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Abstract

Spin Interactions Between Conduction Electrons and Local

Moments in Semiconductor Quantum Wells

by

Martino Poggio

Spin interactions are studied between conduction band electrons in GaAs

heterostructures and local moments, specifically the spins of constituent lattice

nuclei and of partially filled electronic shells of impurity atoms. Nuclear spin

polarizations are addressed through the contact hyperfine interaction resulting

in the development of a method for high-field optically detected nuclear mag-

netic resonance sensitive to 108 nuclei. This interaction is then used to gener-

ate nuclear spin polarization profiles within a single parabolic quantum well;

the position of these nanometer-scale sheets of polarized nuclei can be shifted

along the growth direction using an externally applied electric field. In doped

Ga1−xMnxAs/Al0.4Ga0.6As quantum wells with 0.002% < x < 0.13%, measure-

ments of coherent electron spin dynamics show an antiferromagnetic exchange

between s-like conduction band electrons and electrons localized in the d-shell

of the Mn2+ impurities, which varies as a function of well width. During the

course of these investigations, a wide variety of heterostructures are used to con-

fine and control the spin of band electrons. Asymmetric coupled quantum wells

have particularly interesting consequences for the spin dynamics of conduction

electrons confined therein.
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Chapter 1

Introduction

1.1 Perspective

The introduction of the concept of spin in the 1920’s [1, 2] – the notion that

elementary particles have an intrinsic angular momentum – is wholly quantum

mechanical and cannot be understood in the context of classical physics [3].

Indeed, in the classical limit where h̄→ 0, it disappears completely. Spin is such

a fundamental part of quantum mechanics that perhaps the most compelling

of the early experiments to confirm the theory, the Stern-Gerlach experiment

[4], was not due to the quantization of orbital angular momentum as Stern and

Gerlach originally thought, but was due to the quantization of spin [5].

While the theoretical origins of spin lie in relativistic considerations and

require the application of quantum electro-dynamics, it emerges in many of the

most basic quantum mechanical phenomena. From early observations of the

“anomalous” Zeeman effect [6] in the spectrum of the hydrogen atom to the

recent discovery of giant magneto-resistance (GMR) in metals [7, 8, 9], spin

lies at the heart of the physical explanation. As we approach an age in which

engineers routinely turn to quantum mechanics and its principles in the design of
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Chapter 1 Introduction

ever smaller and faster devices, understanding spin and its interactions becomes

increasingly relevant. In this vein, this dissertation tackles a specific subset

of these interactions, interactions between the spin of itinerant electrons and

localized moments, in a class of materials of imminent technological relevance,

GaAs-based semiconductor heterostructures.

1.2 Background

GaAs, due to its high electron mobility and direct band gap, is a critical com-

ponent of today’s semiconductor technology; its applications range from inte-

grated circuits operating at microwave frequencies to light-emitting and laser

diodes. As the possibility of new devices based on spin has emerged in re-

cent years [10], researchers have turned to GaAs due to its favorable electronic

properties and rich spin phenomenology. Experiments in GaAs have revealed

conduction electron spin coherence on the order of 100 ns [11], over distances in

excess of 100 µm [12], and even across heterointerfaces [13, 14]. Electric fields

have been used in GaAs/AlGaAs parabolic quantum wells (PQWs) to control

the electron spin g-factor [15, 16] and in lateral channels to generate and ma-

nipulate spins in the absence of magnetic fields [17, 18]. Similar experiments

have also led to the observation of the spin Hall effect in GaAs and InGaAs

epilayers [19]. Experiments in highly confined GaAs systems, known as gate-

defined quantum dots, have also demonstrated long electron spin lifetimes and

the ability to manipulate the spin states of single electrons [20, 21, 22].

Lest we limit ourselves to electronic spin, note that the spin of lattice nuclei

is also responsible for a number of intriguing effects in GaAs which have been

studied over the past 50 years [23, 24, 25]. Particularly interesting are phenom-

ena attributable to the contact hyperfine interaction, which couples the itinerant
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spins in the semiconductor bands to those of the nuclei. Through this interac-

tion, optical excitation can result in the hyperpolarization of nuclear moments

[23] enabling the detection of nuclear magnetic resonance (NMR) in GaAs with

a sensitivity several orders of magnitude larger than conventional methods pro-

vide [26, 27, 28, 29, 30, 31]. Recent work, aimed at developing techniques

for locally manipulating nuclear polarization, have expanded our knowledge of

the microscopic processes taking place between electronic and nuclear spins in

low-dimensional structures [32, 33, 34, 35]. The ability to perform controlled

interactions on small numbers of nuclei is critical for schemes suggesting the

use of the semiconductor nuclear spins to store information; in such schemes,

mobile band electrons naturally act as mediators used both to probe and mod-

ify the nuclear states [36]. GaAs structures provide a promising medium for

the application of these ideas with their favorable electronic properties and long

nuclear spin lifetimes (ranging up to minutes and hours).

In addition to lattice nuclei, another group of localized moments is funda-

mental to the physics of GaAs: the spin of shell electrons bound to magnetic

dopants. The coupling of these moments to band electrons leads to a variety of

phenomena, including, perhaps most importantly, carrier-mediated ferromag-

netism in III-V dilute magnetic semiconductors (DMS) [37, 38]. These interac-

tions enable striking experimental results demonstrating the external electrical

control of ferromagnetism in a thin-film semiconducting alloy [39, 40]. While

the ferromagnetic transition temperatures in these materials are currently below

room-temperature, progress is being made towards this milestone. A mater-

ial with controllable room-temperature ferromagnetism, especially an alloy of

GaAs with its well-established electronic applications, would put spin-based in-

teractions in semiconductors firmly in the realm of everyday information tech-

nology.
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1.3 Results

In the context of the aforementioned work, we focus specifically on interactions

of band electrons in GaAs heterostructures with both the spin of lattice nuclei

and of electrons bound to impurity atoms. Particular attention is payed to the

effects of carrier confinement on these interactions. Our study of the contact

hyperfine interaction in quantum wells (QWs) leads to the demonstration of a

technique for NMR sensitive far beyond conventional methods [41] and subse-

quent work in PQWs makes further use of the contact hyperfine interaction to

pattern nanometer-scale profiles of nuclear polarization [42, 43]. Experiments

discussed here on the s-d exchange interaction, between conduction band elec-

trons and Mn impurities in GaMnAs QWs, yield surprising results, suggesting

deficiencies in the current theoretical understanding of these materials [44, 45].

These measurements suggest that the s-d exchange energy in GaMnAs has both

a strong dependence on confinement and is antiferromagnetic. The latter result

may stimulate the rethinking of current theories for sp-d exchange in GaMnAs

[46]. Heterostructures of GaAs play a central role throughout the presented

work as a means to confine and control band electrons and their spin. The effect

of confinement and band engineering on the dynamics of conduction band spins

is prominent in our measurements of coupled quantum well (CQW) structures

[47].

1.4 Organization

This dissertation is organized as follows. Chapter 2 contains a brief introduction

to the concept of spin followed by a more detailed discussion of spin interac-

tions in zinc-blende semiconductors. Chapters 3 and 4 focus on the contact
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hyperfine interaction and the spin of lattice nuclei in GaAs heterostructures; ex-

periments are described demonstrating high field optically detected NMR and

the patterning of localized nuclear polarization in a PQW, respectively. Shift-

ing the discussion to the spin of impurity ions, chapter 5 covers measurements

of the s-d exchange energy in GaAs QWs doped with Mn. Finally, chapter 6

presents measurements of the coherence and transfer of electronic spin localized

in CQWs.
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Chapter 2

Spin dynamics in zinc-blende
semiconductors

2.1 Introduction

The crux of this dissertation lies in the concept of spin and in its interactions

with other spins, with charge, and with electromagnetic fields. Specifically,

these topics are addressed in experiments on heterostructures of GaAs and its

alloys AlGaAs, InGaAs, and GaMnAs, all zinc-blende lattices. In order to prop-

erly interpret these experiments, in this chapter we lay the foundations in section

2.2 with a brief treatment of spin dynamics in general. Section 2.3 narrows the

focus of the discussion onto the spin of mobile electronic carriers in a zinc-

blende lattice. Differences between this case and the case of free electron spins,

largely due to the mixing of spin and orbit degrees of freedom, become apparent

in this section. Since much of the work presented in later chapters involves spins

trapped in quantum wells, the effects of confinement on the electronic bands is

considered in section 2.4. Section 2.5 covers the interaction of carriers with lo-

calized moments including lattice nuclei and magnetic impurities. Since we use
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optical methods in this work to generate and detect spin in a zinc-blende lattice,

special attention is payed throughout the chapter to the optical selection rules.

Finally, a brief overview of the main experimental techniques which we employ

to probe spin dynamics, Faraday and Kerr rotation, is provided in section 2.6.

2.2 Free electron spin dynamics

2.2.1 Electron spin

In non-relativistic quantum mechanics, an electron can be described by a state

ψ(x,y,z, t) which depends on the three spatial coordinates and time [3, 48, 49].

Using only these degrees of freedom, a theory emerges which accurately de-

scribes a number of physical systems, including the hydrogen atom. When the

hydrogen spectrum is examined in detail, however, discrepancies appear which

this framework cannot explain. A large variety of other physical phenomena

including ferromagnetism, the Zeeman effect, and most notably the behavior

of silver atoms in the Stern-Gerlach experiment [4] remain outside the reach

of this simple treatment. This experimental evidence coupled with the require-

ments made by a fully relativistic description of quantum mechanics lead to the

addition of another degree of freedom to the electron, known as spin. The spin

observable S is an intrinsic angular momentum of the electron in addition to its

orbital angular momentum L. For the free electron, the S operator acts in a sep-

arate state space from the orbital degrees of freedom and thus commutes with

all orbital observables. In quantum mechanics, angular momentum J is defined

as an observable whose coordinates satisfy:

[Jα ,Jβ ] = iεαβγ h̄Jγ , (2.1)
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where h̄ is Planck’s constant, the quantum of angular momentum. Both L and

S satisfy these commutation relations which form the basis for their properties

throughout quantum mechanics. For example, the fact that the spectrum of mea-

surable angular momentum values is bounded and discrete is fully contained in

equation 2.1. Further, in order to account for experiments, the electron is des-

ignated as a spin-1/2 particle, i.e. s = 1/2. Therefore its spin state space is

two-dimensional and measurements of S along a given direction can only result

in ±h̄/2.

2.2.2 The intrinsic magnetic moment of an electron

The magnetic moment M associated with the orbital angular momentum of an

electron is,

M =− e
2me

L =−µB

h̄
L, (2.2)

where −e (e > 0) is the charge and me is the mass of an electron and µB = eh̄
2me

is the Bohr magneton. An analogous equation gives the magnetic moment of an

electron associated with its intrinsic angular momentum:

MS =−gµB

h̄
S, (2.3)

where g is the Landé g-factor. For a free electron g0 = 2.002319304386±10−11

[50], though it can be significantly different for an electron in the conduction

band of a semiconductor as discussed in section 2.3.3.

2.2.3 Spin precession

In general, the Hamiltonian for a magnetic moment M in a uniform magnetic

field B is,

H =−M ·B. (2.4)
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In the case of a free electron, we can separate spin and orbital degrees of free-

dom and focus on the energy associated with spin:

HS =
gµB

h̄
B ·S =

gµB

h̄
BSz, (2.5)

where we have taken ẑ as the direction of B. Equation 2.5 represents a simple

two-state system. The eigenstates of Sz are |↑〉 and |↓〉with eigenvalues of +h̄/2

and −h̄/2, respectively. These states are also eigenstates of HS, with energy

eigenvalues of +1
2gµBB and −1

2gµBB, respectively. Spin states parallel to B,

i.e. eigenstates of Sz, are stationary, while states perpendicular to B are not; the

eigenstates of Sx and Sy evolve in time.

The time dependence of S is simply,

dS
dt

=
i
h̄
[HS,S]+

∂S
∂ t

. (2.6)

Since ∂S
∂ t = 0, using equations 2.1 and 2.5, we obtain:

dS
dt

= ~ωL×S, (2.7)

where ~ωL = 2π~νL = gµB
h̄ B is the Larmor precession vector. Trivially, the expec-

tation value of this operator evolves as,

d
dt
〈S〉= ~ωL×〈S〉 . (2.8)

This familiar looking equation results in the precession of 〈S〉 around the axis

defined by ~ωL at an angular frequency given by |~ωL|. Therefore, for an electron

in an arbitrary initial spin state given by,

|ψ〉= cos
(

θ
2

)
e−iφ/2 |↑〉+ sin

(
θ
2

)
eiφ/2 |↓〉 , (2.9)

〈S〉 will evolve in time according to:

〈S〉=
h̄
2

(sinθ cos(ωLt +φ)x̂+ sinθ sin(ωLt +φ)ŷ+ cosθ ẑ) . (2.10)
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ẑ

ŷ

x̂

S

φ

B

Lωr

θ

Figure 2.1: A schematic diagram depicting Larmor precession of the spin vector 〈S〉 in a
constant magnetic field B according to equation 2.10.

As an example, take an eigenstate of Sx, |φ〉= 1√
2
(|↑〉+ |↓〉), as the initial state.

In this case, it is clear from equations 2.9 and 2.10 that the expectation value of

the electron spin, which was initially directed along x̂ will precess about B in

the xy-plane:

〈S〉=
h̄
2

(cos(ωLt)x̂+ sin(ωLt)ŷ) . (2.11)

2.2.4 Spin relaxation

In real systems, the cosinusoidal spin precession described in section 2.2.3 does

not go on forever. Interactions with the environment, which have not been in-

cluded in our idealized Hamiltonian, contribute to the relaxation of the spin

state. There are two types of spin relaxation, longitudinal relaxation character-

ized by a time constant T1 and transverse relaxation characterized by a time con-

stant T2. The former mechanism is a process of energy relaxation and involves

spin flips in the direction of B (equivalent to the randomization of θ in equa-

tion 2.9). As is clear from equation 2.5, these flips require or produce energy
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which has to be exchanged with environmental systems, such as the phonon

bath. Transverse spin relaxation, on the other hand, involves decoherence of a

spin state through the randomization of the phase between the two components

of a superposition state (equivalent to the randomization of φ in equation 2.9).

This process randomizes the component of the spin state perpendicular to B.

Since the perpendicular component is irrelevant to the energy of the spin, this

type of relaxation neither requires nor produces energy.

Another process, known as spin dephasing, affects transverse spin lifetimes

and is relevant in the measurement of ensembles of spins or in time-averaged

measurements of single spins. Dephasing arises due to inhomogeneities in the

system: spins at different positions or times precess at different rates. The resul-

tant scrambling of the average spin polarization causes the measured lifetime to

be limited by the inhomogeneous transverse spin lifetime T2
∗. Several methods

of extracting the transverse lifetime T2 of a single spin exist even when T2 > T2
∗,

most notably the spin-resonance method known as the Hahn spin echo [51].

Note that the difference in T2 and T2
∗ is not a reflection of processes acting on

single spins, but rather it is a manifestation of the randomization of spins in an

ensemble, either in time or space, with respect to each other.

The measurements of electron spin coherence discussed in this dissertation

are measurements of spin ensembles which are typically limited by inhomo-

geneous dephasing. Therefore to account for the effects of spin relaxation we

include the phenomenological parameters T1 and T2
∗ in the dynamical equa-

tion for an ensemble of non-interacting spins in a magnetic field. This equation

represents a simple modification of equation 2.8,

d
dt
〈S〉= ~ωL×〈S〉− (〈S〉 · ω̂L−Seq)ω̂L

T1
− 〈S〉− (〈S〉 · ω̂L)ω̂L

T2
∗ , (2.12)

where Seq is the equilibrium magnitude of 〈S〉 along the direction of the applied
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magnetic field given by ω̂ = ~ωL/|~ωL|. Since in the experiments described in this

dissertation Seq ' 0, let us simplify our calculations by taking Seq = 0. Having

included the relaxation parameters in the dynamical equation, we see that the

initial state shown in equation 2.9 now evolves according to:

〈S〉=
h̄
2

(
e−t/T2

∗
sinθ [cos(ωLt +φ)x̂+ sin(ωLt +φ)ŷ]+ e−t/T1 cosθ ẑ

)
.

(2.13)

Therefore, the spin dynamics of an ensemble of non-interacting free electrons in

a magnetic field are characterized by exponential decay along the quantization

axis and exponentially damped cosinusoidal precession in the plane perpendic-

ular to the quantization axis.

2.3 Carrier spin in zinc-blende semiconductors

2.3.1 Crystal structure and electronic properties

III-V compounds crystallize in the zinc-blende structure consisting of two inter-

penetrating, face-centered cubic (FCC) lattices. Each FCC lattice is displaced

by one fourth of the main cube diagonal from the other and is formed by one

of the two constituent atomic species. Therefore, given a cube side of length a,

the elementary cell of the zinc-blende lattice contains one atom of each species

with one atom displaced by a vector
(a

4 , a
4 , a

4

)
relative to the other. The Bravais

lattice underlying the zinc-blende lattice is the FCC lattice, whose reciprocal

lattice is body centered cubic (BCC).

The zinc-blende structure results in the distribution of an equal number of

atoms from each of the two species, e.g. Ga and As, on a diamond lattice such

that each has four of the other type as nearest neighbors. In III-V binary com-

pounds, there are 8 outer electrons per unit cell which contribute to the chem-
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ical bonds formed between nearest neighbors. Other inner electrons, found in

closed-shell configurations with wave functions closely bound to lattice nuclei

do not contribute to the the transport or to the near-band-gap optical properties

discussed here. In GaAs, the 8 outermost electrons, 3 from the 4s24p1 orbital

configuration of Ga and 5 from the 4s24p3 configuration of As, hybridize to

form tetrahedral bonds between nearest neighbors. Each s and p orbital hy-

bridizes with the corresponding orbital of its nearest neighbor to form a bonding

and an antibonding pair. Bonding orbitals are characterized by a high electron

density between the atoms while antibonding orbitals tend to have a high den-

sity at the atomic sites. Due to the large number of unit cells, the bonding and

antibonding levels broaden into bands. The bonding s levels are the most deeply

bound and are always occupied by 2 electrons per unit cell. The other 6 elec-

trons per unit cell fill the three bonding p levels, which form the valence band of

the crystal. The remaining antibonding levels are unfilled with the lowest lying,

the antibonding s level, forming the conduction band of the material [52].

We now consider the electronic states near the center of the Brillouin zone (Γ

point) where k = 0. In GaAs, the top of the valence band and the bottom of the

conduction band occur here, forming a direct band-gap. This region of the band

structure is the relevant part for most processes occurring in the semiconductor.

According to the Bloch theorem, electron states can be written in the following

form:

ψn,k(r) = Nun,k(r)eik·r, (2.14)

where r is the electron position, N is a normalization coefficient, un,k(r) is a

function in the nth Brillouin zone periodic with the periodicity of the lattice,

and k is the crystal wave vector. Though these functions are seldom calculated

explicitly, we can use the symmetry of the crystal coupled with some standard
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approximations such as k ·p theory [53] or the Kane model [54] to make ade-

quate descriptions of relevant phenomena. In the absence of external fields we

have the Hamiltonian (in CGS),

H =
p2

2m0
+V0(r)+

1
2m2

0c2 (S×∇V0) ·p, (2.15)

where m0 is the free electron mass, V0(r) is the periodic potential of the lattice,

and c is the speed of light. By solving the Schödinger equation for the set

of eigenstates and energy eigenvalues at the Γ point (k = 0), we find Bloch

functions of the form ψn,0(r) = Nun,0(r). These functions are orthonormal,

(1/Ω)
〈
um′,0|um,0

〉
= δm′,m, where Ω is volume of the unit cell and they form a

complete basis with respect to functions with the lattice periodicity such that,

un,k = ∑
m

cm(k)um,0(r). We can then expand the solutions for k 6= 0:

ψn,k(r) = Neik·r ∑
m

cm(k)um,0(r). (2.16)

A minimal set of {um,0(r)} includes only states on either side of the band gap:

in this case, an s-like conduction band wave function denoted by |S〉 and three

p-like valence band wave functions denoted by |X〉, |Y 〉, and |Z〉. These states

have the same symmetry as the atomic s, px, py, and pz orbitals from which

they are formed. By simply adding the spin degree of freedom as a tensor prod-

uct, we have a basis of 2 conduction band states and 6 valence band states:

{|S ↑〉 , |X ↑〉 , |Y ↑〉 , |Z ↑〉 , |S ↓〉 , |X ↓〉 , |Y ↓〉 , |Z ↓〉}. Even with such a limited

basis, we can calculate many of the most important electronic and optical prop-

erties of III-V semiconductors. Naturally, more bands can be included in order

to refine the approximation.

Since the III-V Hamiltonian involves a non-zero spin-orbit coupling term

proportional to L ·S = 1
2

(
J2−L2−S2), it is natural to use a basis in which

this term is diagonal, the basis of total angular momentum J = L + S. In or-

der to do so, we will first express the orbital component of the Bloch functions

14
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∆
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2/1,1 == jl

Figure 2.2: Band structure diagram near the Γ point in zinc-blende crystals.

in terms of eigenstates of L, |l,ml〉: |0,0〉 = i |S〉, |1,0〉 = |Z〉, and |1,±1〉 =√
1
2 (|X〉± i |Y 〉). Combining with spin, we can write our basis in terms of

eigenstates of total angular momentum,
∣∣ j,m j

〉
, shown in table 2.1. For the

conduction band edge, l = 0 and s = 1
2 , giving j = 1

2 . Meanwhile for the va-

lence band edge, l = 1 and s = 1
2 , giving j = 3

2 , 1
2 . Since 〈L ·S〉= h̄2

2 ( j( j +1)−
l(l + 1)− s(s + 1)), the j = 1

2 hole band is split off in energy from the j = 3
2

bands. This band is known as the split off (SO) hole band while the other two

valence bands are degenerate at k = 0 and are known as the heavy hole (HH)

and light hole (LH) bands for m j = ±3
2 and m j = ±1

2 , respectively, because of

differences in their effective masses.
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Table 2.1: The conduction and valence band states at the Γ point in zinc-blende crystals.

Band ui
∣∣ j,m j

〉
Ei

CB u1
∣∣ 1

2 ,+ 1
2

〉
CB = |0,0〉 |↑〉 Ec

u2
∣∣ 1

2 ,− 1
2

〉
CB = |0,0〉 |↓〉 Ec

HH u3
∣∣ 3

2 ,+ 3
2

〉
HH = |1,+1〉 |↑〉 Ev

u4
∣∣ 3

2 ,− 3
2

〉
HH = |1,−1〉 |↓〉 Ev

LH u5
∣∣ 3

2 ,− 1
2

〉
LH =−

√
1
3 |1,−1〉 |↑〉−

√
2
3 |1,0〉 |↓〉 Ev

u6
∣∣ 3

2 ,+ 1
2

〉
LH =

√
1
3 |1,+1〉 |↓〉−

√
2
3 |1,0〉 |↑〉 Ev

SO u7
∣∣ 1

2 ,− 1
2

〉
SO =−

√
2
3 |1,−1〉 |↑〉+

√
1
3 |1,0〉 |↓〉 Ev−∆

u8
∣∣ 1

2 ,+ 1
2

〉
SO =

√
2
3 |1,+1〉 |↓〉+

√
1
3 |1,0〉 |↑〉 Ev−∆

2.3.2 Interband transitions and optical orientation

Due to the direct nature of the band gap, photons can induce electronic tran-

sitions between valence and conduction band states near the Γ point. In the

electric dipole approximation the rate of transition from an initial state |ψi〉 to a

final state
∣∣ψ f

〉
is given by Fermi’s Golden Rule as 2π

h̄

∣∣〈ψ f
∣∣er ·E |ψi〉

∣∣2 δ (E f −
Ei − hν), where E is the electric field of the incident radiation, ν is the fre-

quency of the radiation, and E f and Ei are the energies of the final and initial

states. Since we have previously taken ẑ as the quantization axis for angular

momentum, σ+ and σ− polarized radiation (defined in figure 2.3) are given

by E(t)
(
− 1√

2
[x̂+ iŷ]

)
and E(t)

(
1√
2
[x̂− iŷ]

)
, respectively. Note that due to

the cubic symmetry in the zinc-blende structure, the ẑ axis can be taken along

either the [100], [010], or [001] axes without loss of generality.

In order to easily calculate the optical transition rates between the valence

and conduction band states, note that our basis states, shown in table 2.1 are

in the form of spherical harmonics. Since the dipole term er ·E can also be

expressed as a spherical harmonic, we can take advantage of the orthonormality
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−σ+σ
kB

R

kB

R

+σ−σ
kB

L

kB

L

Figure 2.3: Schematic diagrams illustrating the definitions of R, L ,σ+, and σ− polarized
light. R and L are defined in terms of the angular momentum carried by the light and its
propagation direction k, whereas σ+ and σ− are defined in terms of the angular momentum
and an external applied magnetic field B. Arrow heads on the dotted-line circles indicate the
direction of rotation of the light’s electric field vector [55].

of this basis to simplify our calculations:

er ·Eσ+ ∝ 〈1,−1|r〉 , (2.17)

er ·Eσ− ∝ 〈1,+1|r〉 , (2.18)

The orbital portion of both conduction band states is the spherically symmetric

function |0,0〉 and thus can be ignored in our calculations. Therefore, using

table 2.1, the above equations, and the orthonormality of the spin eigenstates,

we can solve for all of the matrix elements required to determine transition rates

up to an arbitrary constant γ as shown in table 2.2.

For the transition rate to be non-zero, Fermi’s Golden Rule also requires a

photon energy resonant with the energy gap between the valence and conduction

band states. As evident in table 2.1, the SO band is shifted down from the other

valence bands by an energy ∆ due to the spin-orbit coupling. The magnitude
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of ∆ goes roughly as Z4 where Z is the atomic number. In GaAs, ∆ = 0.34 eV

and thus cannot be ignored. Therefore in considering optical excitation resonant

with the band-gap (Ec−Ev), we will consider only transitions from the HH and

LH bands to the conduction band (CB).

The results of table 2.2 are combined with Fermi’s Golden Rule to pro-

duce the transition rates summarized in figure 2.4. The inequality of various

transition rates for a given circular polarization results in a spin imbalance in

the conduction band. 100% circularly polarized illumination resonant with the

band-gap energy results in a 50% polarized population of excited electrons in

the conduction band. This convenient property of the system’s electronic struc-

ture is critical for the optical studies of electron spin dynamics presented in this

dissertation and relies entirely on the system having a large enough spin-orbit

coupling to push the SO band out of resonance with the optical excitation. Care-

ful inspection of table 2.2 and figure 2.4 show that if ∆ is smaller that the energy

width of the optical excitation, no spin polarization is created in the conduction

band. In addition to providing a means by which to optically inject polarized

carriers in these semiconductors, the selection rules discussed here also aid in

the detection of electron and hole spin polarization through measurements of

the polarization of recombinant radiation.

