. (3.4)

Making the assumption of a white spectrum for the random force F (t), we have

SF (Ω) = SF = const . (3.5)

From the Wiener-Khintchine theorem, it follows that the correlation function of F (t) has a vanishingly short

correlation time,

〈F (t)F (t+ τ)〉 = 2πSF δ(τ) . (3.6)

It follows from the Wiener-Khintchine theorem that for τ > 0,

〈x(t)x(t+ τ)〉 =

∫ ∞
−∞

dΩeiΩτ
1

(Ω2
0 − Ω2)2 +

(
ΩΩ0

Q

)2

SF
m2

=
SF
m2

∫ ∞
−∞

dΩeiΩτ
1

(Ω− Ω1 + iγ2 )(Ω + Ω1 + iγ2 )

1

2Ω1

(
1

Ω− Ω1 − iγ2
− 1

Ω + Ω1 − iγ2

)
=

SF
2m2Ω1

2πi

(
ei(Ω1+i γ2 )τ

(iγ)(2Ω1 + iγ)
− ei(−Ω1+i γ2 )τ

(−2Ω1 + iγ)(iγ)

)
=

πSF
m2Ω1γ

e−
γ
2 t

(
eiΩ1τ

2Ω1 + iγ
− e−iΩ1τ

−2Ω1 + iγ

)
=

πSF
m2Ω1γ

1

4Ω2
1 + γ2

e−
γ
2 τ
(
2Ω1(eiΩ1τ + e−iΩ1τ )− iγ(eiΩ1τ − e−iΩ1τ )

)
=

πSF
m2Ω2

0γ
e−

γ
2 τ

(
cos Ω1τ +

γ

2Ω1
sin Ω1τ

)
. (3.7)

For a derivation of this result, the residues at the poles Ω = ±Ω1 + iγ2 , where γ = Ω
Q and Ω1 =

(
Ω2

0 −
γ2

4

) 1
2

of the

integrand are calculated. Thus, the correlation function of the displacement of the resonator is an exponentially

decaying sinusoidal function in time with the decay constant γ
2 . In particular, in the limit τ → 0, this reduces

to 〈
x2
〉

=
πSF
m2Ω2

0γ
. (3.8)

If the resonator mode is in thermal equilibrium with the bath at temperature T , the equipartition law

k
〈
x2
〉

= kBT (3.9)
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Figure 3.1: The power spectrum (2πSx(Ω)) of the thermal (T = 4.5 K) displacement of the cantilever has a
Lorentzian lineshape. Spin force exerted at the cantilever frequency can give rise to the resonant response.

must hold for the energy distribution. For (3.8) to be consistent with this,

SF =
ΓkBT

π
(3.10)

must hold where Γ = mγ. In other words, the random force F (if it has a white spectrum) must have the power

spectral density given by (3.10) so that the Langevin equation (3.1) represents free Brownian motion in thermal

equilibrium at temperature T . This stochastic force acting on the resonator determines its force sensitvity.

Therefore, the equation (3.4) reduces to

Sx(Ω) =
1

(Ω2
0 − Ω2)

2
+
(

ΩΩ0

Q

)2

ΓkBT

πm2
. (3.11)

In the single-sided spectrum convention, the above expressions for SF and Sx(Ω) get doubled and hereafter, we

shall work in this convention. For the frequencies Ω close to Ω0,

Sx(Ω) ≈ πQ

2Ω3
0

 1

π

Ω0

2Q

(Ω0 − Ω)2 +
(

Ω0

2Q

)2

 SF
m2

=
πQ

2Ω3
0

2ΓkBT

πm2

 1

π

Ω0

2Q

(Ω0 − Ω)2 +
(

Ω0

2Q

)2


=
kBT

k

 1

π

Ω0

2Q

(Ω0 − Ω)2 +
(

Ω0

2Q

)2


=

1

2π

kBT

mΩ0Q

1

(Ω0 − Ω)
2

+
(

Ω0

2Q

)2 (3.12)
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Figure 3.2: The power spectrum of the damped motion of the cantilever. An FPGA controller is used to damp
the cantilever response thereby increasing the bandwidth of detection.

which gives a Lorentzian shape to the power spectrum of the displacement of the resonator (Fig. 3.1). The

function in the bracket has an integral equal to unity. The mechanical Q of the cantilever can be damped down

to increase its detection bandwidth without sacrificing force sensitivity [46] (Fig. 3.2).

3.2 Driven motion

From equation (3.1), one can derive the displacement of the cantilever due to the time-dependent force Fi(t) =

µz,i(t)Gi cos (ΩSt+ θi) exerted by a single spin as

xi(t) =
µz,i(t)Gi

m

Ω2
0 − Ω2

S

(Ω2
0 − Ω2

S)2 + (Ω0ΩS
Q )2

cos (ΩSt+ θi) +
µz,i(t)Gi

m

Ω0ΩS
Q

(Ω2
0 − Ω2

S)2 + (Ω0ΩS
Q )2

sin (ΩSt+ θi) .

(3.13)

Defining ∆ΩS = Ω0 − ΩS and ∆Ω0 = Ω0

Q , and keeping only the first order terms in ∆ΩS
∆Ω0

, we obtain

xi(t) ≈
2∆ΩS
∆Ω0

µz,i(t)GiQ

k
cos (ΩSt+ θi) +

µz,i(t)GiQ

k
sin (ΩSt+ θi) . (3.14)

The displacement due to the force exerted by N spins is

X(t) =

N∑
i=1

xi(t) =

N∑
i=1

2∆ΩS
∆Ω0

µz,i(t)GiQ

k
cos (ΩSt+ θi) +

N∑
i=1

µz,i(t)GiQ

k
sin (ΩSt+ θi) . (3.15)

The phase θi for each spin depends on its resonance frequency and the type of adiabatic inversion pulse being

used. The region where the lateral gradient is largest contributes predominantly to the displacement signal.
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Figure 3.3: The power spectrum of the motion of the cantilever driven by forces generated by the adiabatic
inversions. The narrowband spin noise spectral peak, whose spectral width is inversely proportional to the spin
correlation time τm, rests atop a much broader peak generated by the damped cantilever vibrations [47].

Making the simplifying assumptions that all the spins in this region are flipped periodically at the cantilever

frequency (ΩS = Ω0) at the same phase θ and experience the same gradient, the expression for the displacement

reduces to a superposition of N independently fluctuating Kubo-Anderson signals (KAS) (Fig. 3.3).

X(t) =

N∑
i=1

µz,i(t)GQ

k
sin (ΩSt+ θ) . (3.16)

The displacement of the cantilever is 90 degrees out of phase with respect to the driving force.
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Chapter 4

Experimental Apparatus

The main goals of my doctoral research are to contribute to setting up of state-of-the-art low temperature,

high vacuum magnetic resonance force microscopy (MRFM) setup and most importantly to use this setup to the

detection of magnetic resonance in nanoscale samples. I am the first member of Poggio lab to work on the MRFM

project and began working in an empty lab. Most of the experimental work discussed in this thesis is performed

in a 4He cryostat. The construction of a MRFM probe head for the 4He system and the assembly of measurement

electronics required ∼ 1.5 years of build-up time. Apart from my contribution to the design and building, the

successful running of the MRFM experimental setup is possible only because of the major contributions from

Fei Xue and Martino Poggio. This Chapter gives a brief overview of the important components of the MRFM

experimental setup. RF waveform generation and FPGA control system which have been mainly realised by

myself is discussed in detail.

4.1 Operation

The MRFM setup is based on the cyclic adiabatic inversion (CAI) technique (Fig. 4.1, Fig. 4.2 and Fig. 4.4).

It consists of a sample attached to the cantilever, a static magnetic field B0 in the z-direction, and a micron

width current carrying microwire patterned onto the substrate generating an amplitude and phase modulated

RF field B1(t). The sample consists of nuclear spins interacting with the magnetic gradient source, the static

and RF fields. The idea of the CAI-based MRFM is that by setting the frequency of the phase modulation of

the RF field equal to the natural frequency
(

Ω0

2π = 1
Tc

)
of the cantilever, we can cause adiabatic inversions of the

spins in the resonant slice. These spin inversions in a field gradient exert an oscillating force on the cantilever,

thereby increasing the vibration amplitude of the cantilever. The magnetic tip is then scanned with respect to

the sample, and an image of the sample’s structure can be taken.
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Figure 4.1: Photograph of the probe.

The MRFM probe is housed in a vacuum chamber that achieves a vacuum of 10−6 mbar or better at 4 K.

The chamber is built into a 4He cryostat and a large-bore superconducting magnet capable of producing static

magnetic fields up to 6 T. The force-detecting element is a custom-made cantilever with a resonant frequency

less than 5 kHz, with an attached sample. Attocube piezo positioners position the sample. The microwire is

driven via a vacuum feedthrough from RF (DC to 300 MHz) generators, which are amplitude and frequency-

modulated. A piezo actuator provides feedback to the cantilever from the FPGA controller. The cantilever

vibration is detected using a sensitive fiber-optic interferometer.

4.2 Cantilevers

For our experiments, custom-made silicon cantilevers with a nominal spring constant k = 100 µN/m and a

frequency fc = 2.5 kHz are employed. The cantilever has a length of ∼100 µm and a paddle to accommodate the

laser spot. The sample is attached to the tip of the cantilever. Quality factors varied between 10000 and 50000

in vacuum (pressure < 10−5 mbar). The tip of the cantilever is e-beam evaporated either with Si/Au (10/30

nm) or Ti/Au (10/30 nm) to reduce the strong surface interactions with the substrate.

4.3 Fiber-optic interferometer

The light beam is produced by a laser module (λ=1550 nm) and transmittted by a single-mode optical fiber into

the vacuum chamber. A collimating lens focuses the beam onto the paddle of the cantilever. The reflected light

is collected by a photodiode. Cantilever alignment is done mechanically when the vacuuum chamber is open.

34



Lens 

Cantilever 
 chip 

Microwire 

Piezo actuator 

Figure 4.2: Zoom-in photograph of the probe.

The single-mode fiber-optic interferometer is well-suited to detect the displacement of cantilevers in scanning

force microscopy experiments [48, 49] (Fig. 4.3). In a typical application, the laser couples coherent light into one

arm of a 2×2 directional coupler with a 99/1 coupling ratio thereby serving as an interferometric beam splitter.

