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In “Probing single-charge fluctuations at a GaAs/AlAs interface using laser spectroscopy on a nearby InGaAs
quantum dot” [1], a single quantum dot (QD) is used as a nano-sensor of its own local electrical environment.
The understanding of the local electrical fluctuations has led to a new sample design where close-to-transform-
limited linewidths are routinely measured. These conclusions rely on experimental results which we model with
Monte-Carlo simulations. The details of these simulationsare explained in this supplementary information.
We explain how the input parameters are determined and how the results depend on the defect density, defect
positions and occupation probabilities.
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PART I: MONTE-CARLO SIMULATION OF THE CHARGE FLUCTUATIONS: CALCULATION

1. Stark shift

The interpretation of the experiments relies on the DC-Stark effect of the single negatively charged exciton,X1−. The
dependence of theX1− emission energy as a function of an external electric fieldF0 is given by [2]:

E
(1)
X1− = E0 +Σi=x,y,z(−piF0,i + βiF

2
0,i) (1)

wherepi, βi andF0,i are the permanent dipole moment, the polarizability and thebare electric field in directioni, respectively.
The emission energy with an additional electric fieldFh is similary given by:

E
(2)
X1− = E0 +Σi=x,y,z(−pi(F0,i + Fh,i) + βi(F0,i + Fh,i)

2). (2)

The energy shift∆E induced by the additional electric fieldFh is then given byE(2)
X1− − E

(1)
X1− :

∆E = Σi=x,y,z(−piFh,i + βiFh,i(Fh,i + 2F0,i)). (3)

2. Electric field created by a single hole

We consider a single positive charge located at distancedcap from the QD in the growth direction (z), at lateral coordinate
r = (x, y) = (r, θ) with the dot atr = 0, Fig. 1. The back contact is treated as a metallic layer, implying the creation of a
negative image charge. The resulting potential is then given by:

Vh(x, y, z) =
e

4πε0εr

[

1
√

(δ − z)2 + x2 + y2
− 1

√

(δ + z)2 + x2 + y2

]

. (4)

The electric field created by this single charge is deduced fromFh = −∇Vh:

Fh,x(x, y, z) = +
ex

4πε0εr

[

1

((δ − z)2 + x2 + y2)
3

2

− 1

((δ + z)2 + x2 + y2)
3

2

]

,

Fh,y(x, y, z) = +
ey

4πε0εr

[

1

((δ − z)2 + x2 + y2)
3

2
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((δ + z)2 + x2 + y2)
3
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]

,

Fh,z(x, y, z) = − e

4πε0εr

[

δ − z

((δ − z)2 + x2 + y2)
3

2

+
δ + z

((δ + z)2 + x2 + y2)
3

2

]

. (5)

The electric field at the location of the QD is given by eq. 5 with z = dtun.

3. Stark shift parameters in the growth direction

In the growth direction, the dipole moment and polarizability, pz andβz, are determined by fitting the voltage dependence of
theX1− photoluminescence (PL) emission spectrum [2]. The non-resonant laser in PL experiments creates stored holes at the
capping layer/short period superlattice (SPS) interface,a space charge, shifting the charging plateaux in gate voltage. In this
case,F0,z is given by:

F0,z =
V0 − Vg

D
+∆FNR (6)

whereVg, V0 andD are the applied gate voltage, the Schottky barrier of the gate, and the back contact to surface distance,
respectively.∆FNR is the additional electric field arising from the space charge.∆FNR is determined by insisting that the local
absorption shift measured with resonant laser spectroscopy, 765µeV/V for the QD of sample A [1], is reproduced. For this
particular QD, the fixed parameters areD = 175 nm,Vg = −0.05 V andV0 = 0.62 V. From the fit, we obtain:

pz = −0.231 nm

βz = −0.386 µeV/(kV/cm)2

∆FNR = 9.0 kV/cm. (7)
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FIG. 1. (a) Structure of the samples. The active layer consists of a layer of quantum dots (QDs), a GaAs tunnel barrier below the QDs and
a GaAs capping layer above. An AlAs/GaAs short period superlattice (SPS) is grown on top of the capping layer. The Schottky gate is a
semi-transparent metal layer deposited on the sample surface. Ohmic contacts are prepared to the back contact. (b) Zoom-in of the active
region in (a). A QD is separated from the capping layer/SPS interface by distancedcap and from the back contact by distancedtun. A single
hole is shown at the capping layer/SPS interface atz = δ, creating a negative image charge atz = −δ.