2.3.3 Deviation from the free electron g-factor

As mentioned at the end of section 2.2.2, the g-factor of conduction band elec-

trons can be significantly different from the free electron value. In various zinc-

blende semiconductors it can vary from -50 to 2 [56]. This large change in ge is

due to spin-orbit term in the Hamiltonian of the system leading to a coupling be-

tween the conduction and valence bands linear in the magnetic field B. Though
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Table 2.2: Optical matrix elements up to an arbitrary constant γ near the zone center of a
zinc-blende lattice.

Pol. CB spin |〈ψcb|er ·E |ψvb〉|2

σ+ ↑
∣∣CB

〈 1
2 ,+ 1

2

∣∣er ·E
∣∣ 3

2 ,+ 1
2

〉
LH

∣∣2 ∝ 2
3 |〈1,−1|1,0〉|2 = 0∣∣CB

〈 1
2 ,+ 1

2

∣∣er ·E
∣∣ 3

2 ,− 1
2

〉
LH

∣∣2 ∝ 1
3 |〈1,−1|1,−1〉|2 = 1

3 γ∣∣CB
〈 1

2 ,+ 1
2

∣∣er ·E ∣∣ 3
2 ,+ 3

2

〉
HH

∣∣2 ∝ 1
3 |〈1,−1|1,+1〉|2 = 0∣∣CB

〈 1
2 ,+ 1

2

∣∣er ·E ∣∣ 3
2 ,− 3

2

〉
HH

∣∣2 = 0∣∣CB
〈 1

2 ,+ 1
2

∣∣er ·E
∣∣ 1

2 ,+ 1
2

〉
SO

∣∣2 ∝ 1
3 |〈1,−1|1,0〉|2 = 0∣∣CB

〈 1
2 ,+ 1

2

∣∣er ·E
∣∣ 1

2 ,− 1
2

〉
SO

∣∣2 ∝ 2
3 |〈1,−1|1,−1〉|2 = 2

3 γ
σ+ ↓

∣∣CB
〈 1

2 ,− 1
2

∣∣er ·E
∣∣ 3

2 ,+ 1
2

〉
LH

∣∣2 ∝ 1
3 |〈1,−1|1,+1〉|2 = 0∣∣CB

〈 1
2 ,− 1

2

∣∣er ·E ∣∣ 3
2 ,− 1

2

〉
LH

∣∣2 ∝ 2
3 |〈1,−1|1,0〉|2 = 0∣∣CB

〈 1
2 ,− 1

2

∣∣er ·E ∣∣ 3
2 ,+ 3

2

〉
HH

∣∣2 = 0∣∣CB
〈 1

2 ,− 1
2

∣∣er ·E
∣∣ 3

2 ,− 3
2

〉
HH

∣∣2 ∝ |〈1,−1|1,−1〉|2 = γ∣∣CB
〈 1

2 ,− 1
2

∣∣er ·E
∣∣ 1

2 ,+ 1
2

〉
SO

∣∣2 ∝ 2
3 |〈1,−1|1,+1〉|2 = 0∣∣CB

〈 1
2 ,− 1

2

∣∣er ·E ∣∣ 1
2 ,− 1

2

〉
SO

∣∣2 ∝ 1
3 |〈1,−1|1,0〉|2 = 0

σ− ↑ ∣∣CB
〈 1

2 ,+ 1
2

∣∣er ·E ∣∣ 3
2 ,+ 1

2

〉
LH

∣∣2 ∝ 2
3 |〈1,+1|1,0〉|2 = 0∣∣CB

〈 1
2 ,+ 1

2

∣∣er ·E
∣∣ 3

2 ,− 1
2

〉
LH

∣∣2 ∝ 1
3 |〈1,+1|1,−1〉|2 = 0∣∣CB

〈 1
2 ,+ 1

2

∣∣er ·E
∣∣ 3

2 ,+ 3
2

〉
HH

∣∣2 ∝ |〈1,+1|1,+1〉|2 = γ∣∣CB
〈 1

2 ,+ 1
2

∣∣er ·E ∣∣ 3
2 ,− 3

2

〉
HH

∣∣2 = 0∣∣CB
〈 1

2 ,+ 1
2

∣∣er ·E ∣∣ 1
2 ,+ 1

2

〉
SO

∣∣2 ∝ 1
3 |〈1,+1|1,0〉|2 = 0∣∣CB

〈 1
2 ,+ 1

2

∣∣er ·E
∣∣ 1

2 ,− 1
2

〉
SO

∣∣2 ∝ 2
3 |〈1,+1|1,−1〉|2 = 0

σ− ↓
∣∣CB

〈 1
2 ,− 1

2

∣∣er ·E
∣∣ 3

2 ,+ 1
2

〉
LH

∣∣2 ∝ 1
3 |〈1,+1|1,+1〉|2 = 1

3 γ∣∣CB
〈 1

2 ,− 1
2

∣∣er ·E
∣∣ 3

2 ,− 1
2

〉
LH

∣∣2 ∝ 2
3 |〈1,+1|1,0〉|2 = 0∣∣CB

〈 1
2 ,− 1

2

∣∣er ·E ∣∣ 3
2 ,+ 3

2

〉
HH

∣∣2 = 0∣∣CB
〈 1

2 ,− 1
2

∣∣er ·E ∣∣ 3
2 ,− 3

2

〉
HH

∣∣2 ∝ |〈1,+1|1,−1〉|2 = 0∣∣CB
〈 1

2 ,− 1
2

∣∣er ·E
∣∣ 1

2 ,+ 1
2

〉
SO

∣∣2 ∝ 2
3 |〈1,+1|1,+1〉|2 = 2

3 γ∣∣CB
〈 1

2 ,− 1
2

∣∣er ·E
∣∣ 1

2 ,− 1
2

〉
SO

∣∣2 ∝ 1
3 |〈1,+1|1,0〉|2 = 0
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Figure 2.4: A schematic diagram illustrating the optical selection rules for σ+ and σ− polar-
ized light in a zinc-blende lattice. Note that since the SO band is at a lower energy than the
other valence bands, its transitions are not typically excited (dotted arrows). As a result circular
polarized irradiation creates a 50% (↑:↓= 3 : 1) polarization in the conduction band.

a concise discussion of the conduction band g-factor in zinc-blende materials is

given in a previous dissertation [57], a similar treatment will be given here for

completeness.

We take the Hamiltonian in equation 2.15 and modify it to account for the

presence of a magnetic field B [58, 59]:

H =
P2

2m0
+V0(r)+

1
2m2

0c2 (S×∇V0) ·P+
g0µB

h̄
B ·S, (2.19)

where P = p+ e
cA is the kinetic momentum and A is the vector potential of B.
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We now look for solutions to the Schrödinger equation Hψ = εψ in the form,

ψ(r) = ∑
m

Ψm(r)um,0(r), (2.20)

where the summation runs over the energy bands. The non-zero magnetic field

makes the eigenvalue problem non-periodic resulting in the envelope functions

Ψm(r), which along with A, we assume to be slowly varying and essentially

constant over the unit cell. Recall from section 2.3.1 that um,0(r) are the periodic

parts of the Bloch function at k = 0 satisfying the eigenvalue equation:
(

p2

2m0
+V0(r)+

1
2m2

0c2 (S×∇V0) ·p
)

um0(r) = εmum0(r), (2.21)

where εm denotes the band-edge energies at the Γ point. Combining equations

2.19, 2.20, and 2.21 with the Schrödinger equation and integrating over the unit

cell we obtain:

∑
m

[(
P2

2m0
+ εm− ε

)
δm′m +

1
m0

κm′m ·P+
g0µB

h̄
B ·Sm′m

]
Ψm(r) = 0, (2.22)

where,

~κm′m = (1/Ω)〈um′0|p+
1

2m2
0c2 (S×∇V0) |um0〉 , (2.23)

and,

Sm′m = (1/Ω)〈um′0|S |um0〉 . (2.24)

In this calculation we have taken the slowly varying functions Ψm(r) and A out

of the integration. The first term in equation 2.22 contains the kinetic energy of

a free electron in a constant magnetic field. The last term is the bare Zeeman

splitting due to the free electron g-factor g0 and the term proportional to ~κm′m

gives rise to the change of the g-factor.

Since in this dissertation we are principally concerned with spin dynamics

in the conduction band of III-V compounds, we focus on matrix elements in-

volving the conduction band states, i.e. m′ = 1,2. Since spin is a good quantum
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Table 2.3: Interband matrix elements ~κm′m ·P for the conduction band.

u3 u4 u5 u6 u7 u8

u1 κP+ 0 −
√

1
3 κP− −

√
2
3 κPz −

√
2
3 κP−

√
1
3 κPz

u2 0 κP− −
√

2
3 κPz

√
1
3 κP+

√
1
3 κPz

√
2
3 κP+

number for these states, we are left only with diagonal elements of the Zeeman

term, S1,m = h̄
2δ1,m and S2,m = h̄

2δ2,m. ~κm′,m is somewhat more complicated; in

order to simplify, we ignore the small spin-orbit contribution in this interband

matrix element and set ~κm′,m = (1/Ω)
〈
um′,0

∣∣p
∣∣um,0

〉
[60]. Though it looks as

if we have wiped away the spin-orbit interaction from consideration, its effect

on the system persists in the form of the zero-order functions um,0 of table 2.1,

which include the spin-orbit effect (specifically in the energy shift of the SO

band, ∆). Using these functions and the identity,

~κ ·P = κ+P−+κ−P+ +κzPz, (2.25)

where κ± = (1/
√

2)(κx± iκy) and P± = (1/
√

2)(Px± iPy) we solve for~κm′m ·P.

We define κ = −(i/Ω)〈S| px |X〉 = −(i/Ω)〈S| py |Y 〉 = −(i/Ω)〈S| pz |Z〉, and

list only the interband matrix elements in table 2.3 since the diagonal terms

vanish.

Armed with these matrix elements, we now turn our attention to the enve-

lope functions. Taking B = Bẑ and A = −Byx̂ (the Landau gauge), the eigen-

functions of the first diagonal term in equation 2.22 are e(ikxx+ikzz)χn(y), where

χn(y) is the harmonic oscillator function for the nth level. Since we are inter-

ested in solutions near the Γ point, we set kx = kz = 0, making the envelope

functions equal to linear combinations of the harmonic oscillator functions:

Ψm(r) = ∑
n

cnχn(y). Since kz = 0, Pz vanishes, so we only need to consider

matrix elements containing P+ and P−. Using the definitions of the oscillator
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raising and lowering operators we find,

P+χn(y) = −
√

h̄eBa†
yχn(y) =−

√
h̄eB(n+1)χn+1(y) (2.26)

P−χn(y) = −
√

h̄eBayχn(y) =−
√

h̄eBnχn−1(y). (2.27)

Therefore the~κm′,m ·P term only couples conduction band states to valence band

states in neighboring Landau levels. Finally we can solve for the energy of the

Ψm(r) states by treating ~κm′m · P as a perturbation in equation 2.19. Again,

since we are limiting ourselves to the conduction band (m = 1,2), the Zeeman

term containing the free electron g-factor is diagonal and is included in the

unperturbed energy. Since the diagonal matrix elements of~κm′m ·P vanish, there

is no first order correction to the energy and we go straight to second order

perturbation theory. The spin-up conduction band state in the nth Landau level,

Ψ1,n(r), couples to the valence band states Ψ3,n−1(r), Ψ5,n+1(r), Ψ7,n+1(r),

resulting in the following second order energy correction:

∑
m

|H1,m|2
Ec−Em

=
eh̄κ2

m2
0

B
[

2
3

(n+1)
1

Eg +∆
+n

1
Eg

+
1
3

(n+1)
1

Eg

]

=
eh̄κ2

m2
0

B
(

4n+1
3

1
Eg

+
2n+2

3
1

Eg +∆

)
. (2.28)

The spin-down conduction band state, Ψ2,n(r), couples to the valence band

states Ψ4,n+1(r), Ψ6,n−1(r), Ψ8,n−1(r), resulting in a different correction:

∑
m

|H2,m|2
Ec−Em

=
eh̄κ2

m2
0

B
[

2
3

n
1

Eg +∆
+

1
3

n
1

Eg
+(n+1)

1
Eg

]

=
eh̄κ2

m2
0

B
(

4n+3
3

1
Eg

+
2n
3

1
Eg +∆

)
. (2.29)

The additional spin splitting from this perturbation is the difference in energies
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between the spin-up and -down bands:

∑
m

|H1,m|2
Ec−Em

−∑
m

|H2,m|2
Ec−Em

=
eh̄κ2

m2
0

B
(
−2

3
1

Eg
+

2
3

1
Eg +∆

)

= −2
3

(
2κ2

m0

)(
1

Eg
− 1

Eg +∆

)
µBB. (2.30)

Since this energy shift is proportional to B and otherwise contains only constant

material-specific parameters, it can be written as a correction to the g-factor.

Therefore, we write an effective g-factor for the conduction band,

ge = g0− 2
3

(
2κ2

m0

)(
1

Eg
− 1

Eg +∆

)
= g0− 2

3

(
2κ2

m0

)
∆

Eg
(
Eg +∆

) . (2.31)

From this analysis it is clear that both spin-up and spin-down conduction

bands are pushed up in energy due to the ~κm′m ·P perturbation, however, an

asymmetry in the coupling of spin states to the valence band leads to a spin de-

pendent energy shift. The deviation of the effective g-factor from g0 in equation

2.31 is proportional to the spin-orbit splitting ∆ and is inversely proportional to

the square of the band gap Eg = Ec−Ev when Eg À ∆. The term 2κ2/m0 has

the unit of energy and is often quoted in the literature as a standard parameter.

For GaAs, 2κ2/m0 = 27.86 eV, Eg = 1.519 eV, and ∆ = 0.341 eV [58, 61].

This simple model begins to fail as Eg becomes comparable to the energy

difference from the s-like conduction band considered here to higher conduction

bands. These upper conduction bands couple to the s-like conduction band in

the same manner as the valence bands, necessitating further corrections to the

g-factor [56].
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2.4 Quantum wells and the effects of confinement

2.4.1 Bands in a quantum well

Until this point, we have discussed the band structure for bulk zinc-blende ma-

terials. Much of this dissertation, however, deals with quasi two-dimensional

electrons trapped in quantum wells (QWs). In particular we study QWs made

from heterostructures of GaAs and AlGaAs or GaAs and InGaAs. In compari-

son to electrons in a bulk system, electrons confined in these quantum structures

have significantly different electronic properties. The reduction in dimensional-

ity breaks a number of symmetries present in bulk causing changes in the band

structure. Confinement along one axis results in quantized energy levels and

envelope functions characteristic of QWs along one direction, while the other

directions are characterized by the continuous energy dispersion of the bulk.

In the band structure, subbands emerge centered around each QW energy level

with a quasi two-dimensional densities of states. Some of these features are

illustrated in figure 2.5 depicting electrons in an idealized QW with parabolic

bands.

The most obvious difference between bulk and QW properties in optical

experiments is the enhanced band-gap energy of the QWs. This increase in the

separation of the conduction and valence bands is due to the non-zero energy of

the QW ground state which shifts the lowest electron and hole subbands further

from each other in energy (see figure 2.5). Note that in the following discussion

we assume that the QW heterojunctions are ideal and we treat them as simple

steps in potential energy, ignoring the effects of strain and dislocations. Uniaxial

strain in particular, can strongly affect the valence band structure [62].

In the most basic terms, confinement alters the valence band by breaking the

symmetry of the crystal. The bulk HH states
∣∣3

2 ,±3
2

〉
are linear combinations
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Figure 2.5: A schematic diagram illustrating the envelope functions, subbands, and density
of states of a typical square QW. Note that the density of states n is step-like (bold line) and
thus quasi-two-dimensional. It follows the countour of the three-dimensional density of states
(normal line) [62].

E

k

LH

HH

Figure 2.6: A simple energy diagram for heavy and light holes in a QW. The HH have the
lower energy at k = 0, but their energy rises more rapidly with k such that the HH and LH
bands cross. Coupling between the bands leads to an anticrossing (shown in gray) and a mixing
of the HH and LH bands [62].
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of the |X〉 and |Y 〉 orbitals. These p orbitals are highly anisotropic and overlap

strongly along the x̂ and ŷ directions, respectively. Both are oriented perpendic-

ular to ẑ, which we take as the confinement direction of our QW (in this case

the axis of angular momentum quantization coincides with the confinement di-

rection). As a result, for heavy holes, propagation at a particular velocity along

ẑ requires more energy than it does along x̂ or ŷ, i.e. the effective mass is larger

(heavier) for ẑ than for the other directions. The opposite effect occurs for the

LH states
∣∣3

2 ,±1
2

〉
which are made up of |X〉, |Y 〉, and |Z〉 orbitals, with larger

relative amplitudes of |Z〉. Thus the effective mass of the light holes along ẑ

is smaller (lighter) than along other directions. The heavy and light effective

masses of the HH and LH states, respectively, along ẑ result in the HH bound

state being more deeply bound that the LH state. In addition, in the xy-plane, in

which the propagation in the QW must occur, HH subbands have a lighter effec-

tive mass than LH subbands, reversing the order relative to bulk. The results of

this analysis are shown in figure 2.6; the degeneracy in the bulk of the HH and

LH states at k = 0 is lifted in QWs and the heavy and light character of the two

bands is strongly mixed. This simplified treatment of the effects of confinement

on the electronic band structure touches on some general trends, but is far from

rigorous. The valence band in QWs is complicated and few analytical solutions

exist; treatments based on the Kane or Luttinger models result in realistic band

structures though such detailed calculations will not be reproduced here.

2.4.2 Interband transitions in a quantum well

In a QW, transition rates from valence band to conduction band states are mod-

ified relative to the bulk case both by the changes in the bands discussed in

section 2.4.1 and by the relative parity of the QW envelope functions. If the
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splitting of HH and LH bands induced by confinement is large enough (e.g. this

splitting is ∼ 30 meV in an 8-nm GaAs/Al0.4Ga0.6As QW) compared to the en-

ergy width of the optical excitation, only the HH band needs to be considered in

valence to conduction band transitions. According to figure 2.4, such a situation

leads to large optically oriented spin polarizations in the conduction band.

Transition rates are also affected by the envelope functions of the QW. In

a QW system, the electron states are no longer the same states shown in equa-

tion 2.14. Rather, these states are a product of the envelope function, which

is quantized in one direction (ẑ here), and the appropriate Bloch function. The

envelope functions of a QW are separable and are a product of a plane wave in

the xy plane and of a bound state along ẑ:

Ψb,mzk⊥(r) = Nei(k⊥·r)φb,mz(z), (2.32)

where N is a normalization constant, k⊥ is the wave vector perpendicular to the

confinement direction ẑ, b is an index referring to the band (e.g. CB, HH, LH,

and SO), and φb,mz(z) is the eigenstate of the mth
z level in the QW. While Bloch

functions un,0(r) vary on the length scale of the unit cell, the envelope functions

Ψb,mzk⊥(r) vary on much larger spatial scales and are nearly constant over one

unit cell. For this reason, when calculating matrix elements for QWs analogous

to those calculated for bulk in table 2.2, we can separate out the integral in-

volving the envelope functions. As a result the QW valence to conduction band

transition rates are proportional to the bulk rates multiplied by the square of the

inner product of the valence and conduction band QW eigenstates:

|〈ψcb|er ·E |ψvb〉|2 = |〈ucb|er ·E |uvb〉|2
∣∣∣∣
∫

φ∗cb nz
(z)φvb mz(z)dz

∣∣∣∣
2

. (2.33)

While in the idealized case of an infinitely deep QW,
∫

φ∗cb nz
(z)φvb mz(z)dz =

δnz,mz , in real QWs this orthonormality does not survive. Transitions where nz =
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mz, however, are still the strongest. In addition it is clear from equation 2.33,

that transition rates between QW subbands will vanish unless both envelope

functions have the same parity.

While there are several important differences in the electronic structure and

optical selection rules of QWs compared to bulk systems, the general features

remain intact. While the band structure is somewhat more complicated in QWs,

spin polarized conduction electrons can still be excited by resonant circularly

polarized illumination. The strong relation between luminescence polarization

and spin polarization in the bands also persists. In this dissertation, QW struc-

tures are designed to have subband levels which are separated by energies much

larger than the energy width of our excitation laser; in this way our experiments

are usually confined to the dynamics of the lowest conduction subband only.

2.4.3 The g-factor in a quantum well

The confinement of conduction electrons in a QW also has an effect on their

g-factor. The results of section 2.3.3, specifically equation 2.31, show that the

effective g-factor of conduction band states depends on both the the band-gap

energy Eg and on the spin-orbit splitting ∆. As discussed in section 2.4.1, the

conduction and valence bands in a QW are pulled further apart in energy by the

effects of confinement, enhancing Eg. At k⊥ = 0, the nth subband is shifted from

the bulk band-edge by an energy Eb
n where b labels the band of interest (CB, HH,

LH, or SO). Eb
n , sometimes referred to as the confinement energy, is simply the

energy of the nth level of a one-dimensional QW. It has been shown, to first

approximation, that the conduction band g-factor in square QWs has the same

value as for electrons in the conduction band of a bulk system at an energy above

the band-edge equal to the confinement energy Eb
n [63]. In this approximation
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the hole confinement energy is ignored as it is typically much smaller than the

electron confinement energy. Several experiments confirm that the enhanced

band-gap due to quantum confinement is the dominant effect in determining the

g-factor in GaAs/AlGaAs and GaAs/InGaAs QWs [44, 47, 64, 65, 66, 67]. The

effect of penetration of the electron wave function into the barrier is found to be

small as are the effects of other differences between the QW band structure and

the bulk structure [63].

Therefore an approximate expression for the g-factor in the lowest subband

of a quantum well is,

ge = g0− 2
3

(
2κ2

m0

)
∆(

Eg +Ecb
0 +Evb

0
)[(

Eg +Ecb
0 +Evb

0
)
+∆

] , (2.34)

where electron and hole confinement energies Ecb
0 and Evb

0 depend on the para-

meters of the QW such as the width and the barrier height. Eg, the bulk value of

the band-gap for the material used in the QW region, depends strongly on the

type of material used (e.g. pure GaAs, AlxGa1−xAs, or InxGa1−xAs). It should

be clear from equation 2.34 that quantum structures can be engineered with a

wide variety of values for ge. In GaAs/AlGaAs QWs, depending on the para-

meters, the g-factor can be made positive or negative roughly within the range

−0.4 < ge < 0.2.

Note also, that the symmetries broken by the confinement of carriers in a

QW result in anisotropic conduction band g-factors. While in bulk ge can be

considered a scalar valid in any quantization direction, in QWs the g-factor is a

tensor ↔ge which can have drastically different values along different crystalline

directions [68].

Up until this point we have been discussing conventional square QWs, how-

ever, some specialized heterostructures have been developed, such as parabolic

quantum wells (PQWs) and coupled quantum wells (CQWs), in which ge can be
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controlled using applied electric fields [15, 47]. The g-factors in these structures

have different, more complex dependences and such devices will be discussed

in detail in chapters 4 and 6.

2.5 Electron spin interactions with local moments

2.5.1 Coupling to nuclear spins in the crystal lattice

Electron spins in a semiconductor are coupled to the nuclear spins in the crystal

lattice. In this section we will lay the foundation for our understanding of this

coupling, though these interactions will be covered in greater theoretical and

experimental detail in chapters 3 and 4.

Recall our definition of the magnetic moment of an electron due to its intrin-

sic angular momentum in equation 2.3. An analogous equation can be written

for the nucleus:

MI = γNI, (2.35)

where I is the spin of the nucleus and γN is its gyromagnetic ratio. The vector

potential associated with this moment at a position r from the nucleus is (in

CGS) [69],

A =
MI× r

r3 = ∇× MI

r
= ∇× γNI

r
. (2.36)

Recalling the Hamiltonian for a semiconductor in the presence of a magnetic

field expressed in equation 2.19, we rewrite it for B = ∇×A and ignore the

spin-orbit coupling and the periodic potential V0(r), which is irrelevant in this

discussion:

H =
1

2m0

(
p+

e
c

A
)2

+
g0µB

h̄
S ·∇×A. (2.37)
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Keeping terms up to first order in A we have,

H =
1

2m0

(
p2 +

e
c

p ·A+
e
c

A ·p
)

+
g0µB

h̄
S ·∇×A

=
p2

2m0
+2µB

L ·MI

r3 +
g0µB

h̄
S ·

(
∇×

(
∇× MI

r

))
, (2.38)

where L = r× p is the orbital angular momentum of the electron. Since we

are concerned with dynamics in the conduction band, whose states have angu-

lar momentum l = 0, the magnetic moment of the nucleus affects the electronic

system through the last, spin-dependent term in equation 2.38. This term con-

tains the expression for the magnetic field due to an ideal magnetic dipole [70]:
(

∇×
(

∇× MI

r

))
=

1
r3 [3(MI · r̂)r̂−MI]+

8π
3

MIδ 3(r). (2.39)

The spin-dependent part of the Hamiltonian then becomes,

HS =
gµBγN

h̄

(
1
r3 [3(I · r̂)(S · r̂)− (I ·S)]+

8π
3

(I ·S)δ 3(r)
)

. (2.40)

This is the coupling Hamiltonian for two ideal magnetic moments, where the

term in brackets describes simple magnetic dipole-dipole coupling and the last

term is a contact hyperfine coupling. Calculating the mean value of this energy

〈HS〉 over the unit cell using solutions in the form of equation 2.20, we find that

for the s-like conduction band states, in which the spherically symmetric elec-

tron density is concentrated on the nuclear sites, the dipole-dipole term vanishes

and the contact term dominates. On the other hand, for the p-like valence band

states, whose electron density is concentrated away from the nuclear sites, the

contact term vanishes leaving a dipole-dipole coupling which nevertheless re-

mains considerably weaker than the conduction band contact term. Therefore,

we ignore the valence band dipole-dipole coupling, considering only the large

contribution of the contact term in the conduction band.

32



Chapter 2 Spin dynamics in zinc-blende semiconductors

We can now write the coupling Hamiltonian between zinc-blende conduc-

tion band spins and lattice nuclear spins:

Hhf =
8π
3

gµB

h̄
γN(I ·S)δ 3(r−R), (2.41)

known as the contact hyperfine coupling where R is the position of the nucleus.

Note that to transfer this equation into SI units, we simply replace the leading

term 8π
3 with 2µ0

3 [50]. Integrating over the unit cell we find,

Hhf =
8π
3

gµB

h̄
γNη |Ψ(R)|2 I ·S, (2.42)

where Ψ(R) is the envelope wave function and η = (1/Ω) |ucb(R)|2 is the Bloch

amplitude at the site of the nucleus normalized by the volume of the unit cell.