Only 1% of the laser power reaches the cleaved end of the fiber. The cleaved end is positioned nearby a force

sensing cantilever. Light reflects from both the cantilever and the cleaved end, then reenters the sensing fiber,

where it interferes to form a displacement-dependent signal. The interferometer operates in the bad-cavity limit

with the cavity “mirrors” being the cantilever and the cleaved end. Assuming that the power reflectance at the

fiber-air interface R1 and at the cantilever interface R2 to be small (R1, R2 � 1), one can derive an expression

for the detected power PR in terms of the incident optical power PI = E2
I

PR = |(EI
√
R1e

iφ1 + EI
√

1−R1

√
R2

√
1−R1e

iφ2)|2

= (EI
√
R1e

iφ1 + EI
√

1−R1

√
R2

√
1−R1e

iφ2)(EI
√
R1e

−iφ1 + EI
√

1−R1

√
R2

√
1−R1e

−iφ2)

= E2
IR1 + E2

IR2(1−R1)2 + E2
I

√
R1R2(1−R1)(ei(φ1−φ2) + ei(φ2−φ1))

= E2
IR1 + E2

IR2(1−R1)2 + 2E2
I

√
R1R2(1−R1) cos (φ1 − φ2)

= E2
IR1 + E2

IR2(1−R1)2 + 2E2
I

√
R1R2(1−R1) cos

(
4πl

λ
+ φ

)
(4.1)

where l is the fiber-cantilever spacing, φ is the phase shift acquired by the light reflected from the cantilever and

the laser wavelength is λ. For R1, R2 << 1,

PR = E2
I

[
R1 +R2 + 2

√
R1R2 cos

(
4πl

λ
+ φ

)]
Pmax = E2

I (R1 +R2 + 2
√
R1R2)
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Figure 4.3: Fiber-optic interferometer diagram.

Pmin = E2
I (R1 +R2 − 2

√
R1R2) (4.2)

Pavg =
Pmax + Pmin

2
= E2

I (R1 +R2)

Pmax − Pmin = 4E2
I

√
R1R2 .

Fringe visibility is defined as F = Pmax−Pmin

Pmax+Pmin
, where Pmax and Pmin are the maximum and minimum output

powers produced by constructive and destructive interference. The detected signal power varies with average

output power Pavg as

PR = E2
I (R1 +R2)

[
1 +

4
√
R1R2

2(R1 +R2)
cos

(
4πl

λ
+ φ

)]
= Pavg

[
1 + F cos

(
4πl

λ
+ φ

)]
. (4.3)

The cantilever displacement varies in time either due to its thermal motion or external forced oscillations. For

small deviations x(t) of the cantilever from its equilibrium position x0,

PR = E2
I

[
R1 +R2 + 2

√
R1R2 cos

(
4π(x0 + x(t))

λ
+ φ

)]
= E2

I

{
R1 +R2 + 2

√
R1R2

[
cos

(
4πx0

λ
+ φ

)
cos

(
4πx(t)

λ

)
− sin

(
4πx0

λ
+ φ

)
sin

(
4πx(t)

λ

)]}
' E2

I

{
R1 +R2 + 2

√
R1R2

[
cos

(
4πx0

λ
+ φ

)
− sin

(
4πx0

λ
+ φ

)
4πx(t)

λ

]}
. (4.4)

For maximum sensitivity, one should choose x0 such that

cos

(
4πx0

λ
+ φ

)
= 0

sin

(
4πx0

λ
+ φ

)
= −1 . (4.5)

Then, a linearized interferometer output

PR = E2
I

(
R1 +R2 + 2

√
R1R2

4πx(t)

λ

)
= Pavg

(
1 +

4πFx(t)

λ

)
(4.6)

is obtained. Interference signals are transmitted by the directional coupler into photodiode amplifiers which
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produce a voltage V proportional to signal power P . The linearized interferometer gain (or sensitivity) for small

deviations is ∆V
∆x = 2π(Vmax−Vmin)

λ .

The power transmittance T2 of a cantilever of thickness t and refractive index n = 3.5 in air is

√
T2 =

4n exp(−iφ)

(1 + n)2 − (1− n)2 exp(−i2φ)
(4.7)

where φ = nkt and k is the wavenumber. To collect as much cantilever-reflected light as possible back into the

fiber, its reflection coefficient should be high. The absorption of light by the cantilever can be neglected. The

expression for T2 can be simplified as

√
T2 =

4n

(1 + n)2 exp(iφ)− (1− n)2 exp(−iφ)

=
4n

((1 + n)2 − (1− n)2) cos(φ) + i((1 + n)2 + (1− n)2) sin(φ)

=
2n

2n cos(φ) + i(1 + n2) sin(φ)
. (4.8)

For minimum transmission, cos(nkt) = 0, which implies t = (2j+1)λ
4n (j = 0, 1, 2, ...). Therefore, the minimum

thickness is t = 1550
4×3.5 = 110 nm and the maximum power reflectance is R2 = 1 − T2 =

(
1−n2

1+n2

)2

= 72%. Since

the cantilever is made of silicon (n = 3.5) and has a thickness of 100 nm, it has a reflectance R2 of approximately

30%. Therefore, it would be best to have the reflectance at the cleaved fiber end also as 30% to couple maximum

power into the fiber. Since the refractive index n of the fiber is 1.45, the power reflectance at normal incidence

at the fiber-air interface is given by R1 = (n1−n2

n1+n2
)2 = ( 1.45−1

1.45+1 )2 = 3.37%. Therefore, the cleaved end of the fiber

is evaporated with 25 nm of Si to increase its reflectance to ∼ 30%. 70% of the incident light power is reflected

back at the cleaved end and the remaining 30% reaches the cantilever. The reflected light from the cantilever

differs in phase (based on the cavity length between the cantilever and the fiber cleaved end) from the 70%

reflected light. Both these light waves interfere and are observed on a signal photodiode.

The laser can change its emitting wavelength with time according to the variations in the room temperature. In

other words, there can be a deviation in the lasing wavelength from the stated value of 1550 nm. The wavelength

change of the laser is 0.2 nm/degree celsius. To lock the wavelength at a certain frequency, the laser operated

in the constant power mode is controlled with the the help of a thermoelectric cooler (TEC) to counteract the

changes in temperature. The interferometer has a broadband response, i.e., we can observe several fringes and

accordingly do calibration for our experiments. The TEC controller can be used to change the laser temperature

by several degrees.
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Figure 4.4: Flow-chart description of the magnetic resonance force microscope setup

4.4 Microwire RF source

Current delivered through the microwires, made of Ti/Au (10/190 nm), are used to generate AC magnetic fields

for nuclear magnetic resonance (NMR) experiments at cryogenic, high vacuum conditions [47]. The optimum

dimensions for the length, width and thickness of the microwire are calculated to generate RF magnetic fields
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without too much heating. Ideally, the microwire should have broadband transmission and negligible attenuation

over the frequency range between 0 MHz and 300 MHz. The substrate on which the microwire is patterned has

to be scanned relative to the cantilever overhanging the chip for our scanning probe experiments. Both the pads

of the microwire are connected through short and thin copper leads to the center conductors of rigid coaxial lines

leading to the top of the cryostat. These leads are fixed and pressed onto the two pads using sticky indium metal.

The non-rigid and flexible copper leads allow us to scan the microwire relative to the cantilever. While scanning,

the inductances and capacitances of the copper leads keep changing which also alters the overall impedance of

the microwire. However, this is not crucial for low frequencies while it is crucial at high frequencies to deliver

power without having any reflections. Therefore, this circuit doesn’t work optimally at high frequencies (>1

GHz) since the two leads to the microwire pads should always be impedance matched to 50 Ohms to avoid power

losses. The circuit can be tested for its RF characteristics using a microwave circuit analyzer.

4.5 RF pulse generation

4.5.1 Arbitrary waveform generator

The digital arbitrary waveform generator (AWG) hardware from National Instruments (NI) (PXI-5421 & PXIe-

5451) is employed for generating the required waveforms for nuclear magnetic resonance (NMR) experiments.

PXI-5421 has about 40 MHz of analog bandwidth whereas PXIe-5451 offers up to 140 MHz of analog bandwidth.

NMR experiments often require waveforms with carrier frequencies above 100 MHz. The signal from PXI-5421

can be mixed with a RF function generator in order to get waveforms with higher carrier frequencies, for e.g., 120

MHz. To avoid the mixing step altogether, PXIe-5451 can be used directly at 120 MHz. However, the achievable

gains with a PXIe-5451 hardware (∼ 2.5) are not as high as PXI-5421 hardware (∼ 6). Moreover, PXIe-5451 is

a PXI Express hardware and can be used only with a PXIe chassis.

4.5.2 Timing

The PXI-1042 chassis (used in our 3He MRFM system) has an external reference input at the back which is

referenced to a stable Rubidium clock source. The reference output at the back of PXI 1042 is connected as a

clock input to a HP RF function generator which is used as a mixer to upconvert AWG signals from 0-40 MHz

to higher carrier frequencies. This maintains synchronisation between the PXI chassis clock and the RF function

generator clock. The PXI chassis supplies a 10 MHz reference clock signal independently to each peripheral slot.

An independent buffer drives the clock signal to each peripheral slot. This common reference clock signal can

be used to synchronize multiple devices such as PXI-5421 and PXI-7854R (FPGA hardware) in a measurement

or control system.
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Figure 4.5: Diagram of the electrical circuit for generation of the RF waveform in MRFM experiments. Two
signal generators (HP 8657A) and (NI PXIe-5451) are used to produce sine wave carriers and arbitrary waveform
envelopes respectively. Carrier and envelope waveforms are combined on an analogue mixer (×) to produce the
desired adiabatic inversion pulse. The generated RF waveform is band-pass filtered and sent to a RF power
amplifier. The resulting signal is passed through a splitter to create two independent signals ‘1’ and ‘2’ that
have nominally the same amplitudes and opposite phases to differentially drive the RF microwire and to ensure
a voltage null at the constriction to minimize excitation of the cantilever by time-varying electric fields.

The PXI-1033 chassis (used in our 4He MRFM system) does not have such a reference clock input and output.

In other words, PXI-1033 doesn’t provide the possibility of overriding the 10 MHz clock with BNC connectors

as PXI-1042 does. In order to resolve the synchronization issue for PXI-1033 chassis, it is possible to reference

the AWG hardware by phase-locking its sample clock timebase to an external signal that is present on the CLK

IN front panel connector. The synchronization is made possible by routing the output clock of the RF function

generator to CLK IN input.