4. Stark shift parameters in the QD plane

The in-plane permanent dipole momentspx andpy are assumed to be zero [3]. Assuming a harmonic confining potential, the
polarizability in the QD plane is given by [2]:

βx = βy = −e2
mel

4
e +mhl

4
h

2h̄2 (8)

whereme = 0.07mo andmh = 0.25mo are the electron and hole in-plane effective masses, andle andlh are the lateral extents
of the electron and hole wave functions, respectively [4]. The parametersle and lh can be determined from the PL charging
diagram [4]; specifically, from the extent of the neutral exciton charging plateau∆V (X0) and from the PL energy difference
betweenX1− andX0, ∆EPL(X

1− −X0) [5]. le can be expressed as a function of the electron-electron interaction energy in
the ground stateEss

ee:

le =
e2

4πε0εr

√

π

2

1

Ess
ee

, (9)

with [4]:

Ess
ee =

∆V (X0)

λ
− 2Ej (10)

whereλ is the sample lever arm andEj the Coulomb energy of an electron in the QD with its image charge in the back contact
(Ej = 1.1 meV fordtun = 25 nm). Oncele is known,lh can be determined from the electron-hole Coulomb energy:

Ess
eh =

e2
√
π

4πε0εr

1
√

l2e + l2h
= Ess

ee −∆EPL(X
1− −X0). (11)

This givesle = 4.24 nm andlh = 2.45 nm for the QD from sample A in [1], leading toβx = βy = −2.06 µeV/(kV/cm)2.
Finally, as the applied electric field is in the growth direction, we takeF0,x = F0,y = 0.

5. Stark shifts: growth direction versus in-plane fields

With the parameters obtained above for the QD in sample A, we compare the contributions of electric fields and Stark shifts
generated in the growth and in-plane directions fordcap = 30 nm anddtun = 25 nm. As a typical case, we consider a single
hole trapped at the capping layer/SPS interface with in-plane coordinates(x, y) = (10, 0) nm. We obtain:

Fz = −1.29 kV/cm
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FIG. 2. (a)∆Ez and (b)∆Ex as a function of the in-plane defect distance from the QD, calculated using the parameters from section I.3 and
I.4. (b) Ratio|∆Ex/∆Ez| as a function of the in-plane defect distance from the QD. Thein-plane Stark shift is always more than one order of
magnitude smaller than the Stark shift in the growth direction. The largest ratio is|∆Ex/∆Ez| ≈ 4%.

Fx = −0.35 kV/cm

Fy = 0

∆Ez = 16.7 µeV

∆Ex = −0.26 µeV

∆Ey = 0. (12)

We observe that the effect of the in-plane component is two orders of magnitude smaller than that in the growth direction.We
generalize this comparison in Fig. 2 where∆Ez, ∆Ex and the ratio|∆Ex/∆Ez| are plotted as a function of the in-plane defect
location, showing that for allx, |∆Ex| ≪ |∆Ez|.

6. The Monte-Carlo population of the defects with holes

An array of defects is considered at the capping layer/SPS interface. The defects are populated randomly in a Monte-Carlo
simulation. Defecti is populated with a weighted probabilityαip, wherep is the control parameter of the simulations,0 ≤ p ≤ 1.
αip rises withp until it reaches 100%; at larger values ofp, the probability is clamped to 100%. Theα-parameter can change
from defect to defect and represents, at a particularp, the relative probability of occupying a particular localization center. Its
value isαi ≥ 1 for all i to ensure that all the defects are populated atp = 1.