It is clear from equation 2.42 that the nuclear hyperfine coupling goes as the

overlap of the electron density with the nuclear site. Averaging over the whole

crystal of volume Ω or for an isotropic envelope function, as in a bulk system,

equation 2.42 simplifies to,

Hhf =
1
Ω

8π
3

gµB

h̄
γNηI ·S. (2.43)

The contact hyperfine coupling leads to a variety of phenomena in zinc-

blende semiconductors including the Overhauser and Knight shifts in electron

and nuclear magnetic resonance experiments, respectively. Furthermore, in

semiconductors Hhf leads to the dynamic polarization of lattice nuclei by opti-

cally oriented electrons and also contributes to electron spin relaxation is these

materials. These topics will be discussed in detail in chapter 4.

Fundamentally, Hhf serves as a conduit between itinerant carriers (conduc-

tion electrons) and stationary moments (lattice nuclei). It is for this reason, and

for the prospect of using the electronic and nuclear spins in semiconductors

to store quantum information, that recent interest in this coupling has been so

strong.
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2.5.2 Coupling to localized impurity spins

In a semiconductor with impurities, the spin of partially filled electronic shells

of impurity atoms can couple to the spin of mobile band electrons. This interac-

tion between carriers and localized electrons can be represented by a Heisenberg-

like Hamiltonian [71],

Hex =− 1
h̄2 ∑

n
J(r−Rn)S ·Ξn, (2.44)

where S is the spin operator of a band electron at position r, Ξn is the to-

tal spin operator for the shell (usually 3d or 4 f ) of the impurity atom at Rn,

J(r−Rn) is the exchange coupling, and the sum is carried out over all impu-

rities in the volume of interest. Note that equation 2.44 is not rooted in the

magnetization of particles and their vector potentials as was our treatment of

the the electronic-nuclear coupling in section 2.5.1. The critical difference is

that this coupling involves interactions between electrons, which are identical

particles. For them, the mutual Coulomb repulsion energy far outweighs any

magnetic coupling between their spin-related magnetizations. Therefore the

dominant spin-dependent energy arises not from the relative orientation of mag-

netizations but from Fermi-Dirac statistics [72]. Indeed, exchange interactions

of the form of equation 2.44 are derived by considering only the Coulomb inter-

action between electrons in conjunction with their Fermi-Dirac statistics. Such

couplings explain phenomena from the spin dependence of the atomic energy

levels of helium to physical origin of ferromagnetism.

The early development of the model summarized in equation 2.5.2 was

driven by the mysterious magnetic properties of rare-earth metals with the ideas

of Zener [73, 74, 75] and Vonsoviskii and Turov [76]. Since the magnetic behav-

ior could not be explained in terms of direct exchange between electronic wave

functions on neighboring atoms, the indirect coupling of localized moments via
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conduction electrons was invoked [76, 77, 78, 79, 80]. A pair of important

assumptions are made in the adoption of equation 2.44. First, we associate a

constant number of electrons with the electronic shell of the impurity atom, i.e.

the magnitude of the localized spin is taken to be constant. Second, we as-

sume that the localized moments can be described in terms of spin eigenvalues

rather than total angular momentum. We justify these simplifying assumptions

since the resulting model is consistent with a wide variety of experimental data

in II-VI and III-V semiconductors. Our interest in this coupling is focused on

III-V compounds; in chapter 5 of this volume, we apply equation 2.44 to de-

scribe the spin dynamics of carriers and Mn impurities in Ga(1−x)MnxAs and

InyGa(1−x−y)MnxAs heterostructures.

We can further simplify Hex by making a mean-field approximation. The

wave functions of conduction and valence band electrons extend throughout

the crystal; therefore we can assume that they interact with a large number of

magnetic moments in the sample. As a result, the band electrons are subject

to the average spin value of the localized moments. Thus it is permissible to

average over all possible spin states of the magnetic moments at the level of the

Hamiltonian. We now have,

Hex =− 1
h̄2 S · 〈Ξz〉 ẑ∑

n
J(r−Rn), (2.45)

where 〈Ξz〉 is the average spin state of a magnetic impurity, which for paramag-

netic spins lies exclusively along the direction of the applied magnetic field ẑ

(in this dissertation we focus on paramagnetic Mn impurities). In addition, let

us make a virtual crystal approximation in which we assume that the exchange

interaction occurs with one average value at all sites in the crystal rather than
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only at specific impurity sites:

Hex =− 1
h̄2 Sz 〈Ξz〉x∑

R
J(r−R), (2.46)

where x is the fraction of magnetic impurities per crystal site, and the sum runs

over all crystal sites R in a given volume.

Since electron spin is a good quantum number in the conduction band, we

proceed as we did in section 2.5.1 with the hyperfine coupling: we integrate

over the unit cell using solutions in the form of equation 2.20. Therefore for the

conduction band states u1 and u2,

Hex = − 1
h̄2 Sz 〈Ξz〉x

1
Ω

〈
S

∣∣∣∣∣∑R
J(r−R)

∣∣∣∣∣S

〉
|Ψ(r)|2

= − 1
h̄2 xN0α|Ψ(r)|2 〈Ξz〉Sz, (2.47)

where Ω is the volume of the unit cell, N0 is the number of crystal sites in the

unit cell, and α = 1
Ω

〈
S
∣∣∣∣∑

R
J(r−R)

∣∣∣∣S
〉

or more simply, α = (1/Ω)〈S |J|S〉.
Averaging over the whole crystal or for an isotropic envelope function, as in a

bulk system, equation 2.47 simplifies to,

Hex =− 1
h̄2 xN0α 〈Ξz〉Sz. (2.48)

Now, remembering the Zeeman term, we write the spin-dependent Hamiltonian

for the conduction band as,

Hcb
S =

geµB

h̄
BSz− 1

h̄2 xN0α 〈Ξz〉Sz. (2.49)

The problem is not quite so simple for the valence band states because these

states are not eigenstates of spin (see table 2.1). We first note that the only

non-zero matrix elements between band states are [71]:

α = (1/Ω)〈S |J|S〉 , (2.50)

β = (1/Ω)〈X |J|X〉= (1/Ω)〈Y |J|Y 〉= (1/Ω)〈Z |J|Z〉 . (2.51)
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Now consider Hex in the basis of table 2.1, once again averaging over the whole

crystal or for an isotropic envelope function,

Hex =− 1
h̄2 xN0 〈Ξz〉(1/Ω)〈um|SzJ |un〉 . (2.52)

Calculating the individual matrix elements and writing the Hamiltonian in ma-

trix form where the sequence of basis functions in our notation is u1, u2, u3, u4,

u5, u6, u7,u8, we obtain:

Hex =−1
h̄

xN0 〈Ξz〉




1
2α 0 0 0 0 0 0 0

0 −1
2α 0 0 0 0 0 0

0 0 1
2β 0 0 0 0 0

0 0 0 −1
2β 0 0 0 0

0 0 0 0 −1
6β 0

√
2

3 β 0

0 0 0 0 0 1
6β 0 −

√
2

3 β

0 0 0 0
√

2
3 β 0 1

6β 0

0 0 0 0 0 −
√

2
3 β 0 −1

6β




.

Since the SO holes, u7 and u8, whose energy in GaAs is shifted from the other

hole bands by ∆ = 0.34 eV, are largely irrelevant to resonant optical experi-

ments, we consider only the HH and LH states. In this case the above matrix is

diagonal and we can write the exchange Hamiltonian together with the Zeeman

term in a similar form as for the conduction band (equation 2.49). Total angu-

lar momentum Jz and not spin is a good quantum number in the valence band,

therefore we write the Hamiltonian as,

Hvb
J =

ghµB

3h̄
BJz− 1

3h̄2 xN0β 〈Ξz〉Jz, (2.53)

where gh is the hole g-factor.

Equations 2.49 and 2.53 illustrate the dependence of the conduction and va-

lence band spin splittings on the the spin polarization of the magnetic impurities
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present in the crystal. In the case of Mn doping in GaAs, at low concentrations,

the impurities are isolated from each other and act as spin-5/2 paramagnets.

Their magnetization along the applied field, and thus their average spin value

〈Ξz〉 goes as,

Mz ∝ 〈Ξz〉 ∝ B5/2

(
5gMnµBB

2kB(T −θP)

)
, (2.54)

where BS(η) = 2S+1
2S coth

(2S+1
2S η

)− 1
2S coth

( 1
2Sη

)
is the Brillouin function for

spin S, gMn is the g-factor for Mn2+, kB is the Boltzmann constant, T is the

temperature, and θP is the paramagnetic Curie temperature. Section 5.3.2 in-

cludes a derivation of equation 2.54. For a sufficiently large Mn concentration

x and exchange couplings α and β , this magnetization will significantly alter

the otherwise linear dependence of spin-splitting on magnetic field. In chapter

5, we explore the physics of equations 2.49 and 2.53 in greater detail.

2.6 Time-resolved Faraday and Kerr rotation

2.6.1 The Faraday effect

Optical techniques are particularly convenient for measuring electron spin dy-

namics in zinc-blende semiconductors. Due to the optical selection rules dis-

cussed in section 2.3.2, it is straightforward to inject spin-polarized carrier spins

into the electronic bands; one simply irradiates the sample with circularly po-

larized photons at the band-gap energy. Probing these spin states and measur-

ing their dynamics can be achieved using several methods. Photoluminescence

(PL), both polarization-resolved and time-resolved, is a useful tool for detect-

ing the spin state of recombining carriers. Due to the complicated structure of

the valence band in many heterostructures, however, these measurements can

be difficult to interpret unambiguously. The recombination process, by nature,

38



Chapter 2 Spin dynamics in zinc-blende semiconductors

reflects the dynamics of both the conduction and valence bands and since it in-

volves carriers near the band extrema, it is disproportionately sensitive to shal-

low donors, acceptors, and impurities. Moreover, PL only provides information

for the duration of the carrier lifetime, which can often be shorter than the elec-

tron spin lifetime. While we rely on PL for a number of measurements, in most

experiments the method of time-resolved Faraday or Kerr rotation is used to

probe spin dynamics.

In 1845, Michael Faraday discovered that the polarization axis of linearly

polarized light passing through a piece of glass rotates by an angle proportional

to the magnetic field applied along the propagation direction [81]. The Faraday

effect is a result of a magnetic field-dependent circular birefringence, i.e. a

difference in the index of refraction between right- and left-circularly polarized

(R and L ) light dependent on magnetic field. The difference in index is a

result of the magnetization induced in a material by the applied magnetic field.

A difference in the index of R and L will cause a phase shift between R and L

light passing through a material; since linearly polarized light is a superposition

of R and L , a phase shift between these components results in the rotation

of its polarization axis by an angle known as the Faraday rotation (FR) angle.

Therefore, in the case of magnetized materials, the the FR angle is proportional

to the component of the magnetization along the direction of propagation. The

Kerr effect and Kerr rotation (KR) refer to the analogous effect on light reflected

off of rather than transmitted through a material. The underlying mechanism

behind the KR and FR is the same and either method can be used depending on

the experimental conditions.

A full treatment of the Faraday effect involves taking into account the con-

sequences of applying a magnetic field on atomic and molecular orbitals in a

material and is beyond the scope of this dissertation. We focus on using the
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Figure 2.7: Absorption and index of refraction for σ+ and σ− in the presence of a spin
splitting. The black line represents the index of refraction of linearly polarized light and shows
the typical spectral dependence of the Faraday rotation angle.

FR angle as a sensitive probe of the magnetization due to electron spins in the

conduction band of a semiconductor. The sensitivity of the FR angle to conduc-

tion band spin polarization is greatly enhanced near corresponding absorption

resonances. Absorption due to transitions from the valence to the conduction

band for σ+ and σ− polarized light has the qualitative shape shown in figure

2.7a. In a magnetic field, these two absorption resonances are split by the av-

erage Zeeman energy of the electrons and holes, which in turn is proportional

to the ensemble polarization of electron and hole spins. While the optical ori-

entation process described in section 2.3.2 creates both spin-polarized electrons

and holes, in general we can ignore hole spins in the experiments discussed in

this dissertation due to their short lifetime in these systems [82]. Therefore we
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consider the splitting to depend on the electron spin polarization only. We also

ignore exciton spins, as their lifetime is limited by the hole spin lifetime [83].

Using the standard Kramers-Kronig relations, we use the absorption reso-

nances to obtain the indices of refraction corresponding to σ+ and σ− light,

shown qualitatively in figure 2.7b. The difference in the two indices is peaked

around the absorption resonance, resulting in a spectral region of resonant FR,

where the FR angle is proportional to the energy splitting between the two con-

duction spin absorption energies. The proportionality is linear as long as the

characteristic spectral width of the absorption resonance is large compared with

the spin splitting.

The splitting of the absorption spectra is a sum of the average Zeeman split-

ting of the electron spins, geµB
h̄ B · 〈S〉, and the energy splitting due to the relative

population of the spin subbands (both effects are illustrated in figure 2.8). In the

latter effect, the presence of carriers in a spin subband blocks absorption at low

energies due to phase space filling, resulting in an enhanced absorption energy.

Both of these effects, and thus the FR angle, are proportional to the ensemble

electron spin polarization in the conduction band. While it is difficult to sepa-

rate the two contributions to the FR angle, the non-linear dependence of FR on

pump power suggests that the state filling effect dominates in measurements of

carrier spin polarization [84].

2.6.2 Time-resolved measurements

Measurements of FR and KR provide such a sensitive probe of conduction band

spin in semiconductors that a detection sensitivity of several spins has been

recently reported [19]. Since the underlying process behind the technique is

absorption rather than luminescence, it probes spin dynamics in the system long
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Figure 2.8: A schematic diagram showing the effects of the Zeeman splitting and state filling
of electron spin subbands. The splitting in the absorption of σ+ and σ− shown in figure 2.7 is
a result of both of these effects. Here, the state filling effect is shown to dominate. Since hole
spin lifetimes are short in the systems discussed in this dissertation, we ignore their effects.
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after carriers have recombined. It is the ability to probe the dynamics of electron

spins in time, however, which makes the FR measurement especially powerful.

In a typical experiment, light from a pulsed laser tuned to the absorption en-

ergy of the relevant conduction band state is split into a beams of circularly po-

larized pump and linearly polarized probe pulses. The pump, which is focused

onto the surface of the sample, injects spin polarized electrons into the conduc-

tion band as discussed in section 2.3.2. After a time ∆t, which is set using a

mechanical delay line, the probe beam, which is focused onto the same spot on

the surface and is nearly collinear with the pump, transmits or reflects off of

the sample. The probe beam’s axis of polarization is then rotated by the FR or

KR angle θ(∆t) which is proportional to the average electron spin polarization

along its propagation direction. θ(∆t) is detected using a balanced photodiode

bridge [85] and a series of lock-in amplifiers. If the laser propagation direc-

tion is perpendicular to the applied magnetic field (the Voigt geometry), the FR

angle is well described by and exponentially decaying cosine:

θ⊥(∆t) = θ0e
− ∆t

T∗2 cos(2πνL∆t), (2.55)

where θ0 is the initial amplitude, T ∗2 is the inhomogeneous transverse spin

lifetime, and νL = gµBB/h is the Larmor frequency. When the laser propa-

gation is parallel to the applied magnetic field (the Faraday geometry), it is

well-described by an exponential decay:

θ||(∆t) = θ0e−
∆t
T1 , (2.56)

where T1 is the longitudinal spin lifetime. At intermediate angles of incidence,

we observe a combination of these signals. Equations 2.55 and 2.56 represent

idealized cases; in real systems further complications must often be consid-

ered, including multiple decay time constants, multiple g-factors, anisotropic
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Figure 2.9: A schematic diagram showing a typical experimental setup of a time-resolved
Faraday rotation measurement. The inset is a representation of typical data.
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g-factors, and other considerations. A complete description of the experimental

details involved in this measurement technique is provided in a previous disser-

tation [57].
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Chapter 3

High-field optically detected
nuclear magnetic resonance

3.1 Introduction

The contact hyperfine interaction, which was introduced in section 2.5.1, cou-

ples the spin of conduction band electrons in a semiconductor to nuclear spins

in the crystalline lattice. Among the many consequences of this coupling are

the dynamic spin polarization of the lattice nuclei by optically oriented elec-

tron spins and the Overhauser shift in the electron spin resonance frequency.

Used together, these effects allow for the optical detection of nuclear magnetic

resonance (NMR). The detection sensitivity of this technique is several orders

of magnitude better than conventional NMR methods allowing for the mea-

surement of nuclear spin phenomena in certain semiconductor nanostructures

containing too few spins for conventional detection. The fundamental reason

behind the enhancement in sensitivity is that under optical pumping conditions,

conduction electron spins are strongly out of equilibrium; through the hyper-

fine coupling this strong imbalance leads to an anomalously large nuclear spin
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polarization.

In this chapter we will briefly introduce NMR and magnetic resonance in

general in section 3.3. Section 3.4 focuses on the mechanism behind the dy-

namic optical orientation of nuclear spins. How polarized nuclear spins affect

conduction electrons, particularly through the Overhauser effect, is also dis-

cussed in this section. The final two sections of the chapter, 3.5 and 3.6, describe

optically detected NMR (ODNMR) experiments using detection schemes based

on Faraday rotation (FR) and luminescence polarization, respectively. The for-

mer measurement technique represents an improvement in sensitivity of several

orders of magnitude with respect to typical ODNMR.

3.2 Background

The small number of nuclear spins in quantum wells (QWs) and quantum dots

makes conventional NMR experiments difficult in these semiconductor nano-

structures. The enhancement in nuclear spin polarization achieved through op-

tical pumping [23] can increase the detection sensitivity of typical radio fre-

quency (RF) probes from a minimum of 1017 nuclear spins to 1012. As a result,

RF detection of optically pumped GaAs multiple QWs has been achieved [26].

Detection of NMR has also been demonstrated through optical measurements

of recombination polarization, either by exciting NMR transitions with a con-

ventional coil [27, 86], or by purely optical means [28, 29, 30, 31]. In the latter

case, an optical field is modulated at the nuclear Larmor frequency resulting

in an oscillating electron magnetization. This magnetization interacts with nu-

clear spins through the contact hyperfine coupling and induces NMR transitions

in lieu of an external RF field. While ODNMR provides the high sensitivity

typical of optical techniques, it has several limitations. For electron g-factors
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and spin lifetimes typical of GaAs structures, ODNMR is only possible at low

magnetic fields (< 1 T). In addition, the reliance on radiative recombination for

detection makes ODNMR disproportionately sensitive to nuclei located near

shallow donors and impurities [87].

Another type of ODNMR is possible using time-resolved FR [85] to probe

nuclear spin polarization. In this detection scheme, FR measures the spin pre-

cession frequency of electrons in the conduction band. Nuclear spins act on

electron spins through the contact hyperfine interaction altering this frequency

and allowing for the precise measurement of nuclear polarization. All-optical

versions of this method have been demonstrated in bulk GaAs and in GaAs

QWs [32, 68, 88]. These measurements can be made at high applied magnetic

fields and, unlike measurements of time- and polarization-resolved photolumi-

nescence, they are not limited by the charge recombination time.

Here we present an extension of this technique utilizing a radio frequency

(RF) coil for the excitation of NMR transitions. The use of an external RF

field allows for the future application of well-developed pulsed-NMR tech-

niques for noise reduction while at the same time exploiting the high sensitivity

of FR detection. In addition, the conventional magnetic excitation of nuclear

transitions circumvents the complex interactions between electrons and nuclei

which take place in schemes involving optical excitation. Unlike conventional

RF magnetic fields, which induce only dipole transitions, modulated optical

fields induce both magnetic dipole transitions and electric quadrupole transi-

tions [31, 42, 68, 88]. Electric quadrupole transitions are discussed in further

detail in section 4.5.3.
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3.3 Magnetic resonance

Magnetic resonance is a powerful and well-established spectroscopic tool for

both electrons and atomic nuclei. Its far-reaching impact on disciplines ranging

from physics, to chemistry, to medicine is based on its fundamental ability to

reveal detailed information about the magnetic environment immediately sur-

rounding resonant spins. Magnetic resonance imaging in particular, which is

based on proton spin resonance in water molecules, has given medical doctors

and neuroscientists a non-invasive technique for looking inside the human body.

NMR techniques also allow us to probe processes at the atomic level. Recent

advances in the detection of fewer and fewer spins through magnetic resonance,

including the recent detection of the electron spin resonance (ESR) of a single

electron in SiO2 [89], suggest the possibility of imaging techniques able to map

the electronic structure of single molecules [90, 91].

Standard magnetic resonance experiments involve the application of a static

longitudinal magnetic field B = Bẑ and an oscillating transverse magnetic B1 =

B1 sin(ω1t)ŷ field perpendicular to it. Recalling equation 2.8 for the motion of

a spin in a magnetic field, we can write,

d
dt
〈S〉=

gµB

h̄
(B+B1)×〈S〉 . (3.1)

Let us define a coordinate system which rotates about ẑ at the angular frequency

ω1 of B1:

x̂′′ = x̂cosω1t + ŷsinω1t (3.2)

ŷ′′ = −x̂sinω1t + ŷcosω1t (3.3)

ẑ′′ = ẑ. (3.4)
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In this frame, the derivative of an arbitrary vector v can be expressed as,

dv
dt

=
∂v
∂ t

∣∣∣∣
rotating frame

+ω1×v. (3.5)

In the rotating frame we can express B1, which can be decomposed into co- and

counter-rotating magnetic fields, as,

B1 =
B1

2
x̂′′− B1

2
[
cos(2ω1t)x̂′′− sin(2ω1t)ŷ′′

]
. (3.6)

Under normal conditions, where B À B1, the spin vector precesses about the ẑ

axis at an angular frequency ω = gµB
h̄ B. It is therefore stationary in a rotating

frame defined by ω ẑ. The spin vector is only sensitive to the effects of transverse

oscillating fields which are stationary in its frame or whose relative periods

are longer than the transverse spin lifetime (1/|ω1−ω| > T2); all other fields

average to zero over time. Therefore we only need to consider the first co-

rotating term of equation 3.6 in a spectral region defined by |ω1−ω|< 1/T2, i.e.

around the resonance condition ω1 = ω . We take B1 = B1
2 x̂′′ and by combining

equations 3.1 and 3.5 we write the equation of motion in the rotating frame as,

∂ 〈S〉
∂ t

∣∣∣∣
rotating frame

=
[
(ω−ω1)ẑ′′+Ωnx̂′′

]×〈S〉 , (3.7)

where Ωn = gµBB1
2h̄ is commonly known as the angular nutation frequency. In

the rotating frame, 〈S〉 will precess around the angular frequency vector (ω −
ω1)ẑ′′+ Ωnx̂′′. On resonance, the precession is purely around x̂′′ at an angular

frequency Ωn. Given a spin vector initially aligned along the static field, 〈S〉=
h̄
2 ẑ, in a resonant transverse field it will precess and nutate according to,

〈S(t)〉=
h̄
2
(−sin(Ωnt)ŷ′′+ cos(Ωnt)ẑ′′). (3.8)

As is clear from equation 3.8, the nutation frequency Ωn depends on the strength

of B1. The final state of 〈S〉 depends both on Ωn and the amount of time B1 is
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applied. In typical NMR and ESR experiments, pulses of resonant B1 of fixed

amplitude and varying duration are used to manipulate the spin state of the

system. Though the protocols and pulse sequences used in modern NMR and

ESR can often seem impenetrably complex, the technique is based on the simple

principles outlined in this section.

The discussion in this section can naturally be extended to any driven two-

state system in quantum mechanics, e.g. a laser driving two isolated states in an

atom. In this case the Larmor frequency ω corresponds to the energy difference

between the energy states and the nutation rate Ωn corresponds to the Rabi oscil-

lation between the states. In a driven atomic transition, the oscillating magnetic

field B1 corresponds to a resonant laser field. Both cases are mathematically

identical.

Note that in ESR, for the free electron (g = g0 = 2) the resonant frequency

ν = ω/(2π) = gµB
h B' 28 GHz at B = 1 T. Nuclear gyromagnetic ratios, which

depend on the isotope in question, are about 103 times smaller due to the much

larger mass of the proton in comparison with the mass of the electron: µB =
eh̄

2me
and µN = eh̄

2mp
where me = 9.109× 10−31 kg and mp = 1.673× 10−27 kg.

Therefore the resonance frequencies for the nuclei discussed in this dissertation

tend to be around ν ' 10 MHz at B = 1 T (see appendix E for a list of nuclear

gyromagnetic ratios). Note also that since the nuclear spin number I can be

larger than 1/2, many of these nuclear spins are not two-state systems and do

not exactly map to the simple Bloch-sphere model of this section. A more

complex model must be used to predict the nuclear spin dynamics [92], though

the simple picture discussed here is sufficient for our purposes.
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3.4 Dynamic Nuclear Polarization

3.4.1 Polarization of nuclei by oriented electrons

Illumination with resonant circularly polarized light polarizes electronic spins

in the conduction band of a zinc-blende semiconductor, as discussed in sec-

tion 2.3.2, bringing them far out of equilibrium. Through the contact hyperfine

interaction, this polarization imbalance is shared with nuclear spins in the crys-

tal lattice, resulting in nuclear spin polarization. The contact hyperfine term,

which is proportional to I ·S is the conduit through which the polarized reser-

voir of electronic spins cools the nuclear spins. By expressing this coupling in

terms of standard raising and lowering operators for spin we have,

I ·S =
1
2
(I+S−+ I−S+)+ IzSz. (3.9)

In this form it is clear that the contact hyperfine interaction conserves the total

spin of the electronic-nuclear system and that through mutual spin flips, or “flip-

flop” interactions, angular momentum can be transferred from the electronic to

the nuclear reservoirs and vice-versa. The nuclear polarization along the applied

magnetic field arises as a result of the establishment of thermal equilibrium

between these two reservoirs. In a magnetic field, the nuclear spin system is

well-isolated from the lattice since the spin-lattice relaxation time Ts-l, which

can be as long as seconds to days, is much longer than the dipolar spin-spin

relaxation time between neighboring nuclei Ts-s, which is around 100 µs [25].

The nuclear spin bath can therefore be characterized by a spin temperature Θn.

As long as the external applied field is much larger than the local field due to

dipole coupling between nuclei (BÀ BL), the effect of these spin-spin interac-

tions can be neglected and the interaction of each nuclear spin with the electrons

can be considered separately. Note that Ts-s = 1/(γNBL) such that in these sys-
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tems BL ' 1 mT. As shown in equation 3.9, the total spin of the electron-nuclear

system is conserved and therefore we can write a balance equation,

Wm,m−1Nmn↓ = Wm−1,mNm−1n↑, (3.10)

where Nm represents the population of the level with nuclear spin h̄m, Wm−1,m

and Wm,m−1 are the transition probabilities to and from this level, and n↑↓ =

1/2±〈S〉 are the relative populations of the spin-up and spin-down electrons.