4.5.3 Digital synthesis of amplitude and phase modulated RF pulses

The waveform for the RF excitation is produced by AWG, and after the power amplifier, coupled to the microwire

via coaxial cables. Adiabatic inversion in MRFM experiments requires an amplitude and phase modulated pe-

riodic waveform, which can be produced by a digital device. We synthesize the waveform so that the total

accumulated phase of the waveform over half the cantilever cycle is equal to an odd multiple of π. The RF

waveform has to be limited in the spectral domain to an excitation width of typically 1 MHz.

NI AWGs feature large waveform memory (128 MB for PXIe-5451, 32 MB for PXI-5421) and thus allow direct

high-precision synthesis of the RF waveform. In our experiments, we use a hardware implementation based on

AWG combined with HP 8657A high frequency signal generator (100 kHz to 1040 MHz). The circuit schematics
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are shown in Fig. 4.5. The total signal waveform is obtained by analogue mixing of a sine wave carrier from

HP 8657A and an RF waveform envelope which is produced by NI AWG. Waveform envelope is computed by

sampling the following function at discrete time points:

F (t) = A(t) cos

(∫ t

0

ω(t)dt+ φ0

)
(4.9)

where A(t) is amplitude modulation, ω(t) is frequency modulation and φ0 is the initial phase of the waveform.

A(t) and ω(t) are chosen to obtain the desired amplitude (ω1(t)) and frequency modulation (∆ω(t)) of adiabatic

pulses.

We apply sawtooth and hyperbolic secant frequency sweeps for achieving adiabatic inversion [11, 30].

SAWTOOTH:

ω(t) = ω0 −∆ω + 4∆ω
t

Tc
, 0 ≤ t ≤ Tc

2

φ(t) = φ0 +

∫ t

0

(
ω0 −∆ω + 4∆ω

t

Tc

)
dt (4.10)

φ(t) = φ0 + (ω0 −∆ω)t+ 2∆ω
t2

Tc

Setting the boundary conditions for the phase, φ(0) = 0 and φ
(
Tc
2

)
= (2N + 1)π, we obtain φ0 = 0 and N =

ω0Tc
2π −1

2 . Therefore, for a waveform with constant-amplitude modulation and sawtooth frequency modulation,

F (t) = A cos

[(
2π

Tc
(2N + 1)−∆ω

)
t+ 2∆ω

t2

Tc

]
(4.11)

HYPERBOLIC SECANT (HS):

ω(t) = ω0 + ∆ω
tanh (β( 4t

Tc
− 1))

tanhβ

φ(t) = φ0 +

∫ t

0

(
ω0 + ∆ω

tanh (β( 4t
Tc
− 1))

tanhβ

)
dt (4.12)

φ(t) = φ0 + ω0t+
∆ωTc cothβ log (cosh (β( 4t

Tc
− 1)))

4β

Setting the boundary conditions for the phase, we obtain φ0 = −ΩTc coth β log (cosh (β))
4β andN =

ω0Tc
2π −1

2 . Therefore,

for a waveform with hyperbolic secant amplitude modulation and hyperbolic tangent frequency modulation,

F (t) =
1

cosh (β( 4t
Tc
− 1))

cos

2π

Tc
(2N + 1)t+

∆ωTc cothβ log
(

cosh (β( 4t
Tc
−1))

cosh β

)
4β

 (4.13)
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Figure 4.6: A PID controller to tune the temperature of the laser.

The power in carrier wave and waveform envelope are chosen to be similar, which allows nonlinear distortions

of the RF amplifier to be minimized. The total signal waveform is band-pass filtered to remove the spectral

components arising from upconversion process. However due to imperfections of the RF circuit, the amplitude of

the RF field outside the excitation bandwidth is not strictly zero. The typical peak amplitude of the RF rotating

magnetic field used in MRFM experiments is B1 = 10 mT. In our experimental setup, continuous application

of RF adiabatic pulses with such a peak amplitude results in sample heating of less than 0.5 K. The duration

(∼ 0.1 ms) of the RF pulse for π-inversion is long enough to adiabatically invert the populations of the nuclear

spin states. On the other hand, the duration is much shorter than the correlation time (τm ∼ 100 ms) of nuclear

spin polarization, and thus achieves a complete inversion of the polarization.

4.6 FPGA-based control system

For our experiments in MRFM, a FPGA-based control system is implemented as it offers performance and

flexibility. The Labview FPGA project consists of a single FPGA VI consisting of all possible control and

measurement loops. Each of these loops is controlled by a separate Host VI which runs on the computer. All the

Host and FPGA VIs were programmed using Labview FPGA 2010, Labview 2010, Digital Filter Design Toolkit

(DFD) and Control Design Toolkit. These toolkits are very convenient and efficient to use for programming and

enable us to approach the task in an “electrical engineering” way. We have also used Modulation Toolkit to

simplify the generation of radio frequency waveforms.
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Figure 4.7: A PID controller to self-oscillate the cantilever to a set amplitude.

The FPGA VI is programmed considering the fact that the multipliers (DSP48Es) are the limiting resources

among all the available logic elements in the FPGA hardware. There are 64 DSP48Es in PXI-7854R hardware.

Each DSP48E consists of a single 25 bit by 18 bit multiplier. Accordingly, special attention has been paid so

that the word lengths of the intermediary inputs and outputs does not exceed 25 bits as far as possible. This

avoids the consumption of more than one DSP48E for a single multiplication task. Moreover, Butterworth filter

available in FPGA palette consumes four DSP48Es for a single filtering operation. Therefore, we have developed

and generated our own filter codes using DFD toolkit, the filter architecture being either moving average (for

lowpass) and distributed arithmetic (for highpass). Effectively, each one of these filters consume either zero or

one DSP48E.

FPGA VI consists of the following subVIs:

1. Laser PID controller (6 DSP48Es) used to tune the temperature of the laser by controlling the TEC,

2. Displacement PID controller (10 DSP48Es) used to self-oscillate the cantilever via positive feedback,

3. Optimal controller (6 DSP48Es) used to control the cantilever Q or response time via negative feedback,

4. Phase locked loop (15 DSP48Es) used to measure the frequency of a self-oscillated cantilever signal,

5. Lock-in filter bank (0 DSP48Es) used to filter the spin noise and thermal noise, and

6. Frequency counter, trigger and pulse generator (0 DSP48Es), used for iOSCAR/CERMIT experiments.
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Figure 4.8: An optimal controller to damp the cantilever Q.

Using careful optimization procedures, FPGA VI consumed a total of 37 DSP48Es only. We have also made

extensive use of FIFOs, single cycled timed loops (SCTLs) and block RAM to transfer data within the FPGA VI;

and also to transfer data from the FPGA VI to the Host VI and vice versa. The device utilization is summarized

below:

Total Slices: 37.1% (6409 out of 17280),

Slice Registers: 20.9% (14417 out of 69120),

Slice LUTs: 21.8% (15085 out of 69120),

DSP48s: 60.9% (39 out of 64), and

Block RAMs: 51.6% (66 out of 128).

4.6.1 Laser PID controller

A constant laser temperature (wavelength) is maintained by a proportional-integral-derivative (PID) feedback

loop controlling the thermoelectric cooler (TEC) while monitoring the slowly varying cantilever deflection (DC

signal). The feedback loop is implemented with a FPGA hardware and a Thorlabs (TED200C) temperature

controller (Fig. 4.6).

4.6.2 Displacement PID controller

The cantilever signal (AC) is measured with a FPGA hardware. The cantilever mounted on a piezoelectric

actuator is driven in a PID loop which uses the desired cantilever root-mean-sqaure (RMS) amplitude as its

setpoint (Fig. 4.7).
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Figure 4.9: A bank of moving-average filters to filter the spin noise and thermal noise.

4.6.3 Optimal controller

The optimal controller is used for broadening the cantilever response bandwidth without sacrificing the signal-

to-noise ratio [46]. The optimal control theory calculates the transfer function of the controller for the set of

cantilever parameters (Ω0, k, Q, thermal force noise, measurement noise). The performance of the optimal

controller is superior to the standard negative feedback controller because the optimal control theory considers

the process and measurement noise when calculating the controller parameters, while the negative feedback

controller is independent of these noise terms. Therefore, its performance is better at large damping, when the

resonance curve gets pushed down to the level of the interferometer measurement noise. One can achieve variable

damping with the optimal controller by controlling the target Q (Fig. 4.8).

4.6.4 Phase locked loop (PLL)

The basic PLL code is downloaded from Labview FPGA RF Communication Library available as an IP in NI

website. PLL block has to be inside a SCTL and a sampling frequency of 50 kHz works well for sampling the

input. PLL outputs 50k frequency points every second and the data is sent to the host every second using
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Figure 4.10: A frequency counter to measure the cantilever period in real-time.

one of the 3 available DMA channels. PLL can easily be tested by generating a single frequency tone from

a function generator and adjusting “alpha” to control the bandwidth and the time taken for locking. It can

easily lock on to the frequency of a self-oscillated cantilever signal and sometimes even to that of a non-excited

cantilever. We have also tested the capability of PLL to demodulate the frequency modulated (FM) cantilever

signal by inputting a test waveform from a function generator capable of FM. It can detect frequency shifts as

small as 1 mHz and the bandwidth of demodulation can be as high as 50 Hz, typical for MRFM experiments.

Using “FM Power Spectral Density (PLL).vi”, we can record the frequency fluctuation spectrum (FFS) of the

cantilever signal and the noise amplitude spectrum depends on the alpha used which controls the bandwidth.

One can calibrate the amplitude of the peak observed in FFS for a given “alpha” and a given amount of mHz FM

modulation input supplied from a function generator, and then use it for iOSCAR and CERMIT experiments.

We have done such calibration tasks but we haven’t performed MRFM experiments using this PLL so far.

4.6.5 Lock-in filter bank

While doing frequency sweep or iOSCAR/CERMIT experiments, the output from the lock-in amplifier has to be

filtered at various time constants to determine the correlation time (Fig. 4.9). This task is done using this VI for

both the in-phase and out-of-phase channels. It consists of a bank of ten moving average (MA) decimation filters

having a range of time constants (and decimation factors) and the statistics of the spin noise can be plotted in real

time using the host VI. In principle, we can add more number of filters without consuming additional multipliers.

HF2LI lock-in from Zurich Instruments is also used to implement the filtering functionality described above. It

has six dual-phase demodulators and the filter bandwidth for each demodulator can be set independently.
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Figure 4.11: A trigger generator generates a trigger every N cantilever cycles.