A defect array is defined, specifying for each defect the location (xi, yi) and the weighting factorαi. A value ofp is then
chosen. Each defect is “tested” with respect to a random numberg, 0 ≤ g ≤ 1. If αip > g, defecti is populated with one hole. If
αip ≤ g, defecti is not populated. This process is repeated for each defect, generating a new random numberg for each defect.
In this way, a distribution of localized charges at the capping layer/SPS interface is created. The electric field at the location of
the quantum dot arising from the localized holes is calculated by adding up the electric field from each localized charge (repeated
use of eq. 5). The Stark shift of the optical transition is then calculated with eq. 3. These successive steps consider oneand only
one particular charge distribution at the interface. In order to reproduce the experiments, we run this procedureN times. From
one run to the next, the spatial distribution of the defects remains the same, as does the control variablep, but otherwise the runs
are not correlated with each other. The final optical spectrum is a sum overN runs. The entire process is then repeated as a
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FIG. 3. (a)-(d) Example simulations obtained with a 2D random distribution of defects withN2D = 1010 cm−2 over a surface of 1.0µm2.
The parameters are the ones obtained for the QD in sample A in section I withN = 2, 500 andΓL = 1.0 µm. The color scale goes from 2
(blue) to 60 (red). More than 50% of the simulated contour plots are similar to (a) and (b); some show steps, (c) and (d).

function ofp.

7. Spatial modulation of the probability of occupation

In order to include the Gaussian beam profile of the non-resonant excitation, the weighting factorsαi are multiplied by a
normalized Gaussian function, the Gaussian a function ofri, centered on the QD, with a full width at half maximum (FWHM)
ΓL.

8. Exciton inhomogeneous broadening

The exciton spectrum is broadened, in general with homogeneous and inhomogeneous components. Each discrete energy
shift obtained in the simulation is replaced with a normalized Lorentzian with full-width-at-half-maximumΓ. For sample A, we
takeΓ = 2.5 µeV, an inhomogeneous broadening. For samples B and C, we takeΓ = 0.8 µeV corresponding to homogeneous
broadening, equivalently the radiative lifetime-limitedlinewidth, the so-called “transform limit”.

PART II: MONTE-CARLO SIMULATION OF THE CHARGE FLUCTUATIONS : RESULTS

1. The defect array

We present initially simulation results obtained withdtun = 25 nm,dcap = 30 nm, corresponding to samples A and B, using a
full 2D array of randomly placed defects with densityN2D. Fig. 3 shows example simulation results, energy shift versusp, from
a set of 500 runs using the Stark shift parameters for the QD insample A and withN2D = 1 × 1010 cm−2. We find that, first,
a large percentage of the simulated contour plots show a monotonous Stark shift as a function ofp without any steps (56.8%;
284 occurrences in the 500 Monte Carlo simulations). Two typical examples are shown in Fig. 3(a),(b). Some other simulations
exhibit clearly-resolved steps in the Stark shift versusp plots, Fig. 3(c),(d). In this simulation set, only 1 of the 500 runs exhibits
5 steps, a probability of∼ 0.2%. The probability of 4 steps is∼ 0.4%; the probability of 3 steps 4.2%. The probability of steps
occurring is even smaller for a lower value ofN2D. At higher values ofN2D, steps are more likely, but the transition from one
step to the other becomes progressively more blurred such that above6 × 1010 cm−2, no well defined steps can be made out.
Another significant point is that when steps are observed, for instance Fig. 3(c),(d), the absorption energy within each“plateau”
has a strong dependence onp, shifting monotonically to the blue.

