Supporting Information: Stray-Field Imaging of a Chiral Artificial Spin Ice during Magnetization Reversal

Marcus Wyss,[†] Sebastian Gliga,^{*,‡,¶} Denis Vasyukov,[†] Lorenzo Ceccarelli,[†] Giulio Romagnoli,[†] Jizhai Cui,^{¶,§} Armin Kleibert,[¶] Robert L. Stamps,[∥] and Martino Poggio[†]

†Department of Physics, University of Basel, 4056 Basel, Switzerland

‡SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, United Kingdom

 $\P Paul \ Scherrer \ Institute, \ Villigen \ 5232, \ Switzerland$

§Laboratory for Mesoscopic Systems, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland

||Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada

E-mail: sebastian.gliga@psi.ch

Figure S 1: Quantum interference pattern of the SQUID. Current through the nanoSQUID (color coded) versus input voltage V_{bias} and applied magnetic field $\mu_0 H_{\perp}$ showing quantum interference oscillations with a period (H_p) corresponding to an effective nanoSQUID diameter of 150 nm. The measured feedback voltage (V_{FB}) is proportional to the current flowing through the nanoSQUID. (b) shows the voltage-to-flux $(V - \Phi)$ SQUID transfer function at different applied in-plane magnetic field strengths $(\mu_0 H_{\parallel})$. The transfer functions show the strong influence of the applied in-plane field on the current-to-voltage characteristics (IVC). The black dots show the position of the working point (WP) during the image acquisition using the scanning nanoSQUID.

Figure S 2: Simulated evolution of the stray field patterns as a function of height with respect to the sample. The stray field is generated by the distribution of the magnetic charges in the system. In (a), the simulated magnetostatic charge density, $\rho = -\mu_0 (\nabla \cdot M)$, is plotted, showing that volume magnetic charges are present at the extremities of the nanomagnets, where the magnetization is not uniform. The scale bar represents 500 nm. Images (b-d) illustrate the evolution of the stray field patterns at different heights above the sample. All simulations are performed in the absence of an external field: $\mu_0 H_{\parallel} = 0$.

Figure S 3: In-plane field hysteresis loop. (a-g), Shows a series of measured magnetic stray field distributions $B_z(x,y)$ of a chiral artificial spin ice system at different in-plane magnetic fields $\mu_0 H_{\parallel}$. Starting field $\mu_0 H_{\parallel} = -250 \text{ mT}$ in (a) towards $\mu_0 H_{\parallel} = 250 \text{ mT}$ in (g). The color bar of (g) corresponds also to (a-g).