4.6.6 Frequency counter, trigger and pulse generator

These custom designed functionalities are useful for iOSCAR and CERMIT experiments (Fig. 4.10, Fig. 4.11 and

Fig. 4.12). The frequency counter samples the self-oscillated signal at 500 kHz and detects every zero crossing.

The pulse generator can generate a iOSCAR/CERMIT pulse every 32Tc, 64Tc, 128Tc (only in powers of 2) etc.

where Tc is the period of the cantilever. It sends a digital trigger to the arbitrary waveform generator using one

of the PXI triggers. The quality of the generated CERMIT and iOSCAR pulses was found to be good during

testing. We have used a microwire with an integrated nanomagnetic tip to measure the statistical nuclear spin

polarization of proton spins by iOSCAR MRFM protocol. The successful demonstration of the compatibility of

iOSCAR scheme with a microwire RF source would allow us to perform very sensitive electron spin resonance

experiments in a sample-on-cantilever MRFM geometry.

Figure 4.12: A pulse generator to send a digital trigger pulse to the waveform generator.
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Chapter 5

Spin Order

The experimental research reported in this Chapter required ∼ 6 months of study and constitutes the core of

the scientific work presented in this thesis.

5.1 Introduction

Control over the dynamics of nanometer-scale nuclear spin systems is of interest both for fundamental studies

and in applications such as quantum information processing and magnetic resonance imaging. Here we achieve

such control through mechanical detection of nuclear spins in a semiconductor nanowire (NW) with a magnetic

resonance force microscope (MRFM). In contrast to previous experiments, where the intrinsic electron-nuclear

feedback mechanisms were employed to control the polarization dynamics [19–22, 50–52], we demonstrate an

extrinsic scheme using active real-time control of radio frequency (RF) fields applied to nuclear spins [23]. Using

radio frequency pulses, we demonstrate the real-time measurement and state preparation of small-scale nuclear

spin ensembles. Our approach takes advantage of real-time feedback control to harness the statistical fluctuations

of a nuclear spin ensemble.

Soon after the first measurements of nuclear magnetic resonance (NMR) in a condensed matter system, Bloch [1]

predicted the presence of statistical fluctuations proportional to 1/
√
N in the polarization of an ensemble of N

spins. First observed by Sleator et al. [7, 53], so-called “spin noise” has recently emerged as a critical ingredient

in nanoscale magnetic resonance imaging (nanoMRI) [3, 9, 15, 54]. This prominence is a direct result of MRI

resolution improving to better than (100 nm)3, a size-scale in which statistical spin fluctuations begin to dominate

the polarization dynamics. Here we demonstrate a technique that creates spin order in nanoscale ensembles of

nuclear spins by harnessing these fluctuations resulting in polarized and narrowed spin distributions. We focus

on ensembles containing ∼ 106 phosphorus and hydrogen spins associated with single InP and GaP nanowires
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(a) (b) 

Figure 5.1: SEMs of a representative InP NW. (a) An as-grown InP NW before its attachment to the cantilever
tip. (b) A zoomed-in view of the narrow end of the NW, with the Au catalyst particle at the tip.

(NWs) and their hydrogen-containing adsorbate layers. We have developed spin manipulation protocols that

allow us to monitor and control fluctuations of the nuclear spin ensemble in real-time. Furthermore, we capture

large fluctuations in the ensemble’s spin polarization and store them for extended periods. Given that the

thermal spin imbalance vanishes as an ensemble shrinks, the selective capture of large polarization fluctuations

may provide a route for enhancing sensitivity to the weak magnetic signals produced by nanoscale volumes of

nuclear spins. The scheme may also prove useful for initializing the nuclear hyperfine field of electron spin qubits

in the solid-state.

A 

B 

Figure 5.2: This SEM depicts two InP NWs affixed to the Si cantilever which is evaporated with Si/Au (10/30
nm). The nanowire, marked as ‘A’, is the one likely studied in this experiment due to it’s greater extension.
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Figure 5.3: SEMs of the GaP NW on the cantilever tip. (left) This SEM depicts the GaP NW affixed to
the Si cantilever from the side. (right) A second SEM shows a zoomed-in view of the NW. The cantilever is
100-nm-thick with a 2-µm-thick and 17-µm-long mass at its end.

5.2 Nanowire sample preparation

We study two separate samples: an InP and a GaP NW, both grown with the vapor-liquid-solid method in a

metal-organic vapor-phase epitaxy reactor using gold droplets as catalyst [55]. The InP NW is 8 µm-long; its

diameter shrinks from 200 nm to 60 nm along its length; and it is tipped by a 60 nm diameter Au catalyst

particle, left over from the growth process. The GaP NW is 10 µm-long; its diameter is 1.0 µm; and it has a 1.5-

µm-long tapered tip which reaches 90 nm in diameter at the Au droplet. In this case we remove the Au droplet

by cutting of the end of the NW with a focused ion beam, resulting in a 300-nm-diameter GaP tip. Finally, we

sputter a 5 nm layer of Pt onto the NW in order to shield electrostatic interactions [56]. Each NW is affixed to

the end of the cantilever (Figs. 5.2, 5.3) with less than 100 fL of Gatan G1 epoxy. In the attachment process,

we employ an optical microscope equipped with a long working distance and a pair of micromanipulators.

5.3 Nanowire growth

5.3.1 InP nanowire growth

The InP NWs (Fig. 5.1) are grown with the vapor-liquid-solid (VLS) method in a low-pressure (50 mbar) Aixtron

CCS-MOVPE reactor. The Au catalyst nanoparticles are dispersed using a 60-nm Au colloidal solution over

the InP (111)B substrate. The InP NWs are grown at 420◦C for 20 min using Tri-Methyl Indium (TMI) and

Phosphine (PH3) as precursor gases at molar fractions of 2.5×10−5 and 8.3×10−3, respectively, with a total flow
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Figure 5.4: Schematic of the experimental geometry. The end of the NW, which is affixed to an ultrasensitive
cantilever, is positioned 50-100 nm away from the nanomagnet. Below the tip, a microwire RF source generates
ARP sweeps to invert the nuclear spin ensemble within a nanometerscale “resonant slice” (in light blue). Two
types of spin ensembles are investigated: one composed of 31P nuclei within the NW lattice (green spins) and
another consisting of 1H nuclei from the thin adsorbate layer on the NW surface (red spins).

of 6.0 l/min using hydrogen as a carrier gas. The Arsine (AsH3) gas (molar flow 3.3× 10−4) is introduced in the

reactor chamber for 2 s in order to grow an InAsP quantum dot, followed by 20 min InP growth. The samples

are then overgrown for 5 min at 500◦C with a InP shell, using TMI and PH3 at molar fractions of 2.3 × 10−5

and 8.3× 10−3, respectively.

5.3.2 GaP nanowire growth

The GaP NWs (Fig. 5.3) are grown with the VLS method in a low-pressure (50 mbar) Aixtron CCS-MOVPE

reactor, using Au nanocatalysts deposited in square arrays by e-beam lithography (25 nm - 100 nm diameter,

200 nm - 5 µm pitch) over a zinc blende GaP (111)B substrate [55]. The samples are annealed at 750◦C for 8

min and then grown at 750◦C for 13 min using Tri-Methyl Gallium (TMG) and Phosphine (PH3) as precursor

gases at molar fractions of 7.4× 10−5 and 1.7× 10−3, respectively, with a total flow of 8.2 l/min using hydrogen

as carrier gas. Hydrogen Chloride (HCl) gas (molar fraction 1.2×10−4) is used to suppress the radial overgrowth

in the NWs. In order to increase the NW diameter, the GaP shell growth is performed at 690◦C for 22 min

using TMG and PH3 as precursor gases at molar fractions of 8.1 × 10−5 and 1.1 × 10−2, respectively. Next,

the Al0.4Ga0.6P shell is grown for 5 min with TMG, TMAl and PH3 as precursor gases at molar fractions of

2.7× 10−5, 1.5× 10−5 and 1.1× 10−2, respectively. The tapered axial segment which can be seen at the top of

the NWs is related to the parasitic decomposition of the precursors at the gold droplet during the shell growth.
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Figure 5.5: SEM micrograph of the Si cantilever. (a) The cantilever is shown protruding from a Si chip. (b) The
detailed view shows the paddle and mass-loaded end of the cantilever.

5.4 Experimental details

In a low-temperature ultra-high-vacuum MRFM, the force signal that is detected arises from the interaction

between the gradient field of a nanomagnet and the nuclear magnetic moments in the sample. The cantilever,

acting as a sensor in MRFM, can be used for the sensitive detection of nuclear spin force signals in nanoscale

samples with lateral dimensions below 100 nm. The MRFM experimental setup (Fig. 5.4) consists of an ultrasen-

sitive cantilever mounted perpendicular to the substrate which is patterned with a microwire RF source and an

integrated magnetic Dysprosium (Dy) tip [47]. Ultrasensitive cantilevers are made from undoped single-crystal

Si and measure 120 µm in length, 4 µm in width, and 0.1 µm in thickness (Fig. 5.5). In vacuum and at the

operating temperatures, the NW-loaded cantilevers have resonant frequencies fc = 2.4 and 3.5 kHz, intrinsic

quality factors Q0 = 3.0×104 and 3.5×104, and spring constants k = 60 and 100 µN/m for the InP and GaP NW

experiments respectively. During the measurement, the cantilever is actively damped in order to give it a fast

response time of τc = 65 ms. A fiber-optic interferometer is used to measure the displacement of the cantilever.

Up to 50 nW of laser light at 1550 nm are incident on the cantilever as part of the fiber-optic interferometer.

The nanomagnetic tips (Fig. 5.6) are truncated cones of Dy fabricated by optical lithography [57]. For the InP

(GaP) NW experiment the tip measures 225 (280) nm in height, 270 (250) nm in upper diameter, and 380 (500)

nm in lower diameter. The RF source (Fig. 5.6), on which the Dy tip sits, is a 2-µm-long, 1-µm-wide, and

200-nm-thick Au microwire. The experiments were performed in vacuum pressures better than 1× 10−6 mbar,

at temperatures down to 4 K and in an applied longitudinal field up to Bext = 6 T.
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Figure 5.6: SEM micrograph of the microwire. (a) Ti/Au microwire with an integrated Dy tip is patterned on
a Si chip. (b) The zoom-in view shows the Dy tip.