These results are now tensioned against the experiments. For all 8 quantum dots measured withdcap = 30 nm, all 8 exhibit
steps in the absorption versus non-resonant laser power (P ) plots. Example data are shown in Fig. 2(a) of [1] (sample A),and
Fig. 4(a) (sample B). All the dots show at least 3 steps. One dot shows 6 steps with a total Stark shift of∼ 300 µeV, a situation
we have not encountered even in several thousand simulations using a homogeneousN2D. The conclusion is that there are
localization centers located directly above the quantum dot which are highly unlikely to arise by a process which is completely
random as a function of(x, y). Instead, the quantum dot induces localization centers at the capping layer/SPS interface for
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FIG. 4. (a) Contour plot of the QD resonance fluorescence signal from sample B as a function of the non-resonant excitationpower. The color
scale goes from 27 counts (blue) to 700 counts (red). (b),(c)Simulated signal as a function of the probability of occupation, plotted with the
same scale dynamic as (a), i.e. 0.15 (blue) to 4 (red). (b)N2D = 0; (c) N2D = 1.0 × 1010 cm−2. An area of3 × 3 µm2 is considered;
ΓL = 10.0 µm, N = 60 andΓ = 0.8 µeV. From the PL characterization,Vg = −0.7 V, V0 = 0.62 V, D = 322 nm, pz = 0.142 nm,
βz = −0.104 µeV/(kV/cm)2, ∆FNR = 13 kV/cm, le = 5.02 nm andlh = 2.88 nm. In addition toN2D, 4 defects were placed by hand to
reproduce the energy steps, with in-plane positionsri = (28, 45, 45, 26) nm andα = (4.0, 1.7, 1.0, 4.0).

dcap = 30 nm, typically two to four, the “above-dot-defects”. Occupation of these defects leads to the pronounced steps in the
Stark shift versusP experimental results, equivalently the Stark shift versusp simulations.

For the QD in sample A, theP -dependence of each Stark shift “plateau” is small, Fig. 2(a) of [1]. As explained above, this
signifies thatN2D is small. In fact,N2D is too small for us to resolve and we takeN2D = 0 in the simulations, Fig. 2(b) of [1]
and Fig. 5. However, QDs in sample B behave differently, Fig.4(a). In this case, the plateau steps show a blue shift, particularly
when the defects directly above the quantum dot (4 in this case), are occupied (by3 − 4 holes in this case). In addition, each
absorption line in the experiment changes from run to run, the origin of the noise in Fig. 4(a). Neither the blue shifts northe
noise can be reproduced in the simulations withN2D = 0 as shown in Fig. 4(b). Instead,N2D 6= 0. For a given occupation of the
defects directly above the dot, asp increases, the number of stored holes at the capping layer/SPS interface increases, inducing
the blue shifts of the plateau. Also, for fixedp, changes in the charge distribution of the holes leads to small energy shifts even
when the number of holes in the above-dot-defects remains constant, leading to the noise. For a quantum dot in sample B, we
fix the positions of the above-dot-defects using the procedure outlined below, we define a random 2D array forr ≥ 80 nm, and
then varyN2D to find the best fit to the experimental data:N2D = 1× 1010 cm−2 gives good agreement with the experimental
results, Fig. 4(c).

2. Positions of above-dot-defects

We illustrate how the simulation can enable us to deduce the positions of the above-dot-defects, concentrating on the results
from sample A, Fig. 2(a) in [1]. (Fig. 4 illustrates the result of the same procedure on a dot from sample B.) Fig. 5 shows different
contour plots obtained by changing the properties of the above-dot-defects, illustrating the procedure for reaching the best fit for
QD in sample A, Fig. 2(b) in [1]. The number of steps, 4 in this case, determines the total number of holes which can be storedin
the above-dot-defects. In Fig. 5(a), 4 defects are placed atthe same location, all with the same weightα = 1, laterally displaced
from the quantum dot in order to reproduce the total Stark shift in the experiment. Four steps and 5 transitions are simulated,
as in the experiment. The “size” of the steps decreases slightly with increasing hole number− the in-plane Stark shift increases
in magnitude and substracts from the vertical Stark shift− but this does not match the experimental result, Fig. 2 [1]. In Fig.
5(b), the defects are now placed one in each quadrant around the QD, keepingr =