The transition rates are related by thermodynamics,

Wm,m−1 = Wm−1,me
gµBB
kBT , (3.11)

where in the energy difference gµBB between states of the electron and nuclear

spin, we have neglected the Zeeman energy of the nucleus (gµB À h̄γN). The

energy required for each transition is taken from the lattice, which is represented

as a reservoir of temperature T . Combining equations 3.10 and 3.11, we find,

Nm

Nm−1
=

(1+2〈S〉)
(1−2〈S〉)

(1−2ST )
(1−2ST )

, (3.12)

where 〈S〉 is the average electron spin and ST = −1
2 tanh(gµBB

2kBT ) is the equilib-

rium value of electron spin in the absence of optical pumping. Using this re-

lation we can express the average nuclear spin 〈I〉 =
I
∑

m=−I
h̄mNm as a Brillouin

function:

〈I〉= h̄IBI

(
ln

(
(1+2〈S〉)
(1−2〈S〉)

(1−2ST )
(1−2ST )

))
. (3.13)

Typically in the case of optical pumping 〈S〉 À ST , therefore we can neglect ST

and retain the first term in the expansion of the Brillouin function, so that,

〈I〉=
4
3

h̄I(I +1)〈S〉 . (3.14)

Recalling that the quantization axis in this treatment was determined in equation

3.9 along the static magnetic field B, we generalize equation 3.14 into vector
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form,

〈I〉=
4
3

h̄I(I +1)
(〈S〉 ·B)B

B2 . (3.15)

The gist of the preceding discussion is that dynamic nuclear polarization

(DNP) [23] is caused by the component of electron spin along the applied field

direction and that the subsequent nuclear polarization is proportional to the elec-

tron spin polarization achieved by optical orientation. Note also, that DNP is

most efficient in semiconductors at liquid helium temperatures disappearing for

T > 20 K [68].

3.4.2 The Overhauser shift

As discussed in section 3.4.1, the presence of optically oriented electrons in a

semiconductor can act to polarize nuclear spins. The contact hyperfine term,

however, plays a dual role. It also allows polarized nuclear spins to act on

electron spins. This inherent feedback in the Hamiltonian leads to bistability

and hysteresis in the electron-nuclear spin system at very low applied magnetic

fields (B∼ BL) as shown in figure 3.6. Though we will not discuss this low-field

bistability here [25], this section will cover the effect of nuclear polarization on

conduction band spin dynamics.

Recall the form of the contact hyperfine interaction given in equation 2.42.

For the moment we absorb the multiplicative terms into a constant:

AH =
8π
3

gµB

h̄
γNη |Ψ(R)|2 . (3.16)

Writing the Hamiltonian of our system pertaining to the electron and nuclear

spin we have,

Hspin =
gµB

h̄
B ·S+ γNB · I+AHI ·S+HQ, (3.17)
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where HQ is nuclear electric quadrupolar interaction, which we ignore for the

moment. From this equation we see that the Larmor precession and NMR reso-

nance frequencies for the electron and nuclear spins, respectively, are modified

by the contact hyperfine term:

νL =
gµBB

h
+

AH

2π
〈I〉=

gµBB
h

+νn, (3.18)

νNMR =
γNB
2π

+
AH

2π
〈S〉=

γNB
2π

+νe, (3.19)

where νn and νe are known as the Overhauser shift and the Knight shift, re-

spectively. In the literature, this additional energy due to the hyperfine term,

written in both cases here as a frequency shift, is often expressed in terms of an

effective magnetic field: either as an effective nuclear field Bn = h̄AH
gµB

〈I〉 or as an

effective electronic field Be = AH
γN
〈S〉. In order to avoid confusion in materials

with differing gyromagnetic ratios and with variable and anisotropic g-factors,

we will refer to the Overhauser shift frequency νn = AH
2π 〈I〉 and the Knight shift

frequency as νe = AH
2π 〈S〉.

The Knight shift is observed in conventional NMR as a shift in the reso-

nant frequency of a nuclear isotope. The Overhauser shift is similarly seen as a

shift of a resonance in ESR. In this dissertation, the Overhauser shift is detected

in time-resolved FR measurements as a change in the electron precession fre-

quency νL. Measurements of νn provide a sensitive probe of 〈I〉. Taking into

account the natural abundance of isotopes, for 100% polarized lattice nuclei in

GaAs (〈I〉/I = 1) we can make an estimate originally given by Paget [25, 86]:

νn(75As) = 17.0 GHz, (3.20)

νn(71Ga) = 7.2 GHz, (3.21)

νn(69Ga) = 8.4 GHz. (3.22)

We sum these values and obtain for a fully polarized lattice, νn = 32.6 GHz.
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Figure 3.1: A representation of Bn and Be.

3.5 NMR detected by Faraday rotation

3.5.1 Experimental details

As shown in figure 3.2, a semiconductor sample is cooled to T = 5 K in a

magneto-optical cryostat with an applied magnetic field B along ẑ and is mounted

in the center of a 10 mm × 5 mm Helmholtz coil wound from 22 AWG magnet

wire. RF radiation is coupled to the coil from the top of the cryostat through

an impedance-matched semi-rigid coaxial transmission line producing an RF

magnetic field B1 along ŷ. The sample growth direction x̂′ lies in the xz-plane

and can be rotated to adjust the angle θ between the growth direction and the

laser propagation direction along x̂. Unless otherwise specified, θ = 10◦.

Tilting the sample by a non-zero angle θ as shown in figure 3.2 redirects

the electron spin polarization along the growth direction x̂′, resulting in a com-

ponent of electron spin along the magnetic field axis ẑ. This pinning of the
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Figure 3.2: Schematic of the experimental geometry. (a) Side view of the apparatus within a
magneto-optical cryostat. (b) Top view of the sample at the center of the Helmholtz coil. The
xyz coordinate system is defined by the applied magnetic field while the x′y′z′ coordinate system
is tied to the sample’s crystal axes and is defined by the growth direction.

initial electron spin polarization along x̂′ relies on the fact that pump pulses

couple predominantly to HH states, which are split from the LH states in a QW

[68, 93]. This component of electron spin polarization Sz injected along the

magnetic field depends on θ . This dependence can be non-trivial if the g-factor

is not isotropic and is characterized by a tensor g↔, as is the case in QWs.

We measure time-resolved FR in a modulation doped 7.5-nm wide (110)

GaAs/AlGaAs QW with a mobility of 1700 cm2 V−1 s−1 and an electron den-

sity of 9× 1010 cm−2 at T = 300 K. Confinement along the (110) crystal di-

rection suppresses D’yakonov-Perel spin scattering resulting in spin lifetimes

longer than 1 ns from T = 5 K to room temperature [38]. A 250-fs 76-MHz

Ti:Sapphire laser tuned near the exciton absorption energy (1.572 eV) produces

pulses which are split into pump and probe with a full width at half maximum

(FWHM) of 8 meV and an average power of 2.0 mW and 100 µW, respec-

tively. The linearly (circularly) polarized probe (pump) is modulated by an

optical chopper at f1 = 940 Hz ( f2 = 3.12 kHz). Both beams are focused on

the sample surface to an overlapping spot 50 µm in diameter with the pump
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beam injecting polarized electron spins along the sample growth direction x̂′ as

shown in figure 3.2b. Small rotations in the linear polarization of the transmit-

ted probe are measured and are proportional to the component of electron spin

polarization in the conduction band along the growth direction. Variation of the

pump-probe time delay ∆t reveals the time evolution of this spin polarization.

In the absence of nuclear polarization, electron spins precess about an axis and

at a frequency defined by the Larmor precession vector ~νL = g↔ ·BµB/h, where

g↔ is the Landé g-factor expressed as a tensor, µB is the Bohr magneton, and

h is Planck’s constant. GaAs QWs grown in the (110) direction exhibit strong

anisotropy in g↔ resulting in both the dependence of νL on the orientation of B

with respect to the sample’s crystal axes and in a difference between the preces-

sion axis ~νL and the direction of B [68].

At T = 5 K, spin-polarized photo-excited electrons generate nuclear spin

polarization within the QW through DNP. This “flip-flop” process results in an

average nuclear spin 〈I〉 along B and is driven by the component of electron

spin Sz in that direction. The sign and magnitude of 〈I〉 depend on the angle θ .

The presence of a non-zero 〈I〉 in turn acts on the electron spin dynam-

ics through an Overhauser shift of the precession vector: ~νL = g↔ ·BµB/h + ~νn,

where ~νn = AH〈I〉/h. The measurement of νL and the knowledge of g↔ and

~B yield the Overhauser frequency shift νn. Changes in the average nuclear

polarization 〈I〉/I within the QW can be measured directly as changes in the

precession frequency ∆νL.

3.5.2 Isotopic resonances

FR is plotted in figure 3.3a as a function of ∆t at B = 5.3 T with the coil driven

continuously at a frequency ν1 set to the 69Ga resonance at 54.0000 MHz and at
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Figure 3.3: NMR detected by time-resolved FR in a (110) GaAs/AlGaAs QW. (a) FR data
taken at B = 5.3 T with B1 driven at 54.0000 MHz, 54.0400 MHz, and 53.9800 MHz for the
red, blue, and green points, respectively. Lines connect the data to guide the eye. (b) FR shown
as a function of ν1 for fixed ∆t = 1932 ps as indicated by the dashed line in the inset to (a).

two frequencies slightly detuned from resonance. The inset clarifies the reduc-

tion of νL for the resonant scan in which nuclear spin transitions induced by B1

decrease 〈I〉. Scans with an off-resonant ν1, show the same 〈I〉 established by

DNP without any applied B1. Figure 3.3b shows FR data taken under the same

conditions as in figure 3.3a while sweeping ν1 across the 69Ga resonance at a

fixed ∆t = 1932 ps. Here, the resonant depolarization of 〈I〉 and the change in

νL appear as a peak in the FR signal. The asymmetry of the resonance reflects

the fast rate of the frequency sweep with respect to the time required to polarize

the nuclei TDNP ∼ 90 s. In order to investigate the true form of the peak, ν1 is

swept across the full nuclear resonance in a time Tsweep >> TDNP. This condi-

tion is satisfied for the data shown in figure 3.4a where the resonances due to the

three isotopes present in the QW, 69Ga, 71Ga, and 75As, appear at the expected

frequencies.
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Figure 3.4: NMR detected by time-resolved FR in a (110) GaAs/AlGaAs QW. (a) FR plotted
as a function of detuning ∆νNMR from the 69Ga resonance of 52.9539 MHz at B = 5.2 T, from
the 71Ga resonance of 67.2898 MHz at B = 5.2 T, and from the 75As resonance of 54.4992 MHz
at B = 7.5 T for the gray, red, and green points, respectively. Solid black lines are fits to the
data while dashed lines show the three peaks included in those fits. A schematic diagram of the
relevant level structure is included in (b).
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Figure 3.5: νL shown as a function of θ at B = 5.5 T for no RF voltage applied to the coil
and for -15 dBm applied at the 69Ga resonance at 56.0070 MHz for the blue and red points,
respectively. The solid black line is a fit to the angular dependence of νL in the presence of a
non-zero 〈I〉. The dashed black line shows the same dependence with 〈I〉= 0.

In addition, we observe satellite peaks for each resonance due to the nuclear

electric quadrupolar splitting 6AQ. Since this splitting is typically small in these

systems compared to the nuclear Zeeman energy (for B > 1 mT), we treat it

as a perturbation. For a moment let us skip ahead to follow the derivation of

the quadrupolar coupling in section 4.5.3. Solving for the first order energy

correction in perturbation theory using the the expression for the quadrupolar

term in equation 4.25, we have:

E(1) = 〈I,m|HQ |I,m〉= AQ(3m2− I(I +1)), (3.23)

since only the diagonal terms survive. Here |I,m〉 are the eigenstates of nuclear

spin I and Iz = h̄m and we have absorbed all constants into the energy AQ.
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Since 69Ga, 71Ga, and 75As all have I = 3/2, the m =±3/2 states are shifted by

E(1) = 3AQ and the m = ±1/2 states are shifted by E(1) = −3AQ. As a result

the levels are shifted as shown by the level diagram in figure 3.4b, giving rise to

satellite peaks split by 6AQ.

By fitting each resonance to a Gaussian peak and two symmetric satellites,

the splittings 6AQ/h are measured to be 9.7 kHz, 7.0 kHz, and 16.3 kHz for

the 69Ga, 71Ga, and 75As isotopes. These values are similar to previously re-

ported measurements and indicate the presence of a small amount of strain on

the crystal likely due the wax used in mounting the sample [94]. The line-width

(FWHM) of the main resonance is 2.6 kHz, 2.1 kHz, and 4.6 kHz for the 69Ga,
71Ga, and 75As isotopes, respectively. The line-widths of the satellite peaks

are broader at 9.4 kHz, 6.5 kHz, and 13.8 kHz probably because of inhomo-

geneous strain in the sample. As noted elsewhere [94], methods such as ours

for accurately measuring AQ are useful in the determination of built-in strain in

semiconductor heterostructures.

The dependence of νL on θ is shown in figure 3.5 in the case of no RF

voltage applied to the transmission line and in the case of -15 dBm applied

at the 69Ga resonance ν1 = 56.0070 MHz for B = 5.5 T. The solid black line

is an angle dependence calculated according the simple model described by

Salis et al. [68]. We take into account an anisotropic g↔ and a 9% nuclear

spin polarization. The calculation reproduces the qualitative features of the data

and confirms the dependence of DNP on θ . This analysis also leads to the

conclusion that the curve taken with the coil resonantly depolarizing the 69Ga

nuclei has a nuclear polarization of 6− 7%. Since the natural abundance of
69Ga in GaAs is 0.3, we can say that the RF coil is close to achieving full

depolarization of the resonant isotope within the QW.
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3.5.3 Sensitivity to 108 nuclear spins

The sensitivity of the FR-based ODNMR represents one of its main advan-

tages over conventional luminescence-based methods. In the measurement de-

scribed in section 3.5.2, analysis of the signal-to-noise ratio and the nuclear

polarizations detected, reveals our ability to distinguish changes in polariza-

tions as small as, 〈I〉/I ∼ 0.015%, corresponding to a sensitivity of 108 nuclear

spins. In total, the measurement probes the polarization of the ∼ 1012 nuclear

spins in the QW.

Let us examine the dependence of the measurement’s sensitivity on the ex-

perimental parameters. The sensitivity of the FR angle to the nuclear polariza-

tion is given by,

dθF

d 〈I〉 ∝
d

d 〈I〉
[

e−∆t/T ∗2 cos
(

AH 〈I〉∆t +
gµBB

h̄
∆t

)]

∝ AH∆te−∆t/T ∗2 sin
(

AH 〈I〉∆t +
gµBB

h̄
∆t

)
. (3.24)

Since the time-scale in the experiment is set by the inhomogeneous transverse

spin lifetime T ∗2 , we set ∆t ' T ∗2 . We further assume that the relevant fre-

quencies are large enough compared 1/T ∗2 that we can ignore the effects of

the rapidly varying sinusoidal term. As a result,

dθF

d 〈I〉 ∝ AHT ∗2 . (3.25)

Therefore, the sensitivity of the FR-based ODNMR increases proportional to

the electron spin lifetime in a given sample and with the strength of its hyperfine

interaction. Moreover, the sensitivity is independent of both magnetic field and

g-factor, making this technique well-suited for applications at high magnetic

field and high g-factor. As discussed in section 3.6.4, conventional ODNMR is

not sensitive in these regimes.
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3.6 NMR detected by luminescence polarization

3.6.1 The Hanle effect

The Hanle effect describes the depolarization of luminescence by a transverse

magnetic field. It was first observed in the resonance fluorescence of gases by

Hanle in 1924 [95], and was subsequently applied in experiments on optical ori-

entation in semiconductors by Parsons in 1969 [96]. Here, and in conventional

ODNMR, the effect is used to monitor the lattice nuclear polarization through

its effects on conduction band spins.

In optical orientation experiments, photoexcited electron spins will precess

around an applied magnetic field B = Bẑ according to the form of equation 2.12.

Suppose carriers are excited along x̂′ using circularly polarized light and their

recombinant luminescence is collected along the same axis. Since the circular

polarization of the luminescence is proportional to the average electron spin

along the axis of collection, Px′ ∝ 〈Sx′〉 [25], we focus on the dynamics of the

spin component along x̂′,

〈Sx′(t)〉= 〈Sx′(0)〉
(

sin2 θe−t/T ∗2 cos(2πνLt)+ cos2 θe−t/T1
)

, (3.26)

where, in this case, θ is the angle between ẑ and x̂′. To obtain a steady state po-

larization, we average over the distribution of lifetimes (1/Te-h)e−t/Te-h , where

Te-h is the electron-hole recombination time, and find,

Px′ ∝
∞∫

0

〈Sx′(t)〉(1/Te-h)e−t/Te-hdt

=
〈Sx′(0)〉

Te-h

(
T ∗′2 sin2 θ

1+
(
2πνLT ∗′2

)2 +T
′

1 cos2 θ

)
, (3.27)

where 1/T ∗′2 = 1/T ∗2 +1/Te-h and 1/T
′

1 = 1/T1 +1/Te-h are the spin relaxation

rates modified by the recombination time. In the absence of nuclear polariza-
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tion, νL = gµBB
h and therefore the polarization is a Lorentzian as a function of

field with a characteristic width proportional to the recombination-limited spin

lifetime T ∗′2 and the g-factor.

In the presence of a nuclear polarization, which we know from equation 3.15

is collinear with the applied field, νL changes by the Overhauser shift frequency

νn. The Hanle polarization curve reflects this change with its peak shifting

by Bn. Recall, however, that while for B À BL, 〈I〉 ∝ (〈S〉·B)B
B2 , when B ∼ BL,

the effect of nuclear spin-spin interactions scrambles 〈I〉. This consideration

modifies equation 3.15 for the steady state nuclear polarization at low fields

such that,

〈I〉=
4
3

h̄I(I +1)
(〈S〉 ·B)B

B2
1

1+(γNBTs-s)2 , (3.28)

where we have proceeded in a similar vein with the nuclear spin as we did for

the electron spin in equation 3.27. We now have a polarization dependence,

Pz ∝
T ∗′2
Te-h




sin2 θ

1+
(

gµBT ∗′2
h̄

)2

(B+Bn)
2


+

T
′

1
Te-h

cos2 θ , (3.29)

where,

Bn ∝
cosθ

1+(γNBTs-s)2 . (3.30)

The results of this analysis are summarized in figure 3.6a where we show the

form of typical Hanle curves with and without the effects of nuclear polariza-

tion. From the figure, one can see that the Hanle effect reveals both the steady

state nuclear polarization from the position of the offset peak, and the relevant

time scales of the system, from the peak widths. Furthermore, consideration

of the polarization asymmetry with field can also be used to calibrate the sign

of the g-factor of the material in question [97]. As a method for measuring

ODNMR, the sensitivity of the polarization to Bn makes it a natural choice.
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Figure 3.6: Hanle effect data showing the effects of nuclear polarization. (a) shows two sets of
Hanle data one with θ ' 0◦ which is symmetric since 〈I〉 = 0. The other set with θ ' 15◦ has
a non-zero 〈I〉 and we can see Bn ' 15 mT. In both cases lifetimes can be extracted from the
peak widths. No RF field is applied. (b) shows two field scans in the presence of an RF field:
one from -10 mT to 30 mT and the other from 30 mT to -10 mT; other parameters are identical.
The hysteresis apparent in the data is direct evidence of the system’s low field bistability when
B∼ BL.

As an aside, note that a phenomenon similar to the Hanle effect can be ob-

served by measuring the steady-state FR angle due to photoexcited spins [19].

In this case, the data will have a similar functional form and will reveal anal-

ogous information. One advantage of this technique in comparison with the

luminescence-based Hanle effect is that the characteristic Lorentzian linewidths

will not be limited by the recombination time Te-h in n-type systems.

3.6.2 Experimental details

A conventional ODNMR measurement is made in order to compare its sensitiv-

ity to the FR-based scheme. In this case, a sample of bulk semi-insulating (100)

66



Chapter 3 High-field optically detected nuclear magnetic resonance

GaAs is used instead of a QW due to the lower expected sensitivity of the pho-

toluminescence (PL) technique. 5 mW of circularly polarized light from a CW

Ti:Sapphire laser tuned to 1.570 eV is focused to a 100-µm diameter spot on the

sample surface. For this experiment, the sample geometry is the same as shown

in figure 3.2 with θ = 20◦. Instead of collecting a transmitted probe beam, here

the polarization of the PL Px′ emitted by the sample along the growth direction

x̂′ is measured using a 40-kHz photo-elastic modulator, followed by a linear po-

larizer, and a spectrometer coupled to a photo-multiplier tube. Emission from

the excitonic peak at 1.514 eV is collected at 5 K as a function of B.

3.6.3 Isotopic resonances

Figure 3.7a shows Px′ as a function of B with B1 driven at ν1. The Hanle

effect data shown here is typical of GaAs in the presence of DNP [25] and

clearly illustrates the resonant depolarization at the isotopic NMR frequencies.

Electron spin precession causes the time-averaged spin vector, and thus Px′ , to

decrease in an increasing transverse magnetic field. By the same reasoning, Px′

is sensitive to the effective transverse magnetic field Bn due to 〈I〉. The broad

peaks seen around 20 mT in figure 3.7 are a result of Bn directly opposing and

compensating B. The narrow peaks shown to shift as a function of ν1 are due

to a decrease in Bn under the resonant depolarization of 〈I〉. The 10 kHz/mT

shift in the resonance for small ν1 is close to the gyromagnetic ratio of the three

relevant isotopes. As ν1 increases, the splitting between resonances increases

until at ν1 = 100 kHz and ν1 = 120 kHz, the three resonances (69Ga, 71Ga, and
75As) are clearly distinguishable.

A calculation of the Hanle effect based on typical bulk GaAs parameters

and the three NMR resonances is shown in figure 3.7b. There is good qualita-
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Figure 3.7: NMR detected by time-averaged PL polarization in semi-insulating (100) bulk
GaAs. (a) Px′ taken as B is swept from -10 mT to 30 mT at 2 mT/min for different values
of ν1. (b) A calculation of Px′ as a function of B is shown along with the corresponding (c)
dependence of 〈I〉/I on B. The dip around B = 0 T is due to the emergence of nuclear spin-spin
coupling at low fields.
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tive agreement between the model and the data allowing us to estimate 〈I〉/I ∼
0.25% as shown in the dependence of 〈I〉 on B predicted by the model in figure

3.7c.

3.6.4 Sensitivity to 1012 nuclear spins

The signal-to-noise in the data indicates that we are sensitive to changes down

to 0.05%. Since the region from which we are collecting PL contains ∼ 1016

nuclei, we estimate a sensitivity of 1012 nuclear spins for this ODNMR tech-

nique. In the FR measurement, which was done in a QW, we probed many

fewer nuclei: ∼ 1012. There we could distinguish nuclear polarizations as small

as 0.015% corresponding to a sensitivity of 108 nuclear spins.

We now examine how the sensitivity of the PL polarization-based ODNMR

technique depends on the experimental parameters. In particular, we are inter-

ested in its behavior as we increase the magnetic field. The sensitivity of the the

PL polarization on the nuclear polarization is,

dPx′

d 〈I〉 ∝
d

d 〈I〉


 T ∗′2

Te-h


 sin2 θ

1+T ∗′22

(
gµBB

h̄ +AH 〈I〉
)2







∝
−2AHT ∗′32

(
gµBB

h̄ +AH 〈I〉
)

sin2 θ

Te-h

(
1+T ∗′22

(
gµBB

h̄ +AH 〈I〉
)2

)2 . (3.31)

While this looks extraordinarily messy, we can make some approximations in

some useful limits. For typical experimental parameters of bulk GaAs and

GaAs-based heterostructures, in high magnetic fields (B > 1 T), 1
T ∗′2
¿ gµBB

h̄ +

AH 〈I〉. This simplifies equation 3.31 considerably in the high field regime:

dPx′

d 〈I〉 ∝
−2AH sin2 θ

Te-hT ∗′2

(
gµBB

h̄ +AH 〈I〉
)3 . (3.32)
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At high fields, it is also generally true that gµBB
h̄ > AH 〈I〉, allowing us to es-

timate further that as a function of salient parameters, the polarization has the

following proportionality:

dPx′

d 〈I〉 ∝
1

T 2
e-hg3B3 (3.33)

Here we have made the assumption that T ∗′2 ' Te-h, which is reasonable in GaAs

systems since T ∗′2 is usually limited by Te-h as in typical cases T ∗2 À Te-h.

The general result of this analysis is that for high magnetic fields, over 1

T, the Hanle effect becomes very insensitive to nuclear polarization. While

this conclusion is fairly obvious from the data shown in figures 3.6 and 3.7

from bulk GaAs, we have shown this deficiency to be rooted in the nature of the

measurement. The sensitivity gets worse at higher fields, and it also degrades for

samples with long recombination lifetimes and large g-factors. In these regimes

the FR-based ODNMR is far more sensitive. In a limited, low-field regime,

however, equation 3.33 is invalid and the PL-based ODNMR can actually be

quite sensitive (e.g. in figures 3.6 and 3.7 we have a sensitivity of 1012 for

B∼ 10 mT).

3.7 Conclusion

In conclusion, ODNMR detected by time-resolved FR is an extremely sensitive

probe of nuclear polarization capable of resolving small numbers of nuclear

spins and distinguishing quadrupolar splittings in the kHz range. It may find

use in the determination of built-in strain in GaAs heterostructures and provides

an excellent way to perform ODNMR measurements at high magnetic fields,

impossible by conventional techniques based on PL polarization. The funda-

mental difference of the FR technique versus techniques based on the Hanle
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effect is that the Hanle measurement is a measurement of time-averaged spin

rather than of spin dynamics. The information lost in this averaging procedure

makes this measurement fundamentally less powerful.
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Localized nuclear polarization in a
quantum well

4.1 Introduction

A central theme of this work is the exploration of the contact hyperfine inter-

action in GaAs-based semiconductors. Up to this point, however, we have not

discussed the local character of the coupling. It is local by its very nature, as ex-

pressed in equation 2.41: the coupling is non-zero at the locus of each nucleus

and vanishes everywhere else. In semiconductor heterostructures, the electron

envelope function plays a direct role in determining the spatial extent of the

interaction as is evident from equation 2.42. Under optical orientation, this

coupling produces a nuclear polarization profile whose extent is similarly deter-

mined [98]. As a result, this interaction affords us the unique ability to pattern

nuclear polarization profiles in the image of the envelope functions of polar-

ized conduction band electrons. Depending on the type of heterostructure used,

nanometer-scale polarization profiles should be achieved. This chapter covers

some of the first experiments performed in this vein, as well as discussing the
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physical origin of electrically induced resonant nuclear spin transitions in these

same experimental systems.