We measure the polarization of nanometer-scale ensembles of 31P nuclei within each NW and of 1H nuclei

contained in the hydrocarbon adsorbate layer on the surface (Fig. 5.7, Fig. 5.8). The NW of interest is attached

to the end of the cantilever and is positioned within 100 nm of the nanomagnetic tip. A transverse RF field

from a microwire is applied to excite nuclear spin resonance. The strong magnetic field gradient (≥ 106 T/m) of

the tip field confines the magnetic resonance to the region that satisfies the condition B0 = Bext +Btip=ω/γ,

where ω is the frequency of the RF field, γ is the gyromagnetic ratio of the nuclear spin, and B0 is the tip field

plus an external field from a superconducting magnet. The detection volume can be exposed to spatial magnetic

field gradients exceeding 1.5 × 106 T/m and RF B1(t) fields larger than 20 mT without significant changes in

the experimental operating temperature. We use hyperbolic secant adiabatic rapid passage (ARP) sweeps with

β = 10 and a modulation amplitude set to 500 kHz peak-to-peak for 31P and 1 MHz for 1H [30, 58]. These

parameters, combined with the geometry of the sample and the profile of ∂B0/∂x, determine the size of the

detection volume [42].

5.5 ARP sweep detection protocol

In MRFM detection, spins are cyclically inverted by using magnetic resonance, and the net spin projection

along the time-dependent effective magnetic field in the rotating frame is detected mechanically by measuring

the interaction between a nanomagnetic tip and the spins in the sample. The force generated by a statistically

polarized ensemble of nuclear spins (N ∼ 106) on the cantilever is ∼ 10−18 N when subjected to a magnetic field

gradient of 106 T/m from the tip. Coherent manipulation of the spins for many cantilever cycles are employed
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Figure 5.7: MRFM signal from the statistical polarization of 31P nuclear spins. Black and red dots show the
resonant force variance of spin noise and the correlation time τm as a function of the carrier frequency.

to improve the sensitivity to detect such small forces. Owing to the long spin correlation times τm characteristic

of nuclear spins, cyclic adiabatic inversions of spins at the cantilever frequency can give rise to an amplitude

modulated periodic force on the cantilever. Thus, a time-dependent force due to the nuclear spin polarization

signal oscillating in-phase with the cantilever produces an additional displacement of the cantilever.
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Figure 5.8: MRFM signal from the statistical polarization of 1H nuclear spins. Black and red dots show the
variance of spin noise and the correlation time τm as a function of the carrier frequency.

ARP sweeps of the RF field through the Larmor frequency of the spins are used to cyclically invert the polarization

of nanometer-scale volumes of a particular nuclear spin isotope. These inversions occur because the spin polar-

55



(a) 

(b) ω(t) 

B1(t) 

ω0 

Time (t) 

Figure 5.9: Cyclic adiabatic rapid passage (ARP) pulse sequence. Hyperbolic secant ARP pulses are applied
twice every cantilever cycle.

ization follows (or is “spin-locked”) to the time-dependent effective field Beff(t) =
(
B0 − 2πfRF(t)

γ

)
ez +B1(t)ex

in a frame rotating with the RF field, where fRF(t) is the instantaneous frequency of the ARP sweeps, B1(t) their

amplitude, and the unit vectors are defined in the rotating frame. In a magnetic field gradient, these periodic

inversions generate an alternating force that drives the mechanical resonance of the cantilever; the resulting

oscillations, which are proportional to this force, are detected by the fiber-optic interferometer. The volume of

inverted spins, known as the “resonant slice”, is determined by the spatial dependence ofBtip and the parameters

of the pulses; in these experiments it occupies a volume on the order of (50 nm)3.

In our MRFM detection protocol, spin inversions are obtained by operating RF fieldB1(t) that is both amplitude

modulated and frequency modulated (swept unidrectionally twice per cantilever cycle) using hyperbolic secant

pulses (Fig. 5.9). At every extremum of the frequency sweep, Beff(t) will have reversed the orientation. This

results in a change of the magnetization from locked to antilocked and vice versa every half-cycle of the cantilever,

producing a force signal that oscillates at the cantilever frequency. This endows the spin signal with a distinctive

signature because of the fact that any spurious cantilever excitation caused by the frequency modulation is at a

second harmonic of the cantilver frequency. The cantilever force signal is fed to a lock-in amplifier referenced to

the periodic spin inversions and its in-phase (X) and quadrature (Y ) amplitudes are monitored. The limiting

source of noise in the measurement is the thermal force noise acting on the cantilever. The thermomechanical

noise, due to its random phase, is present in both the lock-in channels and on average contributes equally to X

and Y. On the other hand, force fluctuations due to the nuclear spin polarization are in phase with the inversion

pulses and contribute only to X.
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Figure 5.10: MRFM signal processing scheme. By measuring σ2
spin as a function of detection bandwidth of the

filter, the spin signal variance and the correlation time τm of the spin signal can be determined.

The nuclear spin polarization in the rotating frame evolves in time under the influence of the random magnetic

field fluctuations caused by the thermal (Brownian) motion of high-frequency modes of cantilever vibrations in

the presence of a large field gradient [32]. Since fluctuating polarization signals have a time dependence that is

a priori unknown and the signal varies randomly in time, measurement over a total averaging interval T long

compared to the spin correlation time results in a zero average signal [8, 59]. In this situation, information about

the fluctuations is contained in the measured signal variance, provided the random spin correlation time τm

satisfies: τc � τm � T where τc is the cantilever period (Fig. 5.10). The cancellation of the thermomechanical

cantilever excitation caused by the reservoir is accomplished by measuring the variance of the cantilever amplitude

for both the channels and subtracting the quadrature variance (σ2
Y ) from the in-phase variance (σ2

X) to compute

the spin signal (σ2
spin = σ2

X − σ2
Y ). The frequency modulation amplitude of RF sweeps determines the effective

thickness of the resonant slice, and thus the number of spins contributing to the signal. The variance of the

oscillating noise force from the spins is given by σ2
spin = Nµ2G2, where G is the average tip field gradient, N is

the number of spins in the slice and µ is the nuclear spin magnetic moment.

5.6 Nuclear spin noise simulations

MATLAB simulations allow us to determine the total spin noise MN (t) of an ensemble of N spins by adding

the individual time traces of each nuclear spin (Appendix B). The time evolution of each spin µi(t) is treated as

a random process that is discrete in amplitude but continuous in time, the so-called random telegraph process.

At any time instant, µi(t) takes on one of two possible states +µ and −µ. Each spin switches energy levels

in a random manner in time due to the interactions with the environment and the time intervals of jumps
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Figure 5.11: A typical time trace of the spin noise simulation of an ensemble of 10000 spins with a correlation
time τm=1 s.

are described by a Poisson process. MN (t) is calculated by summing N possible realizations for µi(t), i.e.,

MN (t) =

N∑
i=1

µi(t) (Fig. 5.11). The simulated statistical fluctuations of the nuclear spin ensemble qualitatively

resembles the measured time traces of the spin noise.

5.7 Real-time measurement

The time trace obtained from the lock-in channels is filtered with different bandwidths, which are slow enough

to filter out the thermally induced vibrations but fast enough to probe slow random variations of the nuclear

spin polarization [25]. The filter time constants are set depending on the correlation time of the spins and the

thermal cantilever displacement noise. Thus, as shown in Fig. 5.12, we can monitor Y (t), the thermal force,

and X(t), the thermal force plus the force due to the nuclear spin inversions. X(t) is dominated by the large

fluctuations and the long τm of the spin noise, while the thermally induced displacement of the cantilever Y (t)

has a smaller amplitude and a shorter correlation time set by the damped cantilever force sensor. τm is limited by

the magneto-mechanical noise originating from the thermal motion of the cantilever in a magnetic field gradient

and by the ARP pulse parameters [32]. Since the contribution of the spin signal to X(t) is large enough, we can

follow – in real-time – the instantaneous nuclear spin imbalance in the rotating frame.

Fig. 5.13 shows the variances σ2
X and σ2

Y , which give the variance due only to the thermal noise σ2
T = σ2

Y and the

variance due only to the spin noise, σ2
S = σ2

X − σ2
Y . σ2

S is in turn related to the number of nuclear spins in the

detection volume. The typical size of the spin ensembles we measure is between 2× 105 and 7× 105 for 1H and
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Figure 5.12: Spin noise from an ensemble of 6 × 105 < N < 1 × 107 31P spins in an InP NW. (a) Time trace
recorded in the in-phase X(t) (black) and quadrature Y (t) (light gray) channels of the cantilever displacement
fluctuations demodulated at the cantilever frequency. T = 4.2 K and Bext = 6 T. The lock-in time constant
is set to be τl = 5 s, in order to match the correlation time τm = 3.6 s of the spin fluctuations and to filter
out the cantilever’s thermal displacement fluctuations with a correlation time τc = 65 ms. The measured force
fluctuations in the in-phase channel is dominated by the spin signal rather than thermal noise. The baseline
noise level in the quadrature channel limits the MRFM detection sensitivity to be roughly 250 31P nuclear spins
rms.

between 6×105 and 1×107 for 31P. Given the density of typical adsorbate layers and InP and GaP, the detection

volumes discussed here are between (13 nm)3 and (21 nm)3 for 1H and between (30 nm)3 and (80 nm)3 for 31P.
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Figure 5.13: Histogram of the in-phase fluctuations is constructed with the lock-in signal recorded for 1 hour.
The black curve is a Gaussian fit to the histogram with a standard deviation 6.4 aN. For comparison, histogram
of the quadrature channel (light gray) shows that the variance of the thermal noise is ∼ 9 times smaller.
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Figure 5.14: Real-time communication among the measurement hardware.

5.8 Real-time control

This near real-time measurement of polarization allows us to apply short RF π-inversion pulses to rectify and

narrow the fluctuations of the spin ensemble [23]. High frequency coaxial lines connected to the microfabricated

RF wire allow rapid changes of RF waveforms, which in turn are generated by a large bandwidth arbitrary

waveform generator (AWG) hardware (Fig. 5.14). The feedback method uses FPGA hardware to measure the

polarization in real-time. We run the ARP sweeps until the polarization reaches a predetermined threshold,

at which point the AWG hardware switches to a π-inversion pulse having the duration of one cantilever cycle

(Fig. 5.15, Fig. 5.16). As a result, the spin ensemble’s periodic inversion at the cantilever frequency undergoes

a 180◦ phase shift. After the completion of π-inversion, the AWG hardware switches back to the original ARP

sweeps for measuring polarization.