√

x2 + y2 constant. Now, the step sizes are
constant− the in-plane electric fields tend to cancel− in slightly better but still poor agreement with the experimental result.
The markedly different step sizes in the experiment can be reproduced in the simulation only by changing both the locations of
the defectsri and their relative weightsαi. In Fig. 5(c), the 4 defects are located at 4 different valuesof r. The Stark shift versus
p plot is now more complicated. For instance, while 2 stored holes in Fig. 5(b) give the same Stark shift independent of the
configuration, this is no longer the case in Fig. 5(c): the 4-fold degeneracy is lifted. Line cuts show that Fig. 5(c) has transitions
at the correct energies but the relative transition strengths are not reproduced. This discrepancy is remedied by changing theαi.
The result of this procedure is shown in Fig. 5(h). A defect with relatively larger has a particularly largeα: this produces a
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FIG. 5. (a)-(d) 2D representation of the spatial distribution of defects used in the simulations (e)-(h). The QD is symbolized by the black disk
in the center of each 2D map. In (a), all the 4 defects are located at the same place withr = 22.1 nm. In (b),r is kept constant, onlyθ is
changed. In (c) and (d), the spatial distribution is the one used in [1]. The weightα associated to each defect is specified explicitly. The color
scale goes from 4 (blue) to 135 (red).N2D = 0. The parameters used for the simulations are those for the QDin sample A [1], described in
section I, withN = 2, 500 andΓL = 1.0 µm.

small first step. Once this defect is always occupied,p > 0.2, occupation of the remaining 3 gives the remaining step structure
in close agreement with the experiment.

3. Spatial resolution of the defect positions

A quantitative agreement with the peak positions and relative amplitudes in the experiment, Fig. 2 of [1], can only be achieved
with a tolerance of±5 nm in each of theri values. This spatial resolution is illustrated in Fig. 6, where we move, from the ideal
distribution, the different defects within 5 nm and examinethe peak positions in both the experiments and simulations,Fig. 6, for
a particular value ofP , equivalentlyp. Fig. 6(a),(g) represent the best fit to the data. Fig. 6(b),(h) show results for a distribution
where all the defects have been moved 5 nm towards the QD. The two main peaks in the simulations are now blue shifted with
respect to the experiment at this particularp; also, the simulated Stark shift atp = 1 is also too large. Fig. 6(c),(e) and (i),(k)
show results when only one of the defects is moved by plus or minus 5 nm. One can see that there is always at least one energy
peak which is not reproduced, as indicated by the green arrows in Fig. 6. Finally, Fig. 6(f),(l) show results where 2 defects have
been moved, one 5 nm towards the QD, the other 5 nm away, and in this case the “final” peak in the simulation has a slightly too
large blue shift. It is therefore fair to claim that the random error in theri is around±5 nm; the systematic error is obviously
harder to judge, but the agreement in Fig. 2 of [1], also Fig. 4, would suggest that it is small.

[1] J. Houelet al., Main article.
[2] R. J. Warburtonet al., Phys. Rev. B65, 113303 (2002).
[3] B. D. Gerardotet al., Appl. Phys. Lett.90, 041101 (2007).
[4] R. J. Warburtonet al., Phys. Rev. B58, 16221-16231 (1998).
[5] P. A. Dalgarnoet al., Phys. Rev. B77, 245311 (2008).
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FIG. 6. (a)-(f) 2D representation of the spatial distribution of the above-dot-defects used in the corresponding simulations, (g)-(l). The relative
probabilityαi for each defecti is stated in (a) and remains the same for all the other configurations. (g)-(l) Line cuts from experiment (black
points/lines) atP = 0.34 nW and simulation (red lines) atp = 0.16. The parameters used in the simulations are those obtained in section
I and we takeN = 2, 500 andΓL = 1.0 µm.The distribution in (a) gives the best fit to the data and is used in [1]: all the simulated peaks
lie within the linewidth of the corresponding peak in the experimental data. In (b), all the defects are moved 5 nm towardsthe QD. In (c), the
defect withα = 5 is moved 5 nm towards the QD. In (d), the defect withα = 5 is moved 5 nm away from the QD. In (e), the defect with
x < 0 andα = 1.5 is moved 5 nm towards the QD. Finally, in (f), the defect withx < 0 andα = 1.5 is moved 5 nm towards the QD while
the defect withx > 0 andα = 1.5 is moved 5 nm away from the QD. In each case, (h)-(l), at least one of the simulated peaks is shifted by at
least a linewidth from the peak in the experiment. The particular peaks in question are shown by the green arrows.