Section 4.2 introduces the fundamental idea behind the experiments pre-

sented in this chapter. Section 4.3 covers the means by which we shape and

translate the electron envelope function, while in section 4.4 we discuss and

present data demonstrating the creation of nanometer-scale profiles of dynam-

ically polarized nuclear spins. Finally, electrically induced nuclear spin transi-

tions and their origins are explained in section 4.5.

4.2 Motivation

4.2.1 Background

Nuclear spin has been proposed as a robust medium for quantum information

processing [99] in the solid state [36]. Due to the ease with which charge can

be controlled in semiconductors, it is natural to use conduction electrons as

intermediaries in manipulating nuclear spin. One approach is to tune the pop-

ulation and energy distribution of the electrons [35, 100]; our approach is to

directly vary the spatial overlap of spin-polarized electrons with lattice nuclei.

The ability to create nanometer-sized nuclear spin distributions combined with

long solid-state nuclear spin lifetimes has important implications for the future

of dense information storage, both classical and quantum. In addition, con-

trol over highly localized interactions between conduction electrons and lattice

nuclei may provide a means to manipulate such information.

Here, we use gate voltages to electrically position ∼ 23 nm wide distrib-

utions of polarized nuclei over a ∼ 20 nm range in a single parabolic quan-

tum well (PQW). Using optically-injected spin-polarized carriers, we exploit
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the contact hyperfine interaction to produce nuclear polarization in the vicinity

of their confined envelope functions [98]. The thin sheets of polarized nuclei

are laterally defined by the diameter of a focused laser spot. The application of

resonant radio frequency (RF) voltages to the gates provides additional electri-

cal control over nuclear spin. In this case, nuclear depolarization is observed

and is attributed to a local charge mediated quadrupolar interaction in contrast

to a spin dependent coupling.

Of course, manipulation of nuclear spins is nothing new; nuclear magnetic

resonance (NMR) has been around for over a half-century. The innovation here

is the ability to address small numbers of nuclei, relative to typical NMR tech-

niques (1012 vs. 1016), in solid state systems using largely conventional elec-

tronics. NMR techniques using coils and magnetic field gradients are difficult

to implement on nanometer scales; for this reason we look to spin interactions

between electrons and nuclei to act as effective magnetic fields, i.e. our goal is

to use these interactions to polarize and manipulate nuclear spin. The exquisite

control over electrons developed in modern semiconductor technology aids us

in this endeavor.

4.2.2 Implementation

As discussed in section 3.4.2 the effect of spin polarized electrons on nearby

lattice nuclear spins can be expressed in terms of an effective magnetic field Be.

This field, which is a manifestation of the contact hyperfine interaction, acts

to polarize nuclear spins as discussed in section 3.4.1. Dynamic nuclear polar-

ization (DNP), however, depends on the strength of the hyperfine interaction,

which goes as,

Hhf ∝ |Ψ(R)|2I ·S, (4.1)
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where Ψ(R) is the electron envelope function and R is the position of the rele-

vant nucleus. The nuclear polarization profile which develops as a result has a

similar spatial extent: it will be confined to the immediate vicinity of the elec-

tron probability density. Therefore, we can imagine controlling the position of

a confined envelope function of polarized electron spins and thereby polarizing

different regions of the crystal. Furthermore, note that since Be goes as |Ψ(R)|2,

we can vary this effective field at a nuclear site by controlling the position of

the electron envelope function. At resonant drive frequencies we may thus ex-

pect to induce nuclear spin transitions in the immediate vicinity of the electron

probability density. These concepts are illustrated in figure 4.1 and make up the

basis for the experiments presented in the rest of this section.

4.3 Translation of the electron envelope function

4.3.1 The parabolic potential

A parabolic potential is the ideal confining potential for achieving distortion-

free translation of an electron. With the application of a uniform electric field

across such a potential we induce a spatial shift of the parabolic potential and

have,

U(x′) =
1
2

meω2x′2 +
e
d
(Ug−U0)x′, (4.2)

where x̂′ is the confinement direction (the sample growth direction), me is the

effective electron mass, e is its charge, ω is characteristic angular frequency of

the potential, Ug is the voltage applied across two electrodes a distance d apart

across the potential, and U0 is an offset voltage known as the built-in potential

which often appears in real semiconductor systems. By changing the voltage

applied across the potential, we shift the energy minimum and thus the center
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Figure 4.1: We want to build a device in which we can control the local interactions between
electronic and nuclear spin with an applied voltage by (a) moving the electron envelope function
using a pair of external gates, (b) locally polarizing the spin of lattice nuclei, and (c) resonantly
inducing nuclear spin transitions.
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of the eigenstate wave functions to,

x′0 =
e

meω2d
(Ug−U0), (4.3)

while retaining the parabolic shape of the potential profile. In an idealized

system, with an infinite parabolic potential, the electron eigenstates translate

a distance proportional to Ug without distortion. In realistic systems, where the

harmonic potential is finite, this description remains correct to first order. In

contrast, electric fields applied across a standard square potential well distort

the electronic eigenstates and result in negligible wave function translation due

to the sharpness of the well’s barriers [57].

4.3.2 Parabolic quantum wells

In order to realize this scenario in a real system, we grow a GaAs/AlGaAs het-

erostructure by molecular beam epitaxy (MBE) (see appendix A for the exact

structure) which we subsequently process using standard semiconductor tech-

niques (see appendix B for the exact processing techniques). The sample [16]

is an undoped 100-nm (100) AlxGa1−xAs PQW [101], schematically shown in

figure 4.3. The aluminum concentration x is varied from 7% at the center of

the well to 40% in the barriers to create a parabolic confinement potential in the

conduction band. Directly below the PQW is a 450-nm Al0.4Ga0.6As barrier,

then a 500-nm of layer of low temperature-grown GaAs serving as a conduction

barrier [102], and finally a 50-nm n-GaAs back gate contacted using annealed

AuGe/Ni. Above the PQW is a 50-nm Al0.4Ga0.6As barrier followed by a trans-

parent front gate consisting of 5 nm of titanium and 5 nm of gold which was

evaporated on the sample surface. A voltage Ug applied across the front gate and

the grounded back gate produces a constant electric field across the PQW and

results in a negligible leakage current (< 10µA). Experiments are performed at
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Figure 4.2: A series of energy diagrams showing a parabolic potential with its ground state
electron envelope function. The constant electric field Ex′ applied across the potential goes from
positive to negative scanning the diagrams from top to bottom. The peak position of the electron
ground state x′0 is proportional to Ex′ .
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Figure 4.3: A schematic diagram of the gated AlxGa1−xAs PQW with x(x′) in the inset.
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Figure 4.4: PL from a 100-nm PQW as a function of Ug and detection energy EPL at T = 5 K
with counts plotted in a color-scale.

5 K in a magneto-optical cryostat with a semi-rigid coaxial cable coupling DC

and RF voltages to the sample gates.

Figure 4.4 shows the energy of photoluminescence (PL) as a function of Ug

at T = 5 K excited by a pulsed laser at 1.676 eV with and average intensity of∼ 1

W/cm2. The PL energy is highest at the built in potential U0 = 1.1 ± 0.1 V and

decreases as Ug is tuned away from that value. Such behavior is consistent with

the quantum-confined Stark effect [103] and shows that the application of Ug

affects the band-structure as expected. The observed shift is 6.8 ±1.0 meV/V2

compared with a theoretical value of 5.0 meV/V2 calculated using conduction

and valence band offsets from the literature [104] and neglecting changes in the

exciton binding energy, which are of the order of 4 meV [105]. Such agree-

ment gives us confidence in our ability to produce a constant and homogeneous
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electric field across the PQW proportional to Ug. The decrease of the PL in-

tensity away from U0 arises from the reduced wave function overlap between

photoexcited electrons and holes with increasing electric field, leading to the

dissociation of the exciton.

4.3.3 Measuring electron translation

As discussed in section 4.3.1, electric fields applied across the gated PQW struc-

ture result, to first order, in the distortion-free displacement of the center of the

electron envelope function x′0 along the growth direction. In order to determine

the exact dependence of x′0 on Ug we do a series of measurements of the con-

duction band Landé g-factor. Recall from equation 2.31 that ge depends on the

band-gap energy Eg. The Al concentration in our PQW is graded along x̂′ in

such a way that the confinement energy, and thus Eg, vary parabolically as a

function of x′. Therefore ge is also a function of x′. As a result we use mea-

surements of ge to track the center position x′0 of the electron envelope function

along the confinement direction in the PQW.

Given that in our experiments the density of the optically excited electrons

and holes is ∼ 1010 cm−2, only the lowest subband is occupied and screening

effects can be neglected. We can then use the ground state wave function for a

parabolic potential as our electron envelope function,

Ψ(x′− x′0) = l−1/2π−1/4e−
(x′−x′0)2

2l2 , (4.4)

where l =
√

h̄/(meω) is the characteristic length. A fit to published experimen-

tal data relating ge to the Al concentration x in bulk [106], shown in figure 4.5,

gives us the relation ge(x). From the design of the structure, we know x(x′) (see

the inset in figure 4.3), allowing us to convert from position to g-factor through
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Figure 4.5: Dependence of ge on x in bulk AlxGa1−xAs. The points are data from Weisbuch et
al. [106] and the red line is a non-linear fit ge(x).

ge(x(x′)). Note, however, that the electrons trapped in the PQW are not per-

fectly two-dimensional; their extent along x̂′ is described by |Ψ(x′− x′0)|2. The

g-factor we measure for electrons in the PQW is therefore an average over the

electron probability density,

ḡe(x′0) =
∫

ge(x(x′))|Ψ(x′− x′0)|2dx′+∆gc, (4.5)

where ∆gc is a phenomenological constant due to confinement effects not in-

cluded in our simple model [15]. We set ∆gc = 0.024 such that our measured

g-factor at Ug = U0 corresponds to expected value for x = 0.07, i.e. x′0 = 0.

We now have the g-factor as a function of envelope function position, which

through a numerical procedure we invert, resulting in x′0(ḡe). The functions

ge(x′), ḡe(x′0), and x′0(ḡe) are plotted in figure 4.6.

Having built up the machinery for determining the position of the electron

envelope function based on the knowledge of ḡe, we proceed to the measure-

ment of ḡe. Time-resolved Faraday rotation (FR) measurements [85] are per-
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Figure 4.6: The functions ge(x′), ḡe(x′0), and x′0(ḡe) are plotted in (a), (b), and (c), respectively.
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formed using a 76-MHz femtosecond Ti:Sapphire laser tuned near the absorp-

tion edge of the PQW (1.62 eV). Laser pulses are split into circularly (linearly)

polarized pump (probe) pulses with an average power of 2.5 mW (250 µW).

Pulses are modulated by optical choppers at f1= 3.3 kHz and f2= 1.0 kHz, re-

spectively, and are focused to an overlapping spot (∼30 µm in diameter) on

the semitransparent front-gate. Electron spin precession is well described by an

equation of the form discussed in section 2.6.2,

θF (∆t) = θ⊥e
−∆t
T∗2 cos(2πνL∆t +φ)+θ||e

−∆t
T1 , (4.6)

where θ⊥ is proportional to the spin injected perpendicular to the applied field,

θ|| is proportional to the spin injected parallel to the applied field, T ∗2 is the

inhomogeneous transverse spin lifetime, T1 is the longitudinal spin lifetime,

φ is the phase, and the Larmor frequency νL, which in the absence of nuclear

polarization is given by νL = ḡeµBB/h. B is an externally applied magnetic field

applied according to the diagram in figure 3.2b; we adopt the same definition of

the angle θ and the same coordinate systems as shown in that figure. To avoid

polarization of the nuclear spins, no electron spins are to be injected along the

field direction: θ|| = 0 must be true. This condition forces the laser excitation

to be perpendicular to the applied field (θ = 0).

Typical time-resolved data in the absence of nuclear polarization are shown

in figure 4.7 for different Ug and are fit to equation 4.6. From these fits we

extract T ∗2 , which is plotted in figure 4.8 as a function of Ug and reaches a

minimum near U0. This behavior reflects the formation of excitons in the flat-

band condition due to the spatial proximity of the confined electrons and holes.

The concurrent reduction of T ∗2 near U0 can be attributed to the enhanced charge

recombination rate of bound electrons and holes or to electron-hole exchange

which may also limit the electron spin lifetime at low temperature [107]. We
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Figure 4.7: Typical FR data from a PQW as a function of ∆t and Ug. The high frequency
oscillations in the signal background are due to unintentional injection of spin polarized carriers
into the GaAs substrate of this sample.

also extract ḡ and plot it as a function of Ug in figure 4.8. In figure 4.9, we apply

our conversion function x′0(ḡ) and plot x′0 as a function of Ug for a different but

structurally identical 100-nm PQW sample to the one discussed to this point.

The small differences in the form of the g-factor tuning curve as a function of

Ug are likely due to device specific differences in processing each individual

sample.

For small voltages away from U0, the electron and hole form an exciton

and the electron wave function position varies little with gate voltage. Once

this binding energy is overcome, the data show an electron displacement of 5

nm/V over a ∼ 20 nm range (the corresponding calculated hole displacement

is -7.5 nm/V). The dependence is nearly linear as expected from equation 4.3.

In order to put the tuning range in perspective, note that calculations of the
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Figure 4.8: ḡe and T ∗2 plotted as functions of Ug. These parameters are extracted from fits of
time-resolved FR data using equation 4.6.

ground state envelope function yield a full-width at half-maximum (FWHM) of

the electronic probability distribution, |Ψ(z− z0)|2, 2l
√

ln2 = 16 nm.

In addition to translating the electron envelope function within the PQW,

we can also modulate its position at RF at least as high as 100 MHz. Work

in similar samples achieved modulation as high as 4 GHz [16]. A RF voltage

applied to Ug causes the periodic displacement of the electron envelope function

within the PQW sampling a range of ḡe and therefore introducing a distribution

of frequency components into the electron Larmor precession. The upper curve

of figure 4.10a shows spin dynamics described by equation 4.6 of an electron

at a fixed position x′0 with no RF modulation applied to Ug. Contrasting those

dynamics are the more complex dynamics of the lower trace measured with RF

86



Chapter 4 Localized nuclear polarization in a quantum well

-3 -2 -1 0 1
0

5

10

15

20

 

 

 

Ug (V)

x
’ 0
(n
m
)

0.05

0.00

-0.05

-0.10

-3 0 1-1-2

20

15

10

5

0

g
e

Figure 4.9: ḡe plotted as a function of Ug along with x′0 as a function of Ug. The x′0(Ug) curve
is generated by applying our conversion x′0(ḡe) to the ḡe(Ug) curve.

modulation applied to Ug. We derive a simple model to explain the additional

frequency components introduced by RF modulation.

For each pump-probe delay time ∆t, a single FR measurement consists of an

average in lab-time of the instantaneous FR angle. Since the laser repetition rate

is not synchronized with the RF modulation applied to Ug, under the influence of

an RF modulation on Ug, a typical spin precession decay shown in equation 4.6,

must be averaged over a full cycle of the envelope function’s motion along x̂′.

In other words, it must be averaged over a range of sampled Larmor frequencies

defined by the maximum and minimum x′0 positions in a cycle:

θF(∆t) =
1

2π

∫ 2π

0
θ⊥e

−∆t
T∗2 cos

[
µBB

h̄

(
ḡavg + ḡdiff sin t ′

)
∆t +φ

]
dt ′+θ||e

−∆t
T1

= θ⊥e
−∆t
T∗2 J0

[
µBB

h̄
ḡdiff∆t

]
cos

[
µBB

h̄
ḡavg∆t +φ

]
+θ||e

−∆t
T1 , (4.7)

where J0(x) is a Bessel function of the first kind, ḡavg = ḡe(x′max)+ḡe(x′min)
2 , and
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Figure 4.10: (a) Upper curve: θF as a function of ∆t with no applied RF voltage (offset 1 mrad
for clarity), B = 6 T, Ug= -0.1 V (fit to equation 4.6 red). Lower curve: θF as a function of ∆t at
the same B and Ug with an off-resonant RF voltage of 0.785 VRMS at 28.5 MHz corresponding
to a peak-to-peak oscillation of x′0 of ∼ 4 nm (fit to equation 4.7 red). (b) Maximum (x′max)
and minimum (x′min) wave function positions plotted as a function of Ug for different RMS
RF voltages. Square (circular) data points represent the upper (lower) bound of wave function
displacement x′max (x′min). Solid lines are fits to x′max and x′min. Nuclear polarization is constant
in (a) and (b); observed effects are explained by electron dynamics alone.

ḡdiff = ḡe(x′max)−ḡe(x′min)
2 . x′max and x′min are the maximum and minimum positions

in the PQW sampled by the center of the oscillating electron envelope function.

Though the full equation for θF looks complex, its behavior is simple. An oscil-

lating Ug modifies the unperturbed decaying cosine by changing its precession

frequency to an average over a range of frequencies. In addition, the cosinu-

soidal oscillations are modulated by a Bessel function. As is evident from the

lower curve in figure 4.10a, the data is well fit by this model. Furthermore, by

fitting the data with equation 4.7 we can determine x′max and x′min as a function
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the right column. Applied RF power is increasing from top to bottom.
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of Ug for a range of RF powers as shown in figure 4.10b. Fits to the data are

calculated assuming the wave function displacement is governed by the rela-

tionship given in figure 4.9. The only free fitting parameter is the amplitude of

RF power across the gates, which, as expected, is found to scale linearly with

power applied to the device. The data show that modulation amplitude of x′0,

∆x′ = x′max− x′min, varies with Ug at a fixed RF power; ∆x′ increases for voltage

ranges where the electron moves more easily. This result combined with the

excellent agreement of our fitting function 4.7 with the time-resolved FR data

demonstrates our ability to displace the electron wave function over nanometer

length scales and on nanosecond time scales. As further evidence, see figure

4.11, in which we compare FR data taken as a function of ∆t and Ug for dif-

ferent RF powers on Ug with simulations using the model based on equation

4.7.

4.4 Nuclear polarization profiles

4.4.1 Experimental details

Spin-polarized photo-excited electrons generate nuclear spin polarization within

the PQW through DNP. The contact hyperfine coupling AH ∝ |Ψ(R)|2 is re-

sponsible for this transfer in polarization. We now describe experiments inves-

tigating the spatial dependence of the polarization profile. In order to optically

induce a nuclear polarization, we simply adjust the angle θ between the sample

and the magnetic field as discussed in section 3.5.1. DNP is driven by the lon-

gitudinal component of electron spin, which is suppressed in the measurements

described in section 4.3.

The average nuclear polarization 〈I〉 can be extracted from time-resolved FR
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measurements of νL as discussed in section 3.4.2. Through the measurements

discussed in section 4.3.3 we know the dependence ḡ on Ug. Once the PQW

undergoes DNP, an Overhauser frequency νn = AH
2π 〈I〉 shifts νL with respect to

the unpolarized case. We can therefore map out νn for all Ug. Recall from

section 3.4.2 that for GaAs calculations show νn = 32.6 GHz for the 100%

nuclear polarization of all three constituent isotopes; after DNP, νn is measured

up to 1 GHz in the PQW corresponding to ∼ 2.5% nuclear polarization.

In the measurement of nuclear polarization profiles we begin with an unpo-

larized nuclear lattice; optically pumping the PQW at constant Ug = Upol fixes

the location of spin-polarized electrons at x′pol. After 20 minutes of DNP (we

measure TDNP ' 17 minutes), time-resolved FR data is taken to determine νL

as a function of Ug. Scans of θF are taken as a function of Ug at each value

of ∆t and then the data are fit to extract νL. Scans take 7 s after which Ug is

reset to Upol for 120 s (well above the observed minimum time necessary to

maintain the original nuclear polarization profile). This process ensures that the

initial nuclear polarization profile is maintained and remains undisturbed by the

measurement process. Comparing Larmor frequencies of the polarized and un-

polarized states, we determine νn vs. Ug, as shown in figure 4.12. Given our

conversion between Ug and x′0 shown in figure 4.9, we can also plot the spatial

distribution of νn, also shown in figure 4.12.

4.4.2 Experimental results

The data show localization of the nuclear polarization around the electron en-

velope function’s polarizing position x′pol. As expected the maximum νn is ob-

tained when Ug applied during the measurement phase matches Upol used during

the polarization phase. The spatial distribution of νn can be created at selected
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Figure 4.12: Measurements of the nuclear polarization distribution within the PQW. In the
left-most column the electron envelope function is shown schematically, centered at different
Upol (x′pol). Corresponding nuclear polarization distributions are created at B = 3.98 T by po-
larizing nuclei for 20 minutes at voltage Upol or equivalently position x′pol (blue line). Nuclear
polarization is measured as an Overhauser shift νn and is plotted as a function of Ug and x′0
(solid points). Red curves are Gaussian fits to the data with a fixed FWHM of 23 nm. Centers
of the Gaussian fits are 2.7 nm, 5.8 nm, and 6.1 nm, 12.1 nm, and 16.6 nm from top to bottom.
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positions within our 100-nm quantum well simply by tuning the voltage Ug be-

fore the polarization process. The steady-state width of these distributions, set

by the range of the contact hyperfine interaction, is broadened by nuclear spin

diffusion at a rate of 10 nm2 s−1 [98].

4.4.3 Theoretical analysis

As discussed in section 3.4.2,

νn(R) =
4gµB

3h̄
γNη |Ψ(R)|2 〈I(R)〉 , (4.8)

where R is a position in the crystal. Since during the measurement the envelope

function is centered on x′0 and the confinement is along x̂′, Ψ(R) = Ψ(x′− x′0).

Furthermore, after DNP through optically polarized conduction electrons with

the envelope function fixed at x′ = x′pol,

〈I(R)〉=
〈

I(x′− x′pol)
〉

=
4
3

h̄I(I +1)
〈
S||

〉 |Ψ(x′− x′pol)|2, (4.9)

as discussed in section 3.4.1. Since the Overhauser frequency actually measured

constitutes a response from the whole PQW, for each combination of x′0 and x′pol,

i.e. for each combination of Ug and Upol , we integrate νn(R) over the structure:

νn(x′0,x
′
pol) =

∫

structure
C|Ψ(x′− x′0)|2|Ψ(x′− x′pol)|2dx′, (4.10)

where we have absorbed all the spatially constant terms into C. Given our par-

abolic potential and the form of Ψ(x′) given in equation 4.4 we have,

νn(x′0,x
′
pol) =

C
l
√

2π
e−

(x′0−x′pol)
2

2l2 , (4.11)

which has the same form and FWHM as Ψ(x′) (see section 4.3.3). There-

fore, from these theoretical considerations, we expect to measure a FWHM of
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2l
√

2ln2 = 23 nm. Fitting the measured nuclear polarization profiles shown in

figure 4.12 to a Gaussian with a 23-nm FWHM, we obtain a reasonable agree-

ment between the polarizing position x′pol and the center of the Gaussian fit as

discussed in the caption of figure 4.12.

There are a number of possible explanations for the small discrepancies

between x′pol and the center of the fits. Most prominent is that we are only able

to measure the distribution of νn over a 20-nm range because of the limitations

of our device (specifically leakage current). Such a range is too small to capture

the full Gaussian distribution. It is also likely that there is a systematic error in

the determination of x′0 as a function of Ug due to the many layers involved in

that conversion. The approximation of our PQW as an idealized well, with a

Gaussian ground state envelope function introduces minimal error as shown in

a more realistic theoretical treatment of similar PQWs [108].

A detailed theoretical analysis [109] has been pursued for this system re-

sulting in calculations which qualitatively match the νn(x′0,x
′
pol) profiles shown

in figure 4.12. The magnitudes of νn(x′0,x
′
pol) predicted in those calculations are

very similar to the measured values. The analysis essentially involves treating

the PQW more realistically and calculating the constant η for 69Ga, 71Ga, 75As,

and 27Al, which depends on the Bloch function overlap with each different iso-

topes. A numerical k ·p calculation is undertaken [108] and the abundances of

the different isotopes in different regions of the sample are taken into account.
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4.5 Resonant nuclear depolarization

4.5.1 Experimental details and results

Applying a resonant RF voltage to Ug induces nuclear spin transitions among

the polarized nuclei in the PQW. The continuous induction of these transitions

results in a drop in the time averaged nuclear spin polarization 〈I〉. As shown

in figure 4.13, a decrease in 〈I〉 leads to a change in νn and thus in θF at a

fixed delay, whose sign and amplitude depend on our choice of ∆t and the

magnitude of the change in 〈I〉. Just as in chapter 3, nuclear depolarization

resonances are apparent for the three most abundant isotopes in the sample,
75As (γN/(2π) = 7.317 MHz/T), 71Ga (γN/(2π) = 10.257 MHz/T), and 69Ga

(γN/(2π) = 13.032 MHz/T), at the expected NMR frequencies. We do not ob-

serve resonances for 27Al (γN/(2π) = 11.135 MHz/T), possibly due to the low

Al concentrations within the PQW (7% at the center). The asymmetry of the

resonance peaks is due to the long time scales on which DNP acts in this sample

compared to the scan times; the induction of resonant spin transitions quickly

depolarizes 〈I〉, however, full re-polarization through DNP takes much longer

(TDNP ' 17 minutes). Measurements also reveal resonances for each of these

isotopes at 1/2, 2/3 and 2 times the nuclear resonance frequencies. The change

in θF , approximately proportional to the change in νn is strongest for the 2νNMR

transition, followed in strength by the νNMR, 1
2νNMR and finally the 2

3νNMR tran-

sition. Resonances at 2νNMR indicate the presence of ∆m = ±2 transitions in

addition to ∆m = ±1 transitions (where m is the nuclear spin number along

the applied field). The fractional resonances at 1
2νNMR and 2

3νNMR on the other

hand, are likely the result of these same ∆m =±1, ±2 spin transitions induced

by harmonics of the RF modulation frequency, which may arise due to nonlin-

earities in the depolarization mechanism.
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Figure 4.13: (a) θF as a function of time delay ∆t. The red “x” indicates ∆t = 300 ps used
for scan (b) showing θF as a function of applied gate frequency νg ((a) and (b): B = 5.46 T, RF
voltage is 0.14 VRMS). Dotted, dashed, long-dashed, and solid vertical lines indicate literature
values for 1

2 νNMR, 2
3 νNMR, νNMR, and 2νNMR, respectively, for each color-coded isotope. (c)

Larmor frequency shift ∆νL for different laser powers during RF irradiation ((c) and (d): B =
3.98 T, RF voltage is 0.286 VRMS, at 29.113MHz for 20 seconds, depolarizing 75As). (d) ∆νL

as a function of transient offset voltage where the RF modulation is applied. Bias voltage Ug is
always reset to 0.0 V when measuring ∆νL.
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In addition to the possibility of spurious time-varying magnetic fields induc-

ing ∆m = ±1 transitions, it is known that ∆m = ±1,±2 transitions can occur

from interactions of the nuclear quadrupole moment with time-varying applied

electric fields [24]. Though RF voltages applied across the gates of our sam-

ple result in unintentional fields which could induce both NMR and nuclear

quadrupolar resonance (NQR), these effects should persist regardless of the

presence of laser-injected carriers in the undoped PQW. In contrast, we find

that the application of resonant RF voltage modulation in the absence of laser

excitation leads to a greatly reduced ∆νn (∼ 20% of ∆νn at 2.5 mW of aver-

age pump power). Additional data shown in figure 4.13c show that as laser

power increases and more carriers are injected into the PQW, ∆νn increases,

suggesting the central role of carriers trapped in the PQW in the depolarization

mechanism. Therefore spurious time-varying electric and magnetic fields are

ruled out as a dominant depolarizing mechanism, probably due to the low leak-

age and displacement currents between front and back gates. As a result we turn

to interactions occurring within the PQW to explain the observed depolarization

resonances. As an aside, note that ∆m = ±2 resonances at 2νNMR are unique

to the NQR mechanism and can only be induced by time-varying electric rather

than magnetic fields. In our experiments described in chapter 3 where an exter-

nal time-varying magnetic field induces nuclear spin transitions, resonances at

2νNMR are not observed.