(a) 

(b) 

2π 2π π 2π 

ω(t) 

B1(t) 

ω0 

Time (t) 

Figure 5.15: Pulse sequence showing a π-inversion. An adiabatic inversion pulse with a duration equivalent to a
full cantilever cycle is applied.
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Figure 5.16: Timing diagram for the π-inversion protocol. FPGA triggering routine starts on the rising edge
marker. The pulse is precisely timed to last one full cantilever cycle.
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Figure 5.17: A time-trace of the hyper-polarized spin fluctuations recorded with a rectification threshold set to
-5 aN. Positive spin polarization is maintained using active feedback during the course of the measurements.
The time instants at which the π-inversions are applied are indicated by the red vertical bars. τl = 0.8 s.

5.9 Non-equilibrium spin states in the rotating frame

Experimentally, we can monitor the effect of π-inversions by measuring the time traces of polarization. We find

that the repetitive application of π-inversions can be used to control and maintain the polarization fluctuations

with the same sign - positive or negative (Fig. 5.17), and can also be used to confine the polarization fluctuations
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Figure 5.18: A time-trace of the narrowed spin fluctuations. A π-inversion (red vertical bar) is applied whenever
the absolute value of the fluctuations exceed a threshold of 12.5 aN. τl = 0.8 s

within a certain window (Fig. 5.18). Since only fluctuations due to nuclear spins are affected by the π-inversions,

the effectiveness of the protocol depends on the component of X(t) arising from spin compared to thermal

fluctuations, i.e., the larger the power signal-to-noise ratio (SNR) σ2
S/σ

2
T is, the more effective the control of

X(t) will be. As shown in Fig. 5.19, this process can produce both hyper-polarized and narrowed nuclear

spin distributions in the rotating frame. Therefore, our ability to continuously measure and manipulate spin

polarization enables us to polarize or narrow its distribution using real-time feedback.
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Figure 5.19: Histograms of X(t) recorded over 1 hour corresponding to the natural (black), rectified (red), and
narrowed (blue) cases. The mean polarization of the rectified distribution is 2.9 aN compared with 0.0 aN of the
natural distribution. The standard deviation of the narrowed distribution is 2.0 aN, compared with 5.6 aN of
the natural distribution.
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Figure 5.20: Capture-store-readout pulse sequence.

5.10 Capture-store-readout pulse sequence

In addition to controlling the spin fluctuations in real-time, we can also take a less active approach by simply

selecting and storing the large statistical polarization fluctuations [23]. The fast nuclear spin fluctuations in the

rotating frame can be captured and projected onto the laboratory frame using real-time RF control techniques.

Using this approach, the nuclear spin polarization can be stored in the laboratory frame for time periods that

exceed their lifetime in the rotating frame. Once prepared, this non-equilibrium nuclear spin state can be readout

at a later time and it eventually recovers equilibrium fluctuations on the same time scale as the spin correlation

time in the rotating frame. Although the capture-store-readout (CSR) pulse sequence generates only a mod-

est net nuclear spin polarization (< 1%), the resulting nuclear spin state has its variance reduced by a factor of six.

As a second demonstration of creating nuclear spin order, we continuously monitor the spin fluctuations X(t)

until they reach a predetermined threshold Xc in the rotating frame (Fig. 5.20). Upon registering a threshold,

the spin order is transferred to the laboratory frame by detuning the ARP sweeps from resonance. This leaves

the instantaneous spin polarization pointing along B0 and the sweeps have no discernable effect on the cantilever

amplitude as the cantilever experiences only thermal excitations. In other words, the z-component of polarization

is essentially left static and out-of-lock when the sweeps are off-resonance. In this manner, hyper-polarized states

of the spin ensemble can be captured and stored in the laboratory frame for as long as T1 relaxation time.

After some storage time Tstore, the ARP sweeps are reapplied through the Larmor frequency of the spins to read-

out the stored nuclear spin state, and the nuclear spin fluctuations are observed again (Fig. 5.20). By bringing

63



0 2 4 6 8 10

0

5

10

15

20

25

 

 Time (s)

Read-out (rot. frame)Storage (lab. frame)

 

 

 

Capture fluctuation
(a

N
) 

(rot. frame) 

Figure 5.21: 〈X(t)〉 averaged over 100 CSR pulse sequences showing Tstore = 4 s for a 31P spin ensemble in a
GaP NW. The mean stored fluctuation 〈Xs〉 is shown as a filled diamond. T = 4.2 K and Bext = 6 T. The
residual signal observed after the capture arises from the memory effect of the lock-in filter with a time constant
τl = 0.4 s. The read-out fluctuations decay over a time τm = 3.8 s.

the spins into magnetic resonance, the magnetic moments at a given sample location are once again “spin-locked”

to the effective field in the rotating frame and undergo periodic inversions at the cantilever frequency because of

the frequency modulation of the RF field. In other words, the z-component of polarization oscillates in response

to the adiabatic frequency sweeps when the sweeps are on-resonance.

To confirm that the signal is due to storage in the nuclear spins, the experiment is repeated with non-resonant

ARP sweeps to capture a fluctuation; no nuclear spin state is recovered in this case. It is important to note that

the captured spin fluctuation is transient and only the projection of this state onto the laboratory frame that is

stored. Crucially, the time to capture and to retrieve the nuclear spin state occurs over a time scale given by the

inverse of the cantilever frequency, which is much shorter than the time scale involved in the spin dynamics in

the rotating frame.

The interaction of the nuclear spins with the magnetic field fluctuations at the Rabi frequency can give rise to

longitudinal nuclear spin transitions and decrease the correlation time τm of the statistical nuclear polarization

in the rotating frame compared to that in the laboratory frame. Near a magnetic tip, field fluctuations originate

from thermally driven random vibrations of low-frequency mechanical modes of the cantilever [32]. In the

presence of the modulation of the RF frequency ωRF(t), one might expect such interactions to be sensitive to

noise in a frequency band set by γB1 ≤ ωeff(t) ≤ γBeff(t) where Beff(t) =
√
B2

1(t) + (ωRF(t)/γ −B0)2 is the

effective magnetic field in the rotating frame.

64



10 15 20 25 30 35 40 45 50

-20

-10

0

10

20

 

 
Fo

rc
e 

(a
N

)

Time (s)

Spin-locked Spin-locked 

Capture fluctuation Storage 

Out-of-lock 

Readout fluctuation 

Figure 5.22: Time trace showing an individual capture-store-readout sequence with a storage time of 5 s.

We calculate the ensemble averages 〈X(t)〉 and 〈Y (t)〉 by performing multiple independent measurements on

nanometer-scale 31P and 1H ensembles (Fig. 5.21). Because of the randomness of the cantilever thermal noise,

ensemble average over many measurements results in a near zero average signal 〈Y (t)〉 = 0. Fig. 5.22 shows a

time record of the cantilever fluctuations in an individual capture-store-readout sequence for 31P nuclei.

To determine the time scale T1 on which the nuclear spin polarization can be stored in the laboratory frame, we

captured a polarization within the resonant slice and watched its relaxation back to the equilibrium for varying

storage times. As shown in Fig. 5.23 and Fig. 5.24, 〈Xr〉 and τm are extracted from bi-exponential fits to X(t)

during the readout sequence using our knowledge of the lock-in time constant τl. Deviations of 〈Xr〉 from 〈Xs〉

could be caused by the spin-lattice relaxation of the polarization in the laboratory frame – set by T1 – or by

the incomplete projection of the polarization onto B0. For both 31P and 1H in Fig. 5.23 and Fig. 5.24, these

deviations are negligible within our error for two values of Tstore. Limitations of the experimental hardware

prevented measurements for larger Tstore, although our data show that T1 � 20 s for 31P in InP and T1 � 2.5 s

for 1H on GaP at 4.2 K.

The size of the captured spin fluctuation is, in principle, only limited by the amount of time one is willing to wait

during the capture step. For the normally distributed random variable X(t), the average amount of wait time

required to capture a fluctuation Xc is given by Twait = 2
n0
eX

2
c/(2σ

2
X), where n0 is the average number of times

X(t) crosses zero per second [60]. For example, given that n0 = 0.2 Hz is a typical value in our experiments,

fluctuations of 3σX are expected after just Twait = 15 min, or alternatively for Twait = 1 hr, a fluctuation of

3.4σX can be expected. For a 31P spin ensemble with N = 106 at B = 6 T and T = 4.2 K, the standard deviation

65



0 5 10 15 20 25 30 35

0

5

10

15

20
 

 Time (s)

 

 

(a
N

) 

Figure 5.23: Two capture-store-readout sequences are shown for different Tstore for an ensemble of 6 × 105 <
N < 1 × 107 31P spins in an InP NW. Fits to X(t) during the readout take into account the lock-in time
constant τl = 0.8 s (grey) and allow us to recover the value of the retrieved fluctuation 〈Xr〉 (filled circles) and
its exponential decay with τm = 4.3 s without the effect of τl (black). The filled diamond indicates the mean
stored fluctuation 〈Xs〉. T = 4.2 K and Bext = 6 T.
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Figure 5.24: Two CSR sequences are shown for different Tstore for an ensemble of 2 × 105 < N < 7 × 105 1H
spins in a GaP NW with τl = 140 ms where τm is found to be 190 ms. Again 〈Xr〉 are displayed as filled circles
and 〈Xs〉 as a filled diamond. T = 4.2 K and Bext = 6 T.

of the statistical polarization fluctuations is given by ρS =
√

I+1
3I

1
N = 0.1% and its mean thermal polarization

is ρB = I+1
3

h̄γB
kBT

= 0.06% [42]. Therefore, in the limit of large SNR where σX is dominated by spin fluctuations,

we can expect to capture polarizations of 4.8ρB in 15 min and 5.5ρB in 1 hr. The polarization captured in a

given Twait could be increased even further by reducing τm and therefore increasing n0, e.g. through the periodic
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randomization of the spin ensemble using bursts of π2 -pulses [25]. In principle, the nuclear spin decoherence time

T2 sets the lower limit for τm. As the size of the spin ensemble shrinks, the size of the achievable polarization

increases as 1/
√
N , making such a protocol increasingly relevant as detection volumes continue to shrink. Given

that conventional pulse protocols based on thermal polarization require an initialization step taking at least

T1, waiting for an extended time to capture a large spin fluctuation may be attractive – especially when the

magnitude of the captured fluctuation greatly exceeds the possible thermal polarization.

Note that the crucial step in the CSR protocol is that the monitoring and capture occurs in the rotating frame,

where the time between statistically independent spin configurations – set by τm – is much faster than the equiv-

alent time T1 in the laboratory frame. This reduced rotating-frame correlation time, allows the system to quickly

explore its spin configuration space. On the other hand, once a large fluctuation is captured and transferred to

the laboratory frame, the long T1 effectively freezes the ensemble in this rare configuration.

We therefore show the long-term storage of large spin polarization fluctuations in nanoscale nuclear spin ensembles

with N ∼ 106. Storage times as long as 20 s for 31P are demonstrated, limited only by the measurement hardware.

The ultimate limit to these times is set only by T1 in the laboratory frame, which at low temperatures is typically

extremely long, exceeding hours for some nuclear spins. While these results were obtained with a low-temperature

MRFM, the capture and storage of spin fluctuations should be generally applicable to any technique capable of

detecting and addressing nanoscale volumes of nuclear spins in real-time.

5.11 Narrowing of spin polarization fluctuations

The ability to prepare narrowed distributions of nuclear spin polarization may find application in quantum in-

formation processing for coherent control of solid-state electron spins, whose dephasing time is often limited

by the random nuclear field distribution in the host material [18–22]. We have demonstrated that the nuclear

spin polarization capture process is accompanied by a decrease of the width of the nuclear spin polarization

distribution, possibly leading to a narrowing or reduction of the randomness in the nuclear magnetic field.

Let the spin fluctuation S and thermal fluctuation T be independent random variables that are normally dis-

tributed with mean zero and variance σ2
S and σ2

T respectively, i.e., the probability density of the spin fluctu-

ation S = s is given by fS(s) = N(0, σ2
S) and the probability density of the thermal fluctuation T = t is

fT (t) = N(0, σ2
T ). Our measurement X contains both a spin fluctuation S and an additive and independent

thermal noise fluctuation T . Since S and T are independent, the total fluctuation X = S + T is also normally

distributed, with the probability density of X = x given by fX(x) = N(0, σ2
S + σ2

T ). The conditional probability
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Figure 5.25: An electron spin confined in a quantum dot interacts with the mesoscopic ensemble of nuclear spins
(∼ 104-106) via hyperfine interaction.

density for the spin fluctuation S = s given the occurrence of the total fluctuation X = x is,

fS(s|X = x) =
fT (x− s)fS(s)

fX(x)

=
1√

2π σSσT√
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Therefore, fS(s|X = x) = N
(

σ2
S

σ2
S+σ2

T
x,

σ2
Sσ

2
T

σ2
S+σ2

T

)
.

This result means that in an idealized measurement of our CSR protocol, in which the spin component of the

captured fluctuation Xc is fully projected onto B0, the stored fluctuation Xs will be normally distributed with

a mean 〈Xs〉 = Xc
σ2
S

σ2
S+σ2

T
and a variance σ2

Xs
=

σ2
Sσ

2
T

σ2
S+σ2

T
. The fact that 〈Xs〉 < Xc reflects the finite SNR of

the measurement, in this case limited by the cantilever’s thermal noise. Note also that the distribution of the

stored polarization is narrowed, i.e., it has a reduced variance, compared to the variance of spin polarization

under normal evolution (σ2
Xs

< σ2
S). In the limit of large SNR (σ2

S � σ2
T ), 〈Xs〉 → Xc and σ2

Xs
→ 0. If
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Figure 5.26: σX(t) calculated over the same 100 sequences (as in Fig. 5.21) showing the narrowed variance of the
retrieved fluctuation σXr (filled diamond) as it equilibrates back to its rotating frame value σXn (dotted line).

during Tstore this stored polarization undergoes negligible relaxation in the laboratory frame, the corresponding

retrieved fluctuation Xr has a mean 〈Xr〉 = 〈Xs〉. However, the variance will include the additional thermal

noise of the measurement: σ2
Xr

=
σ2
Sσ

2
T

σ2
S+σ2

T
+ σ2

T as we measure both the spin signal and the thermal noise during

the retrieval measurement. In other words, σ2
Xr

> σ2
Xs

due to the finite SNR of the measurement.

Fig. 5.26 shows the reduced standard deviation of the retrieved polarization σXr , eventually approaching σXn

after a time on the order of τm in the rotating frame. Note that τl is much shorter than the time over which σXr

evolves, excluding the lock-in as a source of the behavior. Further beyond the first few lock-in time constants, the

suppression of the total fluctuations proves that the spin fluctuations are reduced in the nuclear spin state. Thus,

we have reported a method of preparing the nuclear spin ensemble that suppresses or narrows the distribution

of nuclear spin polarization fluctuations below its equilibrium value by a factor of six. The degree of narrowing

demonstrated is limited by the SNR of the measurement. The polarization of the nuclear spin ensemble could

be initialized to a narrow distribution of values before each measurement which may provide us the ability to

enhance the electron-spin dephasing time.
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Chapter 6

Magnet-on-Cantilever MRFM

This Chapter provides a brief mention of the experimental work performed towards the realisation of a magnet-

on-cantilever MRFM setup. During the course of this work (roughly ∼ 1 year), many technical difficulties and

challenges were encountered, some of which still remain unresolved.

6.1 Introduction

There are two variants in the geometry of MRFM: sample-on-cantilever and magnet-on-cantilever. The recent

progress in MRFM has largely been confined to the sample-on-cantilever geometry resulting in the spin detec-

tion sensitivity and spatial resolution achievable on the order of 103 spins and 10 nm respectively [3, 61]. On

the other hand, the magnet-on-cantilever geometry would give us more flexibility in studying a wide variety of

samples ranging from molecules on surfaces to self-assembled and gate-defined quantum dots (QDs) in GaAs

heterostructures [62–64]. The magnet-tipped cantilever, serving as an AFM-like scanning probe, can be readily

integrated into existing transport and optical setups used for studying the physics of quantum dots. Such a

geometry would also obviate the requirement of attaching a sample to the cantilever, thereby offering flexibility

to study arbitrary samples lying on a surface.

Pushing the limits of spin detection in the magnet-on-cantilever setup would enable us to conceive and realize

magnetic resonance experiments in gate-defined quantum dots (QDs), QDs grown by molecular beam/droplet

epitaxy and many more types of nanostructures such as quantum wells and nanowires. MRFM has the sensitivity

to detect the statistical polarization fluctuations of ensembles containing 106 nuclear spins. It could therefore

serve as a useful tool for measuring dynamic nuclear spin polarization (DNSP) and Knight shifts taking place due

to electron-nuclear hyperfine interactions [65]. The roughly 105 nuclear spins present in typical semiconductor

QDs are the leading cause of spin decoherence for electrons trapped in the dot [16, 17].
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Figure 6.1: Three different types of magnetic tips are studied for magnet-on-cantilever MRFM experiments. (a)
and (c) The cantilever tips evaporated with FeCo. (b) Ni ferromagnetic nanowires.
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6.2 Magnetic tips

Previous MRFM studies using a magnet-on-cantilever setup have employed magnets made of hard or high

anisotropy magnetic materials [8]. A micron-sized magnet was glued to the cantilever in an orienting magnetic

field, and then further shaped using a focused ion beam (FIB) resulting in a sharper and smaller magnet. Such

magnets provided gradients on the order of 105 T/m and showed negligible magnetic dissipation as demonstrated

by cantilever magnetometry measurements [56]. The quality factor of the magnet-tipped cantilever decreased

only marginally in the presence of the magnetic fields of a few tesla possibly due to the high anisotropy of the

magnet. However, the complex fabrication procedures (using a FIB) required for preparing such magnets does

not make it an attractive and convenient option for achieving a large gradient in a MRFM experiment.

Soft magnetic materials, such as FeCo, offer higher saturation magnetization compared to other available hard

materials. Also, FeCo nanomagnetic tips can be integrated onto a microwire RF source using standard clean

room processing techniques. These magnets have been shown to provide large gradients on the order of 106 T/m

in a sample-on-cantilever setup [3]. A thin film of Ti/FeCo (10/90 nm) evaporated onto the end of the cantilever

might seem to be a promising candidate for a magnet-on-cantilever experiment (Fig. 6.1). However, such can-

tilevers experience large dissipation in a magnetic field due to the oscillatory canting of the magnetic moment

of the film [56]. In other words, magnetic friction occurs because the moment rotates while trying to follow the

direction of the external magnetic field. This dissipation can be avoided by working in a MRFM geometry where

the external magnetic field is oriented parallel to the cantilever’s angular rotation vector. Therefore, we have

built a novel perpendicular geometry setup for performing nanoscale MRFM experiments [66]. In such a setup,

as the cantilever oscillates, it does not change its angle with respect to the applied magnetic field. However,

performing an MRFM experiment in the perpendicular geometry has proven to be challenging in practice, mainly

because the MRFM probe is somehow coupled to the external vibrations for still unknown reasons.

The saturation magnetization that was determined from cantilever magnetometry measurements on the Ni

nanowire is approximately µ0M=0.5 T [67], which is about three times smaller than the magnetization of the

FeCo tips reported in the tobacco mosaic virus (TMV) experiment [3]. This means that a gradient just above

106 T/m is expected at a distance of 25 nm. Our FeCo tips, in practice, are not achieving the same gradients

as in the TMV experiment, perhaps due to a thicker oxidation layer or other contamination processes in the

sample preparation. The other reasons for our FeCo tips not being of good quality are the methods with which

the tips are fabricated - using a public evaporator and not baking the system before evaporation etc. The recent

calculations of point spread function (PSF) for the InP/GaP nanowire experiments would seem to strongly back

up these claims. So, probably these Ni nanowire tips are expected to be only a small factor worse than our

current FeCo tips and it seems promising to use these tips for the magnet-on-cantilever experiments. They also

serve two other advantages. First, there is no need to evaporate metal on the cantilever tip, as the nanowires
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Figure 6.2: SEM micrograph of the microcoil. The magnet-tipped cantilever, when positioned at ‘A’, experiences
much less excitation from the current flowing underneath it, than at ‘B’.

are quite long 10-15 µm and already coated with metal. Second, the drop in Q in the normal MRFM geometry

(not perpendicular) is very low even at MRFM operating fields around 3 T. The quality factor of Ni nanowire

tipped cantilever stays almost constant at 30000 on ramping up the magnetic field from 0 T to 3 T. In fact,

Ni ferromagnetic nanowires experience negligible dissipation in both configurations (normal and perpendicular).