To investigate the spatial dependence of the depolarization mechanism within

the PQW, resonant RF oscillations are applied with the electron wave function

centered at different positions along x′. Nuclei are initially polarized at Upol =

0.0 V, then Ug is adjusted to an offset voltage and the electron wave function

is oscillated for 20 seconds depolarizing the 75As nuclei. The RF modulation

is then turned off, Ug is restored to its initial value Upol, and ∆νn is measured.
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Figure 4.13d shows RF depolarization data where the depolarization amplitude

seems to correlate with the displacement of the electron wave function shown

in figure 4.9.

4.5.2 The contact hyperfine interaction

There are two main interactions between carriers in the PQW and lattice nuclear

spins which could lead to resonant nuclear depolarization. The first is the con-

tact hyperfine interaction, which has already been discussed in detail in section

2.5.1. The modulation of the electron envelope function position at the NMR

frequency causes an effective field Be = AH
γN
〈S〉, to oscillate at each nuclear

site. In analogy to the induction of nuclear transitions due to a conventional

magnetic field, this effective field could also excite transitions and therefore de-

polarize nuclear spins. Here we investigate, whether this mechanism could be

responsible for the resonances observed upon sweeping the frequency νg of the

voltage applied across the PQW sample.

In conventional NMR, a magnetic field oscillating at the resonance fre-

quency causes nuclear spin transitions through the nuclear Zeeman term in the

Hamiltonian,

HN = γNB · I. (4.12)

Here, the co-rotating component of the resonant oscillating field B1, which is

perpendicular to a constant applied magnetic field B, leads to spin transitions,

just as shown for electrons in section 3.3. Ignoring the counter-rotating field

whose effect averages to zero, the total applied field is,

B(t) = B1 cos(2πνNMRt)x̂+B1 sin(2πνNMRt)ŷ+Bẑ, (4.13)

where νNMR is the resonant frequency for the isotope of interest.
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The hyperfine interaction looks very similar to the Hamiltonian of equation

4.12:

Hh f = AHS · I. (4.14)

In order to induce nuclear spin transitions, S must take on an equivalent form

to the co-rotating field proportional to B1 in equation 4.13. In our experimental

geometry, however, we know that the component of electron spin parallel to the

applied field is decaying with a time-constant T1 and the perpendicular compo-

nent is oscillating about the field and decaying with a time-constant T ∗2 (e.g. see

equation 4.6). In addition, because of the modulation of the electron envelope

function’s position, 〈S〉 at each nuclear site is also oscillating at the modula-

tion frequency νg applied to the gate voltage Ug. With the static magnetic field

applied along ẑ we can roughly approximate,

〈S(t)〉 = S⊥e−t/T ∗2 cos(2πνgt) [cos(2πνLt)x̂+ sin(2πνLt)ŷ]

+S||e−t/T1 cos(2πνgt)ẑ

=
S⊥
2

e−t/T ∗2 [(cos(2π(νL +νg)t)+ cos(2π(νL−νg)t)) x̂

+(sin(2π(νL +νg)t)+ sin(2π(νL−νg)t)) ŷ]

+S||e−t/T1 cos(2πνgt)ẑ. (4.15)

In the induction of spin transitions, the final term along ẑ is irrelevant. Nuclear

spin transitions can only be excited around νg = νL±νNMR; since νL À νNMR,

〈S(t)〉 cannot induce the transitions. Therefore, the depolarization resonances

observed in sweeping νg across 2νNMR, νNMR, and fractional values of νNMR

cannot be explained in terms of the contact hyperfine interaction. We must look

to other possible mechanisms to explain the observed behavior.
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Figure 4.14: A schematic showing different orientations of the electric quadrupole moment of
a nucleus in an electric field gradient, represented by the blue arrows.

4.5.3 The nuclear electric quadrupole interaction

As mentioned in section 4.5.1 time-varying electric fields can induce nuclear

spin transitions through NQR. In general, the nuclear charge density is not

spherically symmetric and thus has a non-zero electric quadrupolar moment.

This moment causes the electrostatic energy of the nucleus to vary as a function

of the orientation of the nucleus in an electric field gradient. Due to the con-

nection between nuclear spin orientation and nuclear charge distribution, the

electric quadrupolar term in the Hamiltonian can lead to spin transitions. Note

from the schematic in figure 4.14 that nuclear rotations through π radians re-

sult in the same quadrupolar charge distributions; spin h̄m and spin −h̄m have

degenerate quadrupolar energies.

In order to discuss NQR in more detail, we will derive the origin of this term

in the nuclear spin Hamiltonian. Starting with the energy of the nuclear charge
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distribution ρ(r) in a potential U(r) we have [110],

E =
∫

ρ(r)U(r)dV . (4.16)

Expanding the potential in a Taylor’s series about the origin:

U(r) = U(0)+∑
α

xα
∂U
∂xα

∣∣∣∣
r=0

+
1
2! ∑

α,β
xαxβ

∂ 2U
∂xα∂xβ

∣∣∣∣
r=0

+ ..., (4.17)

where x1, x2, and x3 correspond to x, y, and z, respectively. We now have,

E = U(0)
∫

ρdV +∑
α

Uα

∫
xαρdV +

1
2! ∑

α,β
Uα ,β

∫
xαxβ ρdV + ..., (4.18)

where we have defined Uα = ∂U
∂xα

∣∣∣
r=0

and Uα,β = ∂ 2U
∂xα ∂xβ

∣∣∣
r=0

. The first term

in this expansion represents the electrostatic energy of the nucleus taken as a

point charge, which does not depend on nuclear orientation. By choosing the

origin to coincide with the center of the nucleus, the second term, involving the

electric dipole moment, vanishes. The next non-vanishing term is the electric

quadrupole term. We can rewrite this term as,

E(2) =
1
6 ∑

α,β

(
Uα ,β Qα,β +Uα,β δα,β

∫
r2ρdV

)
, (4.19)

where,

Qα,β =
∫ (

3xαxβ −δα,β r2)ρdV, (4.20)

and δα,β is the Kronecker delta. In the absence of electronic charge at the

nucleus, U satisfies Laplace’s equation ∇2U = ∑α Uα,α = 0 and the second

term in equation 4.19 vanishes. In the PQW, where the electron envelope func-

tion can be non-zero at the nuclear site, Poisson’s equation applies instead:

∇2U = ∑α Uα ,α =−4πe|Ψ(0)|2. Since we are only concerned with the energy

dependent on the orientation of the nuclear charge distribution (and thus the ori-

entation of its spin), we can ignore this term proportional to
∫

r2ρdV just as we
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ignored the first term in equation 4.18. We thus write the orientation-dependent

energy as,

E(2) =
1
6 ∑

α,β
Uα ,β Qα,β . (4.21)

In order to obtain a quantum mechanical expression for the quadrupolar moment

we consider the constituent particles of the nucleus. Rather than treating the

nuclear charge distribution as a continuous function ρ , we take it as a sum over

protons and write the quadrupolar moment as:

Qα,β = e ∑
protons

(
3xα ,kxβ ,k−δα,β r2

k
)
, (4.22)

where the index k corresponds to each constituent proton. Calling upon the

Wigner-Eckart theorem [110], which can be used to relate angular momentum

operators to coordinate operators through common commutation relations, we

find an alternate expression for the operator corresponding to the quadrupolar

moment:

Qα,β =
eQ

h̄2I(2I− I)

(
3
2

(
Iα Iβ + Iβ Iα

)−δα,β I2
)

, (4.23)

where Q is the quadrupole moment of the nucleus, and Iα and Iβ are opera-

tors corresponding to the angular momentum components of the nucleus. The

quadrupolar contribution to the Hamiltonian is then,

HQ =
eQ

6h̄2I(2I− I) ∑
α,β

Uα ,β

(
3
2

(
Iα Iβ + Iβ Iα

)−δα,β I2
)

. (4.24)

Choosing principle axes along which the symmetric tensor Uα,β = 0 for α 6= β

and after some algebraic manipulations, we find,

HQ =
eQ

4h̄2I(2I− I)

[
U0(3I2

z − I2)+U+1(I−Iz + IzI−)

+U−1(I+Iz + IzI+)+U+2(I−)2 +U−2(I+)2] , (4.25)
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where we define,

U0 = Uzz

U±1 = Uzx± iUxy (4.26)

U±2 =
1
2
(Uxx−Uyy)± iUxy.

4.5.4 Theoretical interpretation

The expression for the quadrupolar coupling in equation 4.25 is particularly il-

luminating in discussing the induction of nuclear spin transitions. The Hamilto-

nians for the other spin-flip processes in our system, the coupling of an external

field to the nuclear spin and the contact hyperfine coupling, involve terms pro-

portional to BI± and S±I∓, respectively; these interactions can induce ∆m =±1

transitions at energies of hνNMR. As is clear from equation 4.25, HQ can induce

∆m = ±1 and ∆m = ±2 transitions at energies of hνNMR and 2hνNMR, respec-

tively. Unlike NMR transitions which require the application of resonant time-

varying magnetic fields, NQR transitions require resonant time-varying electric

field gradients (EFGs): Uα,β .

In our PQW system, electrons and holes moving along x̂′ with the action of

Ug produce these time-varying EFGs at the nuclear sites. In GaAs, the nuclear

quadrupole moment is also sensitive to time-varying electric fields: the nuclei

lie at positions lacking inversion symmetry causing electric fields to generate

EFGs [31]. Calculations of the time-varying fields induced around the electron

and hole charge distributions within the well indicate the presence of electric

fields and EFGs on the order of 106 V/m, and 1014 V/m2, respectively. There-

fore carriers oscillating at νNMR and 2νNMR in the quantum well will certainly

excite nuclear spin transitions.

As mentioned in section 4.5.1 the weak fractional resonances observed at
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Figure 4.15: The effect of higher harmonics of νg on nuclei in the PQW. Here we plot the
electric field modulation frequency at each nuclear site νat nucleus as a function of the drive
frequency νg. All axes are plotted in units of the NMR resonance frequency νNMR. The first
three harmonics of νg are shown as blue lines of decreasing thickness representing their fading
amplitude. Their intersection with the red lines showing the nuclear resonance frequencies
represents the fulfillment of the resonance condition. At these values of νg, indicated by dotted
lines, nuclear spin transitions should be induced by NQR. Higher harmonics than the 3rd may
also be present, but are not considered here.
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Ug

e e ee e

Figure 4.16: A schematic representation of the creation of a nanometer-scale nuclear spin
polarization profile.

1
2νNMR and 2

3νNMR are likely induced by higher harmonics of the drive fre-

quency applied to Ug. Since the amplitude of electric fields and EFGs at the

nuclear sites is in general not a linear function of the position of electrons and

holes in the PQW, the time-dependence of electric fields and EFGs at the nu-

clear sites contains harmonics of the modulation frequency νg: 2νg, 3νg, etc.

These higher harmonics, though weaker in amplitude than the drive frequency

field induce resonant transitions at fractions of νNMR as shown in figure 4.15.

Having applied a simple model considering NQR transitions induced by

moving carriers in the PQW, we have accounted for all of the resonances present

in figure 4.13. It is therefore likely that this brand of local NQR is responsible

for the observed resonant nuclear depolarization.
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4.6 Conclusion

The measurement of a position dependent νn(x′0,x
′
pol) and its qualitative agree-

ment with theoretical predictions point to our ability to to use localized spin-

polarized electrons to orient nanometer-scale profiles of nuclear spin, as shown

schematically in figure 4.16. Extending such techniques from systems with

one-dimensional confinement (quantum wells) to systems with higher degrees

of confinement (quantum wires and quantum dots) may allow for the control-

lable polarization of drastically fewer nuclear spins.

The experimental data show our ability to control local interactions between

electrons and nuclear spin in a PQW with an externally applied gate voltage.

Quasi-static bias voltages allow the patterning of nanometer-size nuclear spin

distributions and RF voltages periodically displace carriers in the PQW induc-

ing NQR. These depolarization resonances can be controlled both electrically

and optically yielding a great degree of flexibility in techniques for coherent

nuclear control. The ability to electronically control nuclear spin may be ad-

vantageous in quantum information processing [111] and in spintronic devices

where nuclei can produce large and localized effective magnetic fields in other-

wise non-magnetic materials.
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The s-d exchange coupling in
GaMnAs quantum wells

5.1 Introduction

The introduction of magnetic dopants into semiconductors allows for the study

of interactions between itinerant and localized spins. Dilute magnetic semicon-

ductors (DMS) are semiconducting alloys in which a fraction of the cation sites

are occupied by magnetic ions. The spin of electrons localized in the partially

filled shells of the substitutional impurities couples to the spin of carriers in both

the conduction and valence bands as discussed in section 2.5.2. As a result,

electronic Zeeman splittings are enhanced leading to dramatic spin-dependent

properties including giant Faraday rotation, the magnetic-field-induced metal-

insulator transition, and the formation of magnetic polarons. Most importantly,

however, the discovery of ferromagnetism in zinc-blende III-V and II-VI Mn-

based compounds and the realization that this collective magnetic behavior is

mediated by delocalized or weakly localized holes, has given a technological

impetus for developing a clear picture of the carrier-shell exchange couplings.
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In these systems the exchange between the s-like conduction band or p-like

valence band and the d shell of the Mn2+ are known as the s-d and p-d ex-

change parameters, respectively (sp-d collectively). In addition to offering an

ideal system in which to study the interactions between localized and delocal-

ized spin, DMS offer the prospect of a room-temperature ferromagnetic semi-

conductor whose ferromagnetic state can be switched on or off by changes in

carrier concentration. Such a material would have far-reaching implications on

the semiconductor industry and would propel spintronics into the mainstream

of computing technology.

This chapter treats the development of GaMnAs quantum wells (QWs) and

the measurement of their s-d and p-d exchange couplings. Surprising results

regarding the size and sign of the interaction point to deficiencies in the current

theory which has successfully described experiments in II-VI DMS within a

higher regime of doping. A new model may be required to describe Mn-based

III-V compounds.

We first give a brief background in section 5.2 followed by an analysis in

section 5.3 of the effect of sp-d exchange on semiconductor band structure.

Section 5.4 follows and includes the growth of GaMnAs QWs and the analy-

sis of the Mn-doping profile using secondary ion mass spectroscopy (SIMS).

We then present time-resolved Kerr rotation (KR) measurements of the s-d ex-

change coupling in sections 5.5 and 5.6. Section 5.7 describes our attempts at

determining the p-d coupling. Finally section 5.8 covers some possible theoret-

ical interpretations for our experimental results.
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5.2 Background

In II-VI DMS, the s-d and p-d exchange energies are readily measurable and

have been characterized in detail through magneto-optical spectroscopy. These

materials benefit from high Mn solubility and the electrical neutrality of Mn im-

purities upon incorporating into the lattice. High concentrations of Mn-doping

are achievable, making the effects of s-d and p-d exchange large and easily

measurable.

The situation in the III-V alloy GaMnAs is more complex. The presence of

Coulomb potentials centered on the magnetic ions as well as on compensating

donors introduces an additional obstacle to the interpretation of measurements.

More importantly, as a consequence of the low solubility of Mn in GaAs, mole-

cular beam epitaxy (MBE) growth is typically performed at low substrate tem-

peratures (∼ 250◦C) and high arsenic overpressures. This is a regime of growth

in which defects, chiefly excess As and Mn interstitials, are incorporated into

the epilayers at concentrations that quench sensitive optical properties, such

as photoluminescence (PL) and absorption. Therefore characterization of the

exchange parameters through optical techniques is problematic in these mate-

rials. Despite this constraint, several estimates of the p-d exchange constant

have been published from modeling of transport [112], core-level photoemis-

sion [113], and cyclotron resonance measurements [114]. A previous study

on highly dilute Ga1−xMnxAs (x < 0.2%) crystals grown by the Czochralski

method reports polarized magnetoreflectance data from which the total exciton

spin splitting is determined to within 600 meV [115]. This measurement of the

collective sp-d energy, however, includes no independent measurements of the

s-d and p-d exchange constants (N0α and N0β , respectively); the reported esti-

mation of N0β depends on an assumed positive value of N0α based on work in
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II-VI DMS.

In our work, MBE growth conditions are optimized in order to produce

GaMnAs in which coherent spin dynamics can be observed optically, while at

the same time incorporating enough Mn to make the effects of s-d and p-d cou-

plings observable. Two types of QW structures are studied, GaMnAs/AlGaAs

and InGaMnAs/GaAs. Both the sign and magnitude of the s-d coupling are

determined for QWs of several different widths revealing the dependence of

this energy on the carrier confinement. Since a limited understanding of the

exchange coupling exists for GaMnAs relative to II-VI systems, the measure-

ments presented in this chapter have been met with broad interest in the DMS

community.

5.3 The effect of s-d and p-d exchange on band
structure

5.3.1 Incorporation of the Mn impurity in GaAs

As discussed in section 2.3.2 and shown in figure 2.4, the band structure of zinc-

blende semiconductors provides convenient selection rules for the excitation

and probing of carrier spin dynamics. In the presence of s-d and p-d exchange,

this structure changes reflecting the coupling between carriers and magnetic

impurities.

A large volume of work exists in II-VI DMS in which the spin-spin cou-

pling expressed in equation 2.44 plays a central role in the magnetic behavior.

Some examples of these materials include Zn(1−x)MnxSe, Cd(1−x)MnxS, and

Hg(1−x)MnxTe. Growth of II-VI DMS by MBE is well-established, including

the growth of complex heterostructures [85, 116]. These semiconductors have

110



Chapter 5 The s-d exchange coupling in GaMnAs quantum wells

direct-gaps and grow in the familiar zinc-blende crystal structure, giving them

qualitatively identical band structures and optical selection rules as the III-V

compounds discussed in this dissertation.

Here we tap into this broad understanding of the effect of s-d and p-d ex-

change couplings on the bands of zinc-blende semiconductors and develop a de-

tailed picture of these effects for Mn impurities in GaAs-based materials specif-

ically. We begin with the specific incorporation behavior of Mn in GaAs.

The most natural incorporation site for Mn impurities found in GaAs is the

Ga site. Such substitutional incorporation is important in retaining the crys-

tallinity of the the host semiconductor. Interstitial incorporation of Mn can also

occur under certain crystal growth conditions [117]. Interstitial Mn centers are

generally undesirable as they constitute crystalline defects and introduce defect

states into the band structure. In high enough concentrations they can severely

limit the material’s mobility, optical quality, and magnetic properties [118]. In

the growth of the GaMnAs QWs discussed here, considerable care is taken to

achieve the highest Mnsub/Mnint ratio possible, where Mnsub is the concentra-

tion of substitutional Mn and Mnint is the concentration of interstitial Mn.

Atomic Mn has an [Ar].3d5.4s2 ground state electron configuration. The

completion of bonds to the nearest neighbor As atoms requires three electrons

from each atom occupying a Ga site. Therefore, we could infer a 3d4 (Mn3+)

configuration for the substitutional Mn as found in GaP [119]. Electron para-

magnetic resonance (EPR) and microwave circular dichroism experiments, how-

ever, do not support this model suggesting instead that substitutional Mn is in-

corporated in a 3d4 configuration with a tightly bound electron and a weakly

bound hole [120, 121]. This neutral complex A0 can be viewed as being in the

3d5 (Mn2+) with a shallow hole in orbit. A0 is observed in EPR experiments

for bulk GaAs doped with Mn (x < 0.001), but is missing in more concentrated
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Mn epilayers (x > 0.002) [120, 122, 123]. At higher Mn concentrations, the

increased screening of the Coulomb potential due to the 3d5 core by the delo-

calized holes may make the holes ionize easily, resulting in the dissociation of

A0 centers. The ionization energy of A0 is determined spectroscopically to be

Evb +113.0 meV [120]. Ionized A0 centers, A−, are acceptors whose configu-

ration is simply 3d5 and their presence in GaAs was confirmed in EPR spectra

from both bulk and epilayers samples [124, 125]. Both A0 and A− are likely

present in the Ga1−xMnxAs QWs discussed here where x < .001.

5.3.2 Spin of the Mn impurities

In the A0 centers, the hole and the 3d5 core essentially retain their electronic

structure. The core has a g-factor gMn = 2 and S = 5/2; the loosely bound hole,

which is antiferromagnetically coupled to the core has S = 3/2. For the entire

complex gA0 = 2.77 and J = 1 [120]. A0 and A− have different angular momen-

tum states and thus give rise to different bulk magnetizations as measured with

a superconducting quantum interference device (SQUID), for instance. They

also may result in different sp-d exchange couplings. The spin state of the

3d5 shell (S = 5/2), however, remains unchanged. Since the s-d interaction

is a one-center potential exchange between s electrons in the conduction band

and d electrons of the Mn shell, this exchange should remain unaltered by the

presence of the loosely bound hole [122]. In contrast, p-d exchange is strongly

modified by this hole. The presence of a loosely bound hole in A0 opens a ferro-

magnetic exchange path whereas the A− acceptor offers only antiferromagnetic

channels. In the literature, such a dependence on the nature of the Mn acceptor

core is offered as an explanation for the apparent sign flip of the p-d term as

the Mn concentration is increased from the very dilute limit (paramagnetic) to
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the high doping regime (ferromagnetic). It may also explain the widely varying

values of N0β measured in our PL experiments (section 5.7.2).

We emphasize that our exchange splitting model takes gMn = 2 and thus

neglects any effect of the loosely bound hole on the core state g-factor since

the exchange interaction between the hole and the core is expected to be small

[126]. Measurements in III-V DMS support this assumption by consistently

showing gMn = 2.0. As a result of these considerations, we conclude that the

relative concentration of A− and A0 centers in our samples should have a neg-

ligible effect on both N0α and gMn, allowing us to ignore this detail in our ex-

traction of N0α from the data. Measurements of N0β , however, are complicated

by the effects of this relative concentration.

The five d shell electrons in the 3d5 Mn cores arrange according to Hund’s

Rules: (↑↑↑↑↑). The total orbital angular momentum of this state is L = 0 and

the total angular momentum is J = L + S = 5/2. For the samples studied in

this dissertation, the concentration of Mn impurities is low enough that we are

always in a regime in which Mn spins do not interact with each other, i.e. the

Mn spins are paramagnetic and their average spin is a thermal average of the

occupation of spin states for a single core:

〈Ξz〉=

Sz=+S
∑

Sz=−S
h̄Sze

−gMnµBBSz
kB(T+θP)

Sz=+S
∑

Sz=−S
e
−gMnµBBSz

kB(T+θP)

, (5.1)

where the magnetic field B points along ẑ, kB is the Boltzmann constant, T is

the temperature, θP is the paramagnetic Curie temperature, and the summation

yields,

〈Ξz〉=−h̄
5
2

B5/2

(
5gMnµBB

2kB(T −θP)

)
, (5.2)
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where,

BS(η) =
2S +1

2S
coth

(
2S +1

2S
η

)
− 1

2S
coth

(
1

2S
η

)
, (5.3)

is the thermodynamic Brillouin function for a spin S. The average spin 〈Ξz〉 ap-

pears in the s-d and p-d couplings, as discussed in section 2.5.2, and determines

the form of their dependence on magnetic field and temperature.

5.3.3 GaMnAs band structure

Through the s-d and p-d couplings, Mn impurities alter the conduction and

valence bands of GaMnAs with respect to the bands of pure GaAs. As derived

in section 2.5.2, the Hamiltonians for conduction and valence bands are:

Hcb
S =

geµB

h̄
BSz− 1

h̄2 xN0α 〈Ξz〉Sz (5.4)

Hvb
J =

ghµB

3h̄
BJz− 1

3h̄2 xN0β 〈Ξz〉Jz. (5.5)

The effect on the bands is shown schematically in figures 5.1. Optical experi-

ments sensitive to the band splittings discussed in later sections, including KR

and PL, reveal behavior consistent with this schematic representation.

5.4 Growth of optical quality GaMnAs quantum
wells

5.4.1 Motivation and background

In this section we describe the development of the capability to grow GaMnAs

quantum structures by MBE in which coherent spin dynamics can be observed

optically. An upcoming dissertation includes, in exhaustive detail, further dis-

cussion of this subject [127]. Initially, our growth effort focused on achiev-

ing stoichiometric GaMnAs grown at a typical low temperature of 250◦C, at
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Figure 5.1: A diagram depicting the effect of Mn impurity spins on the GaAs band structure.
Only the HH band is considered here since the experiments discussed in this chapter are in
QWs, in which the HH band is split from both the LH band and the SO band. (a) represents the
dependence of the bands on magnetic field B in undoped GaAs QWs, while (b) represents this
dependence in Mn doped GaAs QWs.
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which the use of As overpressures leads to large concentrations of excess As.