The ferromagnetic Ni nanowires sserving as sources of magnetic field gradient can be glued to the tip of the

cantilever using a micromanipulator setup. However, no MRFM signal is observed with these Ni nanowires,

probably because the gradients realised are too small and the volume of the resonant slice too tiny.

6.3 Microcoil

There exists spurious interaction between the RF microwire and the magnetic tip which leads to an excitation

of the cantilever [61]. Our experimental studies conclude that this interaction depends on the orientation of the

cantilever with respect to the direction of the RF field generated from the wire. Therefore, we have made a

microcoil device to minimize these interactions (Fig. 6.2).

6.4 Outlook

The important ingredient for performing a magnet-on-cantilever MRFM experiment is a cantilever with an

attached magnetic tip which can provide a large field gradient. Such a tip should be of high quality and not

dissipate any energy from the cantilever even in the presence of large magnetic fields. Therefore, it’s worthwhile to
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consider other strategies for fabricating magnetic tips which are equally applicable for both tip-on microwire and

tip-on-cantilever experiments. High quality magnetic tips are currently being used for sensitive measurements in

magnetic force microscopy (MFM). Their expertise can be borrowed to make better tips than that are currently

employed in MRFM. These magnetic tips are prepared by sputtering (rather than e-beam evaporation) by

depositing 5-20 nm of Co and further capping it with Cr or Pt to prevent oxidation. Such magnetic tips intended

to be used for MRFM can be fabricated by sputtering InGaAs nanoneedle samples with a magnetic material.

These tips are magnetically “hard” and could be used in the normal MRFM geometry [68]. On the other

hand, evaporating FeCo or Dy on the nanoneedles would make these tips magnetically “soft” which requires the

experiments to be performed in the perpendicular geometry.
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Chapter 7

Outlook

This thesis mainly dealt with creating order in small ensembles of nuclear spins by harnessing its random

fluctuations using the technique of magnetic resonance force microscopy. Here, we outline some of the potential

applications of this novel technique.

1. The ability to create, manipulate, store and retrieve polarization in the nuclear spin environment of

nanoscale systems is important for the development of novel nuclear magnetic resonance (NMR) tech-

niques and the implementation of memory devices. The thermal equilibrium polarization being small in

nanoscale nuclear spin ensembles, the other methods to create nuclear spin order must be considered.

When polarization cannot be created via techniques such as Overhauser-mediated dynamic nuclear spin

polarization or Hartmann-Hahn cross-polarization transfer between polarized and unpolarized nuclei, the

selective capture of large statistical fluctuations enhances the sensitivity to detect the weak magnetism from

nuclear spins. The ensembles polarized in this work, nanometer-scale volumes of 1H on an adsorbate layer

and 31P in a single semiconducting NW, demonstrate the types of samples which could benefit from this

technique. One could imagine, for instance, such nuclear spin polarization capture processes enhancing the

weak MRI signals of a nanometer-scale 1H-containing biological sample on a surface or of a semiconducting

nanostructure.

2. Conventional NMR and MRI techniques applied to large spin ensembles have mostly relied on manipulat-

ing thermal equilibrium polarization to produce resonance signals. However, as the size of the detection

volume continues to shrink, the time-dependent excursions of the nuclear spin polarization become in-

creasingly larger compared to the mean thermal polarization. Moreover, the polarization of the ensemble

has a fluctuating or noisy nature resulting in a random amplitude and sign. Therefore, it’s worthwhile to

consider and develop novel detection techniques that take advantage of harnessing the intrinsic statistical

polarization fluctuations to observe magnetic resonance in nanoscale nuclear spin ensembles. The temporal
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control gained over the nuclear spin polarization fluctuations in this work can provide a means to initialize

the nuclear spin ensemble with a fixed sign and large amplitude. Such initialization schemes can provide

the basis for realizing advanced pulse protocols which can be borrowed directly from conventional NMR to

enhance detection sensitivity and acquire NMR spectra of statistically polarized samples.

3. For example, previous work to detect nuclear double resonance in self-polarized ensembles of heteronuclear

coupled spins has focused on continuous-wave magnetic resonance techniques [69], which are unsuitable

for the manipulation required for cross-polarization transfer between dipolar-coupled spins. A further step

forward will be to extend the nuclear spin storage measurements presented here to observe polarization

transfer between different spin species, which will serve as a new contrast mechanism - a valuable tool in

nano-MRI. In our capture-store-readout sequence, the capture and readout of the polarization is performed

on the same nuclear spin species (I-spin). In principle, the large polarization stored in the laboratory frame

can be transferred to other nuclear spin species having a low-gamma (S-spin) using Hartmann-Hahn method

of cross-polarization. The real-time switching and control of RF fields we have achieved would allow us to

perform the readout of the polarization on the S-spin species thus resulting in a direct real-time observation

of polarization transfer in small spin ensembles which would be the first of its kind.

4. The experimental demonstration of fast real-time radio frequency control techniques on nuclear spin systems

may become a useful tool in the preparation of narrowed and polarized nuclear spin states. Such states lead

to an enhancement of coherence times of spin qubits with promising applications in quantum information

and ultrasensitive magnetometry tasks [70]. One of the future challenges will be to integrate the classical

feedback control techniques presented here with the full quantum control of electron spins in the solid-state

environment. With the recent advance of a large gradient in a magnet-on-cantilever MRFM experiment

[61], the proposed techniques should enable efficient implementation of quantum computational tasks based

on spin qubits in gate-defined and self-assembled quantum dots, nitrogen vacancy centers [71] and many

more types of nanostructures such as quantum wells and nanowires.
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Appendix A

FPGA Programs

A.1 Steps to run the laser PID controller

1. Open Laser PID Controller (Host).vi which is the host VI.

2. Click the Calibrate Gains and specify the AC Preamplifier Gain and DC Preamplifier Gain, which

are the preamplifier gains for the AC and DC signals respectively.

3. The Sample Rate (S/s) for the FPGA loop is set as 10 Hz. Make sure that the PID loop in FPGA VI

also has the same sampling frequency.

4. Slide the TEC Manual (Ohms) through one cycle so that the photodiode signal moves through 2-3

fringes and observe that the Fringe Max. (V), Fringe Min. (V), Fringe Average (V), Fringe

Amplitude (V) and Fringe Visibility changes, and finally leave the TEC Manual (Ohms) at 0.

5. Click the Set Setpoint & Calibrate which sets the Fringe Average (V) to Setpoint (V).

6. Click the Feedback and adjust the Output Gain and PID Gains so that the fringe locks on the Setpoint

(V).

7. Slope functionality can make the PID loop to lock on either the positive or negative slope of the fringe.

8. Click the STOP Host so that it leaves the PID loop running in the FPGA hardware.

9. Clicking the STOP FPGA aborts the running PID loop in FPGA but leaves the host VI running.
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A.2 Steps to run the displacement PID controller

Note: Before running the Displacement PID Controller, make sure that the photodiode signal is locked on

the center of the fringe.

1. Open Displacement PID Controller (Host).vi which is the host VI.

2. Click Run Continuously button to measure the Displacement (nm-rms).

3. Specify the desired Set Displacement (nm-rms).

4. Click the Self-osc. (On/Off) and adjust the Proportional Gain (Kc) to get a stable self-oscillation

signal.

A.3 Steps to run the phase shifter

Note: Before using this program for a real cantilever signal, it is recommended to test the phase shift functionality

for any 1-10 KHz clean sinusoidal signal with the help of a lock-in amplifier. This phase shifter can also be used

for damping the cantilever vibrations. The principle of damping caused by 90 degrees phase shift strictly applies

only if there are no signal paths and filters placed before and after the phase shifter as they cause unintended

physical time delays and phase delays. Therefore, it is advisable to have amplified (but unfiltered!) signal from

the preamplifier as the input of the FPGA program and the output is directly sent to the piezo without any

filtering by the preamplifier.

1. Open Phase Shifter(Host).vi which is the host VI of the project.

2. Specify the Cantilever Frequency.

3. Set the Phase (Degrees) to the desired phase shift.

4. Adjust the Tunable Gain as required for your application. A Tunable Gain of 1 corresponds to an

output/input amplitude ratio of 1.
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Appendix B

MATLAB simulation of spin noise

Fs = 100; sample rate (samples per second)

P = 10; time of simulation

M = 10000;

Z = zeros(M,P*Fs);

Y = zeros(1,P*Fs);

A = zeros(1,P*Fs);

for m = 1:M

N = 20; number of switches in realization

lambda = .5; switching rate (switches per second)

X = [];

S = rand(1,N); uniform random variables

T = -log(S)/lambda; transform to exponential RVs

V = cumsum(T); switching times

for i = 1:2

state(i) = -1+(i-1)*2;

end

j = randi(2,1);

state = state(j);

Nsold = 1;

for k = 1:N

Nsnew = ceil(V(k)*Fs); new switching time

Ns = Nsnew - Nsold; number of samples in current switching interval

X = [X state*ones(1,Ns)];

state = -state; switch state
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Nsold = Nsnew;

end

t = [1:length(X)]/Fs; time axis

for l = 1:P*Fs

Y(l) = X(l);

end

u = [1:length(Y)]/Fs;

Z(m,:) = Y;

end

for n = 1:P*Fs

A(n) = 0;

for o = 1:M

A(n) = A(n) + Z(o,n);

end

end

plot(u,A)

v = transpose(u);

B = transpose(A);

savefile = ‘noise.mat’;

save(savefile,‘v’,‘B’);
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Appendix C

Microcoil fabrication steps

1. Cut GaAs wafer into 3 mm by 4 mm samples.

2. Spin 1 mm thick PMMA onto the sample. (4000 rpm for 40 s)

3. With the help of e-beam lithography, define the microwire, markers and the big leads.

4. Dip the patterned sample in the developer for 75 s and then in IPA for 15 s.

5. Check the quality of the developed pattern under the optical microscope.

6. Evaporate 10/190 nm of Ti/Au.

7. Insert the sample in NMP for 30 minutes and then in Acetone for 5 minutes for liftoff purposes.

8. Insert the sample in Ethanol for 5 minutes and finally in IPA for 5 minutes for liftoff.

9. After further rinsing the sample in distilled water for 5 minutes, the microcoil is ready to be used.
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