Stoichiometric growth can be achieved at low substrate temperatures by dig-

ital growth techniques, such as atomic layer epitaxy (ALE) in which the As

flux is shutter controlled [128], or analog growth in which the As flux is con-

trolled by source temperature and/or valve position. The former technique has

enabled digital ferromagnetic heterostructures made up of sub-monolayers of

MnAs with independent control of charge carriers in the non-magnetic GaAs

spacer layers, while hybrid growths using both high temperature MBE (optical

layer) and low temperature ALE (magnetic layer) have been developed to enable

optical quality in GaAs/AlGaAs QWs with a ferromagnetic barrier [129]. Al-

though polarization-resolved PL from these QWs demonstrates a spin coupling

between the magnetic layer and carriers in the QWs, time-resolved KR mea-

surements are unable to resolve electron spin dynamics. In previous work using

the As-valve for flux control, it was found that stoichiometric GaAs grown at

250◦C could be achieved as indicated by the low charge compensation of doped

carriers (1×1016 cm−3); however, the incorporation of Mn at levels required

for ferromagnetism could only be achieved by using an As overpressure. The

resulting defects quenched both PL and time-resolved KR signals [130]. In the

following sections we investigate MBE grown GaMnAs/AlGaAs QWs with low

Mn-doping levels (x < 0.1%). At these Mn concentrations the substrate tem-

perature can be increased to 400◦C while allowing substitutional incorporation

of Mn. In contrast to low temperature stoichiometric growth, at the increased

growth temperatures used here, an As overpressure does not result in excess As

incorporation preserving the optical properties of the crystal and enabling the

observation of PL and time-resolved electron spin dynamics in GaMnAs QWs.
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5.4.2 MBE Growth Details

Samples are grown on GaAs substrates in a Varian GEN-II MBE system man-

ufactured by Veeco Instruments, Inc. In corroboration with the recent findings

of Wagenhuber et al. [131], we find that the inclusion of Mn growth capabil-

ity in the MBE system does not preclude the growth of high mobility samples.

We measure low-temperature mobilities greater than 1.7× 106 cm2V−1s−1 in

typical modulation Si-doped AlGaAs/GaAs two-dimensional electron gas struc-

tures grown in our chamber at 630◦C . For Mn-doped QWs, however, we use

a lower growth temperature to enable the substitutional incorporation of Mn.

Samples are grown at 400◦C as monitored and controlled during growth by ab-

sorption band edge spectroscopy (ABES) using white-light transmission spec-

troscopy through the substrate, providing a typical substrate temperature stabil-

ity of±2◦C. The growth rate of GaAs is∼ 0.7 ML s−1 and of Al0.4Ga0.6As is∼
1 ML s−1 as calibrated by reflection high energy electron diffraction (RHEED)

intensity oscillations of the specular spot. The As2:Ga beam flux ratio for all

samples is 19:1 as measured by the beam equivalent pressure of each species

using a bare ion gauge in the substrate position. Mn cell temperatures for dop-

ing were extrapolated from growth rate calibrations of MnAs measured at much

higher growth rates using RHEED oscillations; the actual, measured, value of

Mn concentrations is discussed in detail in section 5.4.3.

The QWs, shown schematically in figure 5.2a, are grown on (001) semi-

insulating GaAs wafers using the following procedure. The substrate is heated

to 635◦C under an As overpressure for oxide desorption and then cooled to

585◦C . With the substrate rotating at 10 RPM throughout the growth, a 300-

nm GaAs buffer layer is first grown using 5-s growth interrupts every 15 nm

for smoothing, which results in a streaky 2× 4 surface reconstruction pattern
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as observed by RHEED. A 500-nm layer of Al0.4Ga0.6As is grown followed by

a 20-period digital superlattice of 1-nm AlAs and 1.5-nm GaAs. The sample

is then cooled to the growth temperature (usually 400◦C, but also 350◦C and

325◦C) during which the RHEED pattern changes to a 4× 4 reconstruction.

The first QW barrier consists of a 50-nm Al0.4Ga0.6As layer; during its growth

the 4× 4 pattern becomes faint and changes to 1× 1. Before the QW layer, a

10-s growth interrupt is performed to smooth the interface; during this wait the

RHEED partially recovers a 4× 4 reconstruction pattern. The GaMnAs QW

layer deposition causes the 4× 4 to again become faint leading to 1× 1, but

during the next 10-s wait on the top side of the QW, a 4×4 partially recovers.

Increased Mn-doping leads to surface roughening as evidenced by the develop-

ment of a spotty RHEED pattern during and after the QW growth. In contrast,

lower-doped samples, which emit PL and show time-resolved KR signal, dis-

play a streaky two-dimensional RHEED pattern throughout their growth. The

QW structure is completed on top by a barrier of 100-nm Al0.4Ga0.6As and a

7.5-nm GaAs cap after which a streaky 4×4 reconstruction pattern is observed.

5.4.3 Mn doping profiles

The Mn concentration profile for each sample is measured using SIMS [132,

133, 134] and is plotted in figure 5.2b for a set of four 7.5-nm QWs grown on

the same day at 400◦C with different Mn cell temperatures. The primary beam

in the SIMS measurement consists of Cs+ ions with an impact energy of 2 keV

providing a depth resolution of 3.25 nm e−1, as calibrated using the atomically

sharp AlGaAs/GaAs interface as a reference. The secondary ion used to mea-

sure the Mn concentration is CsMn+, which is resilient to changes in ionization

yield at the AlGaAs/GaAs interface. The calibration of the Mn concentration
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Figure 5.2: (a) Schematic of the sample structure and conduction band energy profile along the
growth axis x̂′. (b) The Mn concentration profile measured by SIMS is plotted for four 7.5-nm
QWs with varying Mn effusion cell temperatures as marked in the figure, and (c) for QWs with
the same Mn cell temperatures but varying substrate temperatures (marked in the figure). The
uncalibrated Al SIMS signals (plotted as black lines) serve as markers for the QW region.
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signal in our SIMS measurement was performed using Mn-ion implanted GaAs

as a reference, while the change in the ionization yield of CsMn+ between Al-

GaAs and GaAs was checked using Mn-ion implanted AlGaAs reference sam-

ples. The x′-axis calibration for the SIMS scans was performed using the Al

signal as a reference for the QW region as well as the lower edge of the barrier,

both layers grown at low temperature. The depth of the crater could not be used

to calibrate the x′-axis since it was found that the low temperature grown layers

sputter faster than the high temperature grown buffer layers.

The Mn concentration peaks near the center of the QW region, as expected;

however, the surface side of the QW shows a large residual concentration of

Mn which incorporates into the structure even after the Mn shutter has closed.

Such behavior is not unexpected, even if the Mn-doping concentration is below

the equilibrium solubility limit, since the growing surface is not at equilibrium.

This behavior has previously been reported for similar structures in which Mn

δ -doped GaAs grown at 400◦C showed large surface segregation [135]. We

note that our results do not agree quantitatively with those of Nazmul et al., and

we attribute this discrepancy to the different methods used for substrate temper-

ature measurement in these two studies, noting that Mn incorporation is highly

sensitive to this growth parameter. In our MBE system, the substrate tempera-

ture is measured directly by ABES, while an indirect temperature reading from a

radiatively coupled thermocouple is used by Nazmul et al. Such measurements

can be more than 50◦C from the actual substrate temperature.

Mn surface segregation during growth may lead to Mn clustering in our

samples and allow second phase magnetic precipitates, such as MnAs, to form.

We note however that though these impurities are likely present in our sam-

ples, the Schottky barrier around such precipitates prevents their detection in

the electrical or optical signal of free carriers in the QWs. Hole conductivity
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and carrier densities measured in these samples indicate, in comparison with

the SIMS data, that most of the Mn impurities present in the sample are substi-

tutionally incorporated [45]. Thus Mn surface segregation and related growth

defects have a negligible effect on our optical studies of the exchange splittings.

Below the QW, the Mn concentration decreases toward the substrate reach-

ing a minimum point ∼ 100 nm below the QW. The Mn profile is broader than

the Al depth profile indicating either a SIMS measurement artifact, such as poor

depth resolution or preferential Mn sputtering, i.e. knock-on effects [136, 137],

or that Mn diffuses into the barrier. The lack of any dependence on substrate

temperature or doping level for the Mn profile below the QW, as shown in fig-

ure 5.2, eliminates the latter possibility. The Mn knock-on effect, however, has

been reported in similar structure grown by Nazmul et al. To test for this effect,

we run SIMS scans on the same sample (C) at two different beam energies, 2

keV and 8 keV, shown in figure 5.3. Indeed, the Mn profile on the substrate

side of the QW changes with beam energy: we observe a decay of 17 nm e−1

for 8 keV and 10nm e−1 at 2 keV. The Mn tail on the surface-side of the QW,

where Mn incorporates as it floats along the surface, does not show any signifi-

cant dependence on the beam energy. As a further test, we use an atomic force

microscope (AFM) to measure the roughness of the SIMS craters created by the

2 keV and 8 keV beams to be 0.32 nm RMS and 0.30 nm RMS, respectively,

while the roughness of the starting surface is 0.14 nm RMS. Since the crater

roughness does not depend on beam energy, we conclude that the sample is uni-

formly sputtered at these two beam energies. Therefore, the observed difference

in decay of the Mn profile is a result of the knock-on effect, which is an artifact

of the SIMS measurement. The Mn profiles on the substrate side of the QW are

therefore sharper than the SIMS data show.

After the lower Mn tail, ∼ 100 nm below the QW, the Mn profile becomes
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constant for all samples. Though the value of this background Mn concentration

is near the detection limit of SIMS, it is seen to scale with Mn cell temperature

as seen in figure 5.2b. This behavior suggests that Mn flux escapes from the hot

Mn cell and incorporates into the substrate even with the shutter closed. The Mn

background for the control sample, grown with a cold Mn cell, is well below

the SIMS detection limit.

5.4.4 Dependence of incorporation on substrate temperature

In figure 5.2c, the Mn SIMS profiles are plotted for three 7.5-nm wide QWs

grown with the same Mn cell temperature (i.e. the same Mn beam flux), but

different substrate temperatures. These SIMS scans were performed using an

O2+ 2 keV beam. Note that the Mn profiles measured with the O2+ beam

show a large sensitivity to AlGaAs/GaAs interfaces, probably due to oxygen

impurities incorporated during growth in the AlGaAs layers, thus the vertical

axis of these scans is uncalibrated (arbitrary units). The data, however, are

qualitatively meaningful in the interface free regions, e.g. in the AlGaAs barrier

above the QW.

As the substrate temperature is decreased, the Mn concentration profiles be-

come dramatically sharper, the surface tail is eliminated, and the peaks become

taller, indicating that, as expected, the Mn incorporation is energetically more

favorable at lower temperature. Sharp Mn profiles, particularly on the surface

side of the QW, are desirable for the engineering of more complex magnetic

quantum structures in which precise spatial control of the magnetic doping is

required. Optical signals quench, however, at the relatively high growth tem-

peratures of 325◦C and 350◦C [138], due to increased defect densities even in

the non-magnetic control samples. Preliminary work shows that optical qual-
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ity non-magnetic and magnetically doped InGaAs/GaAs QWs can be grown at

350◦C, suggesting that the loss in signal for the GaAs/AlGaAs QWs is related to

Al, well-known for its impurity gettering of oxygen defects during MBE growth

[139, 140]. Also noteworthy is a secondary peak in the Mn concentration 50 nm

below the QW which occurs only in the 325◦C and 350◦C grown samples. This

Mn peak corresponds to the interface between QW barrier material grown at

high temperature and at low temperature, a point at which a long growth pause

takes place. The peak indicates that the closed-shutter Mn flux, which scales

with Mn cell temperature as discussed previously, may accumulate on the sur-

face during the substrate cooling period before low temperature growth begins,

and may subsequently incorporate once growth resumes, effectively delta dop-

ing the sample at this point. In the 400◦C grown sample, grown on the same day

and with the same Mn cell temperature, this effective delta doping does not oc-

cur, exemplifying the strong temperature dependence of Mn solubility in GaAs.

Another possible explanation for this peak is that background impurities, such

as oxygen, may incorporate during the long growth pause leading to a change

in the SIMS ionization yield. This explanation is supported by the fact that the

Al signal also shows a change in intensity in this same region even though the

Al concentration should be constant.

5.4.5 The effective Mn concentration

Since we probe carrier spin splittings at the band edges of the QWs, the presence

of Mn in the AlGaAs barriers does not directly interfere with our measurements.

The leakage of Mn into the barriers, however, makes the determination of the

exchange interaction in the QWs non-trivial. Recall from equation 2.47 that

the s-d exchange goes as the square of the electron envelope function. If the
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concentration x is not homogeneous, but rather has a position dependence as we

saw in section 5.4.3, then we cannot pull it out of the integration as we did in

equation 2.48. The same argument applies to the p-d exchange. Therefore, we

rewrite the Hamiltonians allowing for a Mn concentration profile along x̂′:

Hcb
S =

geµB

h̄
BSz− 1

h̄2 x̄eN0α 〈Ξz〉Sz (5.6)

Hvb
J =

ghµB

3h̄
BJz− 1

3h̄2 x̄hN0β 〈Ξz〉Jz, (5.7)

where,

x̄e =
∫

x(x′)
∣∣Ψe(x′)

∣∣2 dx′ (5.8)

x̄h =
∫

x(x′)
∣∣Ψh(x′)

∣∣2 dx′, (5.9)

and x(x′) is the Mn fraction profile corresponding to the Mn concentration pro-

file Mn(x′) measured using the SIMS technique and shown in figure 5.2. Ψe(x′)

and Ψh(x′) are the ground state envelope functions in the QW for the conduc-

tion and valence band, respectively. We calculate these functions using a one-

dimensional Poisson-Schroedinger solver [141] and calculate x̄e and x̄h numer-

ically. These values are used in section 5.6 to extract N0α and in section 5.7 in

attempts to extract N0β from time-resolved KR and polarized PL measurements

[44]. In practice, since calculations for our QWs show that x̄h ' x̄e and because

the extraction of exchange parameters proves more fruitful for the conduction

band, we simply use x̄e throughout. We then drop the subscript and set x̄ = x̄e

(note that M̄n is the average concentration corresponding to x̄).

As discussed previously, the decay of the Mn profiles on the substrate side

of the QW is due to the knock-on effect, which is an artifact of the SIMS mea-

surement. Therefore, the calculation of x̄ as discussed above contains this error.

We estimate the uncertainty of x̄ by calculating the effective concentration as-

suming that the Mn profile on the substrate side of the QW is either exactly as

125



Chapter 5 The s-d exchange coupling in GaMnAs quantum wells

Table 5.1: Temperature of the substrate during growth (Tsub), width of the QW (w), ef-
fective Mn concentration (M̄n), and effective Mn fraction x̄ for four sets of Mn-doped
GaAs/Al0.4Ga0.6As QWs with different w. Control samples, with no Mn-doping, are not shown
here, though they are grown for each set of QW width w under identical conditions.

Sample Tsub w M̄n x̄

(◦C) (nm) (cm−3) (%)

A 400 7.5 1.44×1018 0.0065
B 400 7.5 1.19×1019 0.0537
C 400 7.5 2.80×1019 0.1266
D 400 3 5.50×1017 0.0025
E 400 3 2.60×1018 0.0117
F 400 3 6.06×1018 0.0274
G 400 10 2.97×1018 0.0134
H 400 10 6.87×1018 0.0310
I 400 10 1.78×1019 0.0804
J 400 10 2.82×1019 0.1274
K 400 5 9.65×1017 0.0044
L 400 5 2.43×1018 0.0110
M 400 5 7.03×1018 0.0318
N 400 5 1.27×1019 0.0574

given by the SIMS measurement or is atomically sharp. Thus two values of x̄

are calculated for each sample from which we calculate an error in x̄. These er-

rors are generally < 3% of x̄, except for the QW set with w = 3 nm in which the

error reaches 15%. The x̄ errors lead to variations in our calculation of the s-d

exchange parameter, which are included in the error bars of these parameters

(see section 5.6).

5.4.6 Substitutional vs. interstitial Mn incorporation

An estimate of the fraction of Mn which is substitutionally incorporated can

be made by assuming that each substitutional Mn donates one free hole and

each interstitial Mn compensates two holes [142]. This calculation has recently
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been used in ferromagnetic Gax−1MnxAs (x ∼ 1%) to estimate the concentra-

tions Mnsub and Mnint with respect to the crystal structure [143]. Measurements

of carrier concentration carried out at T = 300 K on samples prepared in the

Van der Pauw geometry allow us to estimate that the Mn incorporation in all

of our samples is more than 70% substitutional. Real values of of this fraction

are expected to be larger since our simplistic treatment ignores surface deple-

tion and the incomplete thermal activation of impurity bound holes at T = 300

K. For increased Mn-doping, our estimate of the fraction of substitutional Mn

decreases, indicating that incorporation of growth defects, interstitial Mn or Mn

containing second phases such as MnAs, is becoming significant. Precipitates

remove Mn from the lattice leading to a reduction in hole concentration rela-

tive to the purely substitutional case. Other forms of hole compensation such

as interstitial-substitutional pairs [117] and dimers of two nearest neighbor sub-

stitutional Mn [144] are unlikely to be present in our samples due to the low

doping concentrations.

5.5 Conduction electron spin dynamics

5.5.1 Time-resolved Kerr rotation measurements

Electron spin dynamics are measured by time-resolved KR with the optical axis

x̂ perpendicular to the applied magnetic field B = Bẑ (Voigt geometry) and paral-

lel to the growth direction x̂′; once again we adopt the coordinate system defined

in figure 3.2b with θ = 0. The measurement, which monitors small rotations in

the linear polarization of laser light reflected off of the sample, is sensitive to

the spin polarization of electrons in the conduction band of the QW [145]. A

mode-locked Ti:Sapphire laser with a 76-MHz repetition rate and 250-fs pulse
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width tuned to a laser energy EL near the QW absorption energy is split into

a pump (probe) beam with an average power of 2 mW (0.1 mW). The helic-

ity of the pump beam polarization is modulated at 40 kHz by a photo-elastic

modulator, while the intensity of the linearly polarized probe beam is modu-

lated by an optical chopper at 1 kHz for lock-in detection. Both beams are fo-

cused to an overlapping 50-µm diameter spot on the sample which is mounted

within a magneto-optical cryostat. The time delay ∆t between pump and probe

pulses is controlled using a mechanical delay line. The pump injects electron

spins polarized perpendicular to B into the conduction band of the QW. The

change in the probe polarization angle, θK (∆t) is proportional to the average

electron spin polarization in the QW and is well fit to a single decaying co-

sine, θK (∆t) = θ⊥e−∆t/T ∗2 cos(2πνL∆t +φ), where θ⊥ is proportional to the

total spin injected, T ∗2 is the inhomogeneous transverse spin lifetime, νL is the

electron spin precession (Larmor) frequency, and φ is a phase offset. No evi-

dence of Mn2+ spin precession, which occurs in II-VI magnetically doped QWs

[145], has been observed in the samples studied here. The order of magnitude

smaller x̄ in our III-V QWs compared to the II-VI QWs puts any Mn2+ spin

precession signal below the experimental detection limit.

Figure 5.4a shows typical time-resolved KR data measured at B = 8 T for

a Mn-doped QW (w = 7.5 nm and x̄ ∼ 0.05%) together with a fit to θK(∆t), as

described above, demonstrating electron spin coherence in the GaMnAs system.

KR data showing electron spin precession was observed to quench in all samples

for x̄ > 0.13%.
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Figure 5.4: Time-resolved electron spin dynamics in w = 7.5 nm GaMnAs QWs. (a) An
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sample. Red lines in (b) are fits to equation 5.12.

5.5.2 The transverse electron spin lifetime

The transverse electron spin lifetime (T ∗2 ) is plotted in figure 5.5 as a function

of the percentage of Mn in four QW sample sets. In all samples measured,

we observe an initial increase in T ∗2 in the samples with the lowest Mn-doping

as compared to the undoped control samples. This increase is consistent with

the D’Yakonov-Perel (DP) spin relaxation mechanism since an increasing im-

purity concentration makes the process of motional narrowing more efficient

by providing additional momentum scatters [146]. After reaching a maximum

at very low Mn-doping (x̄ ∼ 0.01%), T ∗2 then drops off as a function of x̄ as

shown in figure 5.5. This behavior suggests that for x̄ > 0.01%, the DP mech-

anism is no longer dominant. In this regime either the Elliot-Yafet (EY) or the

Bir-Aronov-Pikus (BAP) relaxation mechanisms may limit conduction electron

spin lifetimes, since both should increase in strength with increasing x̄ [25]. EY

relaxation, due to the spin-orbit interaction, grows stronger with larger impurity
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concentrations while, the BAP process, based on the electron-hole exchange

interaction, increases with increasing hole doping.

In this discussion we have so far ignored the effects of the s-d exchange in-

teraction on the electron spin relaxation process. In II-VI DMS, the presence of

magnetic impurities leads to large relaxation rates limiting the conduction elec-

tron spin lifetime [145]. Magnetic impurity doping in these materials results

in relaxation through spin-flip scattering arising from the s-d exchange inter-

action. While the samples discussed in this report have s-d exchange energies

which are several orders of magnitude smaller than in typical II-VI DMS, the

effect of magnetic interactions on T ∗2 cannot be totally ruled out. Several exper-

iments can be carried out in order to examine the role of exchange interactions

in the decoherence of electron spin including a finer dependence of T ∗2 on x̄

and on the sample temperature. A detailed study of changes in T ∗2 as a func-
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tion of QW width also may discern between the DP and the exchange scattering

mechanism [147]. Such detailed studies will be the subject of future work. Pre-

liminary results suggest that s-d exchange does not significantly contribute to

spin decoherence in the conduction band [138]. Finally, we note that a qualita-

tively similar dependence of T ∗2 on x̄ as shown in figure 5.5 has recently been

observed in InGaMnAs/GaAs QWs [138].

5.5.3 The Larmor precession frequency

νL is proportional to the total conduction band spin splitting between spin-up

and spin-down electrons (∆E = E ↑ −E ↓) and can be expressed in terms of the

Zeeman splitting (∆Eg), and the s−d exchange splitting (∆Es−d):

hνL = ∆E = ∆Eg +∆Es−d = geµBB− 1
h̄

x̄N0α〈Ξz〉. (5.10)

Here h is Planck’s constant, ge is the in-plane electron g-factor, µB is the Bohr

magneton, and 〈Ξz〉 is the component of Mn2+ spin along B where,

〈Ξz〉=−h̄
5
2

B5/2

(
5gMnµBB

2kB(T −θP)

)
, (5.11)

and where where B5/2 is the spin-5/2 Brillouin function, gMn is the g-factor for

Mn2+, kB is Boltzmann’s constant, and θP is the paramagnetic Curie temper-

ature. Note that since the g-factor for Mn2+ (gMn = 2) is positive, for B > 0,

then 〈Ξz〉< 0. We emphasize that a measurement of νL alone, because of phase

ambiguity, does not determine the sign of ∆E.

In figure 5.4b, νL is plotted as a function of B for a set of four samples

with w = 7.5 nm and varying x̄. The non-magnetic (x̄ = 0) sample shows a

linear field dependence of νL, from which we extract values of ge as described

in equation 5.10. As the Mn doping concentration is increased, νL increases

and its B dependence becomes non-linear. Further, this field dependence shows
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the same Brillouin function behavior that is expected for the magnetization of

paramagnetic GaMnAs, equation 5.11. The dependence of νL on B and T for

the sample with w = 7.5 nm and x̄ ∼ 0.007% is plotted in figure 5.6a and b

together with values for the control sample, x̄ = 0 and w = 7.5 nm. For the

magnetic sample, as T is increased, νL decreases asymptotically toward the

control sample value geµBB/h without crossing zero (figure 5.6a). Thus, it

follows from equation 5.10 and from the sign of 〈Ξz〉 that for w = 7.5 nm, N0α

has the same sign as ge. For w = 7.5 nm, ge < 0 [63], and thus N0α < 0. This

conclusion is also supported by the QW width dependence discussed below.

Using ge extracted from the x̄ = 0 sample (green line) and equation 5.10 we

fit νL data as a function of B and T to,

νL =
geµBB

h
+

5A
2h

B5/2

(
5µBB

kB(T −θP)

)
, (5.12)

which has only two fit parameters, A and θP. Comparing equations 5.12 to 5.10,

it is clear that A = x̄N0α . The data in figure 5.4b and figure 5.6 are fit to equation

5.12, with fits shown as red lines. A large negative θP (-24 K) is extracted from

the fits for the sample with the lowest Mn doping (figure 5.6), which may be

explained by an increased spin temperature of Mn2+ due to photoexcitation.

This effect has been reported in II-VI DMS for low magnetic doping levels

[148]. Also supporting this hypothesis, we find smaller values of |θP| (< 7 K)

in samples with larger x̄.

N0α is examined in detail for QWs of varying w. For this analysis, we

examine four sets of samples with various x̄ (including x̄ = 0) for w = 3,5,7.5

and 10 nm. Note that each sample set of constant w was grown on the same day,

which we have observed to reduce QW thickness variations between samples

within each set from ∼ 3% to < 1%. Variations in QW thickness can affect

the electron g-factor and therefore result in errors in the determination of x̄N0α .
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Figure 5.6: Temperature dependence of νL for 7.5-nm quantum wells. (a) The effect of in-
creasing T on the B dependence of νL for the sample with x̄∼ 0.007% (solid points) and for the
x̄ = 0 sample (open points). (b) T dependence of νL at constant B for the x̄ ∼ 0.007% sample.
Red lines in (a) and (b) are fits to equation 5.12.
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Figure 5.7: ge as a function of QW width w. Black points are from control (x̄ = 0) samples
of this study, red circles and squares are from Snelling et al. and Poggio et al., respectively
[47, 63]. Lines guide the eye.

By growing samples on the same day, the error in the determination of x̄N0α is

reduced from 10% to less than 3% as compared with samples grown on different

days. In figure 5.7, ge in the non-magnetic (x̄ = 0) QWs is plotted as a function

of w together with data from two other publications [47, 63]. Our data track the

thickness dependence of the QW g-factor as previously reported with a slight

positive shift in ge. The larger Al concentration (40%) in the QW barriers used

in our samples versus the concentration (33%) used in the other two references

[47, 63] accounts for this discrepancy [106]. Knowing the absolute sign of ge

for QWs of any width, we determine the sign of N0α for each w in the manner

described previously. With a calibrated sign, ∆E = hνL is plotted in figure 5.8

as a function of B for all four QW sample sets with varying w. As shown in

figure 5.8, for any given w, ∆E decreases as x̄ increases.
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Following from equation 5.10 and from the sign of 〈Ξz〉, this demonstrates

that N0α is negative, i.e. antiferromagnetic, which has been reproduced unam-

biguously in over 20 additional samples. A negative N0α has also been mea-

sured in recent time-resolved FR measurements in InGaMnAs/GaAs QWs and

in GaMnAs/AlGaAs QW with different AlGaAs barrier heights (e.g. 10% or

20% Al instead of 40%) [138].

The effect of increasing temperature on the B dependence of ∆E for the

w = 5 nm and x̄ ∼ 0.032% sample is shown in figure 5.9, which dramatically

illustrates the negative s-d constant. For d = 5 nm, ge is weakly positive, thus

for B > 0 and at high temperature ∆E > 0. As the temperature decreases, ∆Es−d

becomes more negative as the paramagnetic susceptibility increases. At T = 10

K and B = 7 T, ∆E = 0 since the s-d exchange splitting is equal and opposite

to the Zeeman splitting. For lower temperature, ∆E < 0 since |∆Es−d|> |∆Eg|.
We note that the data are well fit to equation 5.12 despite their highly non-linear

nature. We contrast our observation of antiferromagnetic s-d exchange in III-

V GaMnAs, with the ferromagnetic s-d exchange ubiquitous in II-VI DMS. In

those systems symmetry forbids hybridization of s and d orbitals, such that only

direct (ferromagnetic) s-d exchange is possible [149]. The antiferromagnetic s-

d exchange in GaMnAs may be due to the narrower band gap of this material

compared with II-VI, such that the conduction band has partial p character thus

allowing hybridization with the d orbitals localized on the Mn2+ impurities.
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5.6 Determination of the s-d exchange coupling

5.6.1 Dependence of s-d on confinement

In figure 5.10, the fit parameter A = x̄N0α is plotted as a function of x̄ together

with linear fits for each sample set of constant w. The finite values of x̄N0α at

x̄ = 0, extrapolated from the linear fits, are attributed to either the experimen-

tal error in the determination of ge in the non-magnetic QWs or error in the

measurement of x̄, both of which have a negligible effect on the slope. These

linear fits demonstrate that N0α is constant over the measured doping range for

QWs with the same width, though it varies with w as plotted in figure 5.11a.

N0α is more negative the narrower the QW, while it appears to saturate for wide

QWs. In II-VI DMS QWs, a negative change in N0α as large as−170 meV was
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Figure 5.10: x̄N0α as a function of x̄ from fits shown in figure 5.8; error bars are the size of
the points. Linear fits are shown for each sample set of constant w.

previously reported for increasing confinement and was attributed to a kinetic

exchange coupling due to the admixture of valence and conduction band wave

functions [150].

We plot N0α as a function of the electron kinetic energy (Ee) in figure 5.11b,

and the data are linear. Here, Ee is defined as the energy between the bottom of

the conduction band in the GaAs QW and the ground state energy (see figure

5.12), which is calculated using a one-dimensional Poisson-Schroedinger solver

and the material and structural parameters of the QWs [141]. Extrapolating to

Ee = 0 we obtain a bulk value of N0α =−22±8 meV for GaMnAs. A change

in N0α as large as −185 meV, relative to the extrapolated value for Ee = 0, is

observed in the narrowest wells measured (w = 3 nm) and the slope of N0α(Ee)
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extracted from fits in figure 5.10 and plotted as a function of w. (b) N0α as a function of
electron kinetic energy for GaMnAs.

is roughly the same as reported by Merkulov et al. in II-VI DMS. Since N0α > 0

in bulk II-VI DMS, the kinetic exchange effect appears as a reduction of |N0α|,
and is expected to cross through zero for very large confinement. Rather than a

reduction, we observe an increase in |N0α| in GaMnAs QWs. This observation

is consistent with the negative contribution of the kinetic exchange predicted by

Merkulov et al., since we measure N0α < 0 in our samples.

θP is observed to be negative for all the samples studied here indicating

that either long range Mn-Mn coupling is antiferromagnetic or the Mn2+ spin

temperature is larger than the lattice temperature. Preliminary studies on mod-

ulation p-doped structures indicate that the negative θP is due to a combination

of Mn2+ spin heating by photoexcitation, as previously discussed, and the lack

of strong hole-mediated ferromagnetic Mn-Mn interaction, which occurs for

much larger x̄. In our samples the mean Mn-Mn distance may be too large for
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Figure 5.12: The definition of electron kinetic energy Ee in a QW.

hole-spin coherence to be maintained, thus precluding long-range ferromagnetic

coupling.

5.6.2 An isotropic s-d coupling

As mentioned in section 2.4.3, the conduction band g-factor in a QW is anisotropic

and must be expressed as a tensor ↔ge. In order to determine whether N0α also

has some dependence on crystal orientation, we measure the s-d exchange en-

ergy as a function of the sample angle θ with respect to the applied magnetic

field B. We do these measurements in a similar system to the Al0.4Ga0.6As/GaAs

QWs doped with Mn of earlier sections: GaAs/In0.2Ga.8As QWs doped with

Mn.

These samples show the same qualitative behavior as the Al0.4Ga0.6As/GaAs

QWs including a negative (antiferromagnetic) s-d interaction and have similar

lifetimes and g-factors. They have a lower band-gap energy with Egap = 1.38
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eV for the 5-nm wide QWs shown in figure 5.13 (in the Al0.4Ga0.6As/GaAs sys-

tem Egap = 1.64 eV for 5-nm wide QWs). Since Egap is smaller for the QWs

than for the bulk GaAs substrate, these samples are transparent to laser excita-

tion resonant with the QW absorption. Thus we are able to use time-resolved FR

rather than time-resolved KR, which we use for the Al0.4Ga0.6As/GaAs QWs,

to measure electron spin dynamics. The experimental geometry in transmission

is more flexible than in reflection, allowing us to easily measure νL as a function

of θ .

These measurements are shown in figure 5.13a along with fits assuming an

anisotropic g-factor ↔ge and an isotropic s-d exchange N0α . Data is shown for

three 5-nm QWs: one with no Mn-doping and two others with two different

levels of Mn-doping (the exact value of x̄ is not specified). Two orientations

are also shown: the orientation labeled in red refers to a sample rotated 90◦

in plane (about the sample growth direction x̂′) with respect to the orientation

labeled in blue. The data thus allow us to determine all the spatial compo-

nents of ↔ge and to ascertain whether N0α is the same in all directions, i.e.

isotropic. From the fits shown in figure 5.13 we find the three components

of the 5-nm (100) GaAs/In0.2Ga.8As QWs g-factor as: gx′ = −0.46± 0.02,

gy′ = −0.47± 0.02, and gz′ = −0.60± 0.02. We also find, as shown in fig-

ure 5.13b, that ∆Es−d (and thus N0α) is constant within the measurement error

as function of the angle θ and the in plane orientation of the sample. We there-

fore conclude that within our experimental error, the s-d exchange energy N0α

is isotropic in GaAs/In0.2Ga.8As QWs. Due to the qualitative similarity of the

GaAs/In0.2Ga.8As QWs to the Al0.4Ga0.6As/GaAs QWs, it is likely that N0α is

also isotropic in this system and indeed in all GaAs-based heterostructures.
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5.7 Attempted determination of the p-d exchange
coupling

5.7.1 Measurement of polarized Photoluminescence

Since hole spin lifetimes are very short in GaAs QWs (< 10 ps), we rely on

measurements of PL to shed light on the p-like valence band and its magnetic

coupling to Mn-bound d electrons, N0β . In addition, because recombination

happens near impurities, PL can reveal important information on defects and

magnetic doping. Polarization-resolved PL is measured as a function of B in

the Faraday geometry with PL collected normal to the sample surface. The

excitation laser is linearly polarized and focused to a spot 100 µm in diameter

with an energy set above the QW absorption energy. While PL is seen to quench

with increasing Mn doping, as seen in figure 5.14, QWs with x̄ = 0 or with small

x emit PL, whose energy dependence is well fit by two Gaussians (figure 5.15).

The emission energy of the narrower, higher-energy Gaussian peak tracks the B

dependence expected for the Zeeman splitting in a QW, indicating that this peak

is due to heavy hole exciton recombination. On the other hand, the wider, lower-

energy Gaussian is likely due to donor-bound exciton emission from shallow

donors in the QWs. These shallow donors may be interstitial Mn centers, since

the emission linewidth increases as the calculated Mnint increases. Though the

lower energy Gaussian is the result of Mn-doping, it is also present in some

non-magnetic samples grown with a cold Mn cell (figure 5.15) perhaps due to

an impurity level of Mnint (≤ 1015 cm−3).

In addition to quenching the PL, increased Mn-doping broadens the low-

energy emission peak. Figure 5.14 shows the zero field PL emission at T = 5

K for 7.5-nm wide QWs of varying Mn-doping. The effect of increasing Mn-
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Figure 5.14: PL plotted as a function of emission energy for a set of 7.5-nm QWs with varying
Mn-doping; the samples are excited with 1 W/cm2 at 1.722 eV. Samples with x̄ > 0.13% showed
no PL.

doping is qualitatively identical for all QWs of varying width: w = 3.0, 5.0,

7.5, and 10.0 nm. As doping increases, the PL broadens in energy, red shifts,

and decreases in intensity, eventually quenching. The decreasing intensity of

the PL with increasing Mn-doping parallels the degradation in KR signal with

Mn-doping. The degradation of these two optical signals, each with distinct

physical origins, i.e. emission and absorption, reflects the increasing density of

crystalline defects with Mn-doping.

5.7.2 The Zeeman splitting

The splitting in the polarized emission energy of the higher energy Gaussian,

∆EPL = Eσ+ −Eσ− , is measured in all the non-magnetic samples. For small

fields (B < 2 T), ∆EPL depends linearly on field with the slope giving the out-

of-plane heavy hole exciton g-factor (gex). The extracted values of gex agree

within the experimental error with previously published values [64]. At higher

144



Chapter 5 The s-d exchange coupling in GaMnAs quantum wells

 

 

 

 

 

 

 

 

1k

P
L
 i
n
te
n
si
ty
 (
co
u
n
ts
)

0

1k

0

(a)

w = 10.0 nm

x = 0

1.541.53 1.561.55

(b)

w = 10.0 nm

x ~ 0.013%

 

 

P
L
 i
n
te
n
si
ty
 (
co
u
n
ts
)

(c)

w = 7.5 nm

x = 0

1.571.56 1.58

(d)

w = 7.5 nm

x ~ 0.007%

P
L
 i
n
te
n
si
ty
 (
co
u
n
ts
)

Emission Energy (eV)

(e)

w = 5.0 nm

x = 0

1.60 1.62

(f)

w = 5.0 nm

x ~ 0.004%

 

 

P
L
 i
n
te
n
si
ty
 (
co
u
n
ts
)

(g)

w = 3.0 nm

x = 0

1.701.68 1.72

(h)

w = 3.0 nm

x ~ 0.0025%

σ+ σ- B = 8 T            P = 1 W cm-2

1k

0

2k

1k

0

2k

3k

1k

0

500

0
1.64

5k

0

10k

1k

0
1.66

× 10

Emission Energy (eV)

Emission Energy (eV) Emission Energy (eV)

Figure 5.15: Polarization-resolved PL for QWs of varying w and x̄ at T = 5 K. 2-Gaussian fits
to the data are shown as black lines and the higher energy Gaussian is attributed to the heavy
hole exciton in the QW. The excitation energy is set to 1.722 eV for (a)-(f) and 2.149 eV for (g)
and (h).

145



Chapter 5 The s-d exchange coupling in GaMnAs quantum wells

  

 

 

0

250

∆E
P
L
(µ
eV
)

-250

(a)

w = 10.0 nm

0 5
B (T)

-5-10 10

  

 

 

0

250

-250

w = 7.5 nm

∆E
P
L
(µ
eV
)

0 5
B (T)

-5-10 10

(b)

  

 

 

∆E
P
L
(µ
eV
)

0

250

-250

w = 3.0 nm

0 5
B (T)

-5-10 10

(d)
  

 

 

w = 5.0 nm

0

500

∆E
P
L
(µ
eV
)

-500

1000

-1000

0 5
B (T)

-5-10 10

(c)

Figure 5.16: Polarized emission splitting (∆EPL) as a function of B at T = 5 K for QWs of
varying w and x̄. Data from QWs with x̄ = 0 are shown as open circles, while data from QWs
with x̄∼ 0.013% in (a), x̄∼ 0.007% in (b), x̄∼ 0.004% in (c), and x̄∼ 0.0025% in (d) are shown
as filled circles. Fits to ∆EPL for |B|< 2 T appear as blue lines.

fields, ∆EPL deviates from linearity, particularly in the wider QWs as shown in

figure 5.16a and b where it reverses sign in both the 10-nm and the 7.5-nm QWs

for x̄ = 0 at |B| ∼ 5 T.

In Mn-doped samples, ∆EPL results from both the Zeeman splitting (∆Egex)

and the sp-d exchange splitting (∆Esp−d):

∆EPL = ∆Egex +∆Esp−d =−1
h̄

gexµBB+ x̄N0(α−β )〈Ξz〉. (5.13)

Using the measurements of gex from the x̄ = 0 samples and the previously

extracted values of 〈Ξz〉 and N0α at T = 5 K (figure 5.8), we fit the mea-

sured ∆EPL to equation 5.13. In the 10-nm QW for low fields we estimate
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N0β = −0.85± 0.38 eV using the fits shown in figure 5.16a as blue lines. As

figure 5.16a makes clear, this model breaks down at high fields where non-

linearities dominate ∆EPL.

As shown in figure 5.16b at high fields in the 7.5-nm QWs, similar non-

linear behavior in ∆EPL contributes to the large uncertainty in our estimates of

N0β . Further complicating the determination of N0β are the widely differing

values extracted for samples of different widths. Using fits shown in figure

5.16, we find N0β =−2.9±1.5, +24.5±1.8, and +4.3±0.4 eV for QWs with

w = 7.5, 5.0, and 3.0 nm, respectively. Such disagreement between samples

indicates the incompleteness of our model for the valence band; the mixing of

valence band states may be contributing to the problematic extraction of the p-d

exchange coupling especially for small w [64]. Clearly, more work is necessary

for the determination of N0β in GaMnAs QWs and its dependence on w. Previ-

ous measurements in bulk GaMnAs provide little guidance with one report sug-

gesting positive p-d exchange for low x̄ (paramagnetic) [115], and others finding

negative p-d exchange for much larger x̄ (ferromagnetic) [112, 113, 114]. PL

measurements in recently grown InGaAs QWs, discussed in section 5.6.2, may

be fruitful since strain in these samples causes large splittings between the HH

and LH bands. The large separation of the LH band may reduce the mixing of

valence band states, simplifying the PL behavior.

5.7.3 The Luminescence polarization

We compare the PL polarization spectra of the 7.5-nm QW with x̄ ∼ 0.007%

with the well-known Mn-acceptor emission line in bulk GaAs at 1.4 eV (figures

5.17a and b) [151]. PL polarization is defined here as (Iσ+− Iσ−)/(Iσ+ + Iσ−).

The bulk Mn-acceptor line, shown in figure 5.17b, is measured in the same sam-
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ple, resulting from the unintentional doping of Mn in the 300-nm GaAs buffer

layer grown below the QW structure; the SIMS profiles in figure 5.2 show that

the Mn concentration in this layer is less than 1×1016 cm−3. The polarization

of this peak demonstrates a paramagnetic (Brillouin function) field dependence,

shown in figure 5.17d, following the magnetization of the substitutional Mn

acceptors in the bulk GaAs. The low-energy peak in the QW PL polarization

coincides with the low-energy PL peak which we assigned to emission from

excitons bound to interstitial Mn donors. Its polarization is plotted in figure

5.17c (solid points) and demonstrates similar paramagnetic (Brillouin function)

behavior with field and temperature to that of the bulk Mn-acceptor line.

The polarization of the bulk Mn-acceptor line is proportional to the spin-

polarization of local Mn2+ moments since the PL from this line results from

conduction band electrons recombining with holes trapped on substitutional Mn

acceptors. The spin of these holes is coupled to the local Mn2+ spin [152]. We

postulate a similar mechanism for the low-energy polarization feature in the

QW PL in which holes in the valence band of the QW recombine with electrons

bound to interstitial Mn donors. The clear Brillouin-like field dependence indi-

cates that the recombinant polarization originates around isolated paramagnetic

Mn impurities in the lattice, i.e. either substitutional Mn acceptors or interstitial

Mn donors. The Brillouin-like behavior is inconsistent with coupled Mn centers

such as interstitial-substitutional pairs, which couple antiferromagnetically and

which are unlikely to be present in samples with such low Mn content [117].

The ∼ 20 meV redshift of the polarization peak from the main QW peak does

not match the 110 meV binding energy of the substitutional acceptor. While

there is an excited state of the substitutional Mn acceptor with a binding energy

of 26 meV [153], recombination from this excited state is unlikely when each

acceptor is filled with, at most, one hole and given that PL usually originates
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Figure 5.17: PL polarization spectra for a 7.5-nm GaMnAs QW with an 1.72 eV excitation
at 1.0 mW (a) near the QW emission peaks (∼1.6 eV) and (b) at the bulk Mn-acceptor line for
GaMnAs (∼1.4 eV), which results from unintentional Mn-doping in the 300-nm thick GaAs
buffer layer. The spectra are plotted as a function of emission energy for different magnetic
fields from -8 to +8 T at 1 T intervals. (c) The PL polarization integrated over a single emission
peak as a function of B for the high energy (∼1.57 eV at T = 5 K, open circles) and low energy
(∼1.55 eV at several temperatures, filled symbols) peaks, and (d) for the bulk Mn-acceptor line
peak plotted for several temperatures.
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from the lowest available energy levels. Rather, we assume that the recombina-

tion originates from the interstitial Mn donor and the valence band in the QW.

Comparison to the experimentally measured interstitial Mn donor binding en-

ergy is not possible since it has not been reported. The postulated coupling of

the electron spin to interstitial Mn spin results in polarized emission which fol-

lows the magnetization of interstitial Mn within the QW. These measurements

open the possibility of indirectly measuring the magnetization of the Mn impu-

rities in the QWs using polarization-resolved magneto-PL.

The high-energy feature in the QW PL polarization involves recombination

of electrons and holes bound to the QW, but delocalized relative to the Mn states.

Due to the exchange interactions in both the valence and conduction band, the

spin splitting, and thus the resulting polarization, should have a Brillouin func-

tion field dependence equation. For the small values of x̄ studied here, however,

these effects are not resolvable. As shown in figure 5.17c, this polarization has

a weaker field dependence (open circles) with an opposite sign compared to the

polarization of the low-energy peak (solid points).

5.8 Theoretical Analysis

5.8.1 An antiferromagnetic s-d coupling?

The difference in behavior of the exchange couplings for the conduction and

valence bands in II-VI DMS is rooted in the nature of exchange interactions

between localized spins on impurity sites and the spins of band electrons:

Hex =− 1
h̄2 JS ·Ξ, (5.14)

where we have re-written equation 2.45 in its simplified two-particle form. Two

mechanisms contribute to the value of J: (1) a normal (direct) exchange mech-
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anism originating from the interaction potential between band and d-shell elec-

trons proportional to the inverse of their separation; and (2) a resonant scat-

tering mechanism due to hybridization between the band and d-shell electrons

occurring when the d-level is close to a band edge [154, 155]. The first mecha-

nism results in a positive (ferromagnetic) exchange and the second in a negative

(antiferromagnetic) exchange. In general both mechanisms contribute to the

total exchange J. In II-VI DMS, the resonant scattering mechanism does not

contribute to the conduction band exchange which is dominated by the normal

exchange. Thus a positive exchange is measured: N0α = 0.22 eV. In contrast,

since the localized d-level falls within the valence band in these systems, the

resonant scattering mechanism dominates the exchange for the valence band

resulting in a negative interaction energy: N0β =−0.88 eV.

The above reasoning makes the extrapolation of our measurements to a bulk

GaMnAs exchange of N0α = −23± 8 meV (discussed in section 5.6) surpris-

ing. The value has a much smaller magnitude and most importantly the oppo-

site sign than values predicted by s-d exchange theories in DMS. Since direct

exchange should dominate in the conduction band, the N0α is expected to be

positive. We must therefore consider that some of the assumptions which are

valid in II-VI do not apply in GaMnAs. For instance, theoretical efforts are

currently underway treating the effects of a possible hybridization between s-

like conduction band states and an excited state of the Mn shell electrons [156].

Such a hybridization could lead to a resonant scattering contribution in the con-

duction exchange coupling, explaining the measurement of a negative N0α . It

is also possible that the smaller band-gap energy in GaMnAs compared to II-VI

systems and the correspondingly stronger admixture of valence band states to

the conduction band explains the measured negative s-d exchange.
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5.8.2 Kinetic exchange

In II-VI DMS nanostructures, increasing confinement results in the reduction

in strength of the s-d exchange interaction between conduction electrons and

electrons localized in the d shell of Mn impurities [150]. This reduction is due

an enhancement of the electron kinetic energy by the dimensional quantization

of states in a confined system. For conduction band states the dependence of the

exchange coupling on carrier kinetic energy results in a decrease in the magni-

tude of the exchange energy for an increase in the kinetic energy [157]. Though

theoretical models of kinetic exchange based on these principles replicate the

qualitative features of the data in II-VI materials, their predictions fall short by

a factor of ∼ 5 [158].

A more complete model also takes into account the effects of the admix-

ture of valence band states to the conduction band states [150]. For states with

non-zero k, the p-like orbitals of the valence band admix to the Bloch func-

tions of the conduction band. Due to the dominance of the resonant scattering

mechanism in the valence band, these states contribute a negative energy to the

total exchange as discussed in section 5.8.1. As electron kinetic energy (and

thus k) increases and the admixture of valence band states becomes stronger,

so does the negative contribution to the exchange energy. This negative shift in

N0α with increasing Ee contrasts the simple reduction in magnitude predicted

for pure conduction band states. Therefore, depending on the degree of the ad-

mixture, a positive conduction band exchange constant can decrease and even

become negative with increasing kinetic energy. Predictions made by this model

agree quantitatively with the experimental data available in II-VI DMS.

Though there are a number of important differences between GaMnAs and

the II-VI systems to which the theory of kinetic exchange has been applied, the
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Figure 5.18: The s-d exchange coupling plotted as a function of confinement energy including
data from samples with different QW depths. Blue, orange, green, and red symbols correspond
to QWs with w = 10.0, 7.5, 5.0, and 3.0 nm, respectively. Solid cirles, open triagles, and open
diamonds correspond to QWs with barriers containing 40, 20, and 10% Al, respectively.

model which includes the admixture of valence band states into the conduction

band reproduces the general features shown by our measurements. As evident

from figure 5.11b, N0α , which we measure to be negative in all our experiments,

becomes more negative with increasing kinetic energy Ee, just as predicted by

the model of Merkulov et al. The earlier model of Bhattacharjee et al., which

ignores the aforementioned admixture of states, predicts a reduction in |N0α|
with increasing Ee and proves to be inconsistent with our findings. The quasi-

linear dependence of N0α on Ee also mimics the finding in the II-VI QWs (the

slopes differ only by a factor of ∼ 1.2) [150].

Experimental efforts are currently underway to make more detailed mea-

surements of the dependence of N0α on Ee in GaMnAs and InGaMnAs QWs

[159]. We are also making measurements of N0α as a function of Ee in GaMnAs

QWs by varying the QW depth instead of the QW width. Such measurements
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provide further insight on the nature of the dependence and its functional form.

Preliminary results shown in figure 5.18 show that measurements of N0α in

GaAs/AlGaAs samples with lower barriers (10% and 20% Al) follow the same

dependence shown in figure 5.11b.

5.9 Conclusion

In summary, we demonstrate the growth of III-V GaMnAs heterostructures in

which coherent electron spin dynamics and PL can be observed. By lowering

the substrate temperatures during growth, sharper Mn profiles and higher Mn

concentrations are attained, however optical signals eventually quench (Tsub <

400◦C) likely due to incorporation of defects by Al gettering, such as oxygen.

Optical signals are also seen to quench for x̄ > 0.13%. The exchange induced

spin splitting in the conduction band in the GaMnAs QWs matches the tradi-

tional paramagnetic DMS picture and allows for the determination of the s-d

exchange parameter via time-resolved electron spin spectroscopy. Surprisingly

the measured s-d exchange coupling is antiferromagnetic in GaMnAs QWs, a

result not predicted by current DMS theories. In particular, this result points to

the limited understanding of the s-d exchange interaction in this important ma-

terial system [46]. No evidence of long-range Mn spin coupling is observed, but

negative effective Curie temperatures indicate spin heating of the Mn sublattice

by photoexcitation. Electron spin lifetimes in the QWs increase for the lowest

Mn dopings compared with undoped samples indicating the dominance of the

Dyakanov-Perel mechanism over spin-flip scattering in this regime. The ability

to magnetically dope III-V and maintain sensitive optical properties opens the

door for more complex structures to be used in the study of both free carrier

and magnetic ion spin at fast time scales, a technology which was previously
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limited to II-VI DMS.

Strong evidence is presented of a direct relation between the conduction

band exchange constant and the electron kinetic energy due to one-dimensional

quantum confinement in GaMnAs QWs. It is a quantitatively similar effect and

has the same sign as what was reported for II-VI DMS QWs [150]. The s-d

exchange coupling is antiferromagnetic in the QWs and extrapolates to−23±8

meV in the limit of infinitely wide wells, indicating that antiferromagnetic s−d

exchange could be a bulk property of GaMnAs. While confinement is found

to alter the s-d exchange energy, measurements suggest that the interaction re-

mains isotropic regardless of reduced degrees of freedom.
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Chapter 6

Electron spin transfer and
coherence in coupled quantum
wells

6.1 Introduction

During the course of our investigations into semiconductor heterostructures

amenable to localization and control of electron spins in the conduction band,

we researched the possibility of using GaAs-based coupled quantum well (CQW)

structures. While the consequences of experiments on dynamic nuclear polar-

ization and Mn doping in these CQWs were not promising, we gained a detailed

knowledge of the electron spin dynamics in these canonical systems.

In this chapter we investigate the spin dynamics of optically excited elec-

trons confined in asymmetric CQWs through time-resolved Faraday rotation

(FR) experiments. The inter-well coupling is shown to depend on applied elec-

tric field and barrier thickness. We observe three coupling regimes: indepen-

dent spin precession in isolated quantum wells, incoherent spin transfer between

single-well states, and coherent spin transfer in a highly coupled system. Rel-
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ative values of the inter-well tunneling time, the electron spin lifetime, and the

Larmor precession period appear to govern this behavior.

In section 6.2 we give a brief background followed by a description of the

properties of the CQW samples in section 6.3. Then, in section 6.4 we discuss

the electron spin dynamics in the conduction band. Finally, we include a brief

account of our attempts to extend previous experiments on localized nuclear

polarization and Mn-doping to CQW structures in section 6.5.

6.2 Background

The possibility of developing spin-based electronic devices has focused recent

interest on the study of carrier spin dynamics in semiconductor nanostructures.

In this vein, electrical control of electron spin precession and relaxation rates

has been achieved in a number of quantum well (QW) systems [15, 16, 160].

The accessibility of spatially direct and indirect excitonic states with the appli-

cation of an external electric field make CQW systems [161] attractive for the

study of electron spin dynamics. Extensive research has been devoted to indi-

rect electron-hole pairs in CQWs [162, 163, 164, 165] and to carrier tunneling

between coupled wells [166, 167, 168]. Here, time resolved FR experiments

[85] on specifically engineered CQWs reveal the effect of inter-well tunneling

on electron spin coherence. Since the electron g-factor depends strongly on

quantum well width [63], electron spins in wells of unequal widths precess at

different rates. When such wells are coupled through a tunneling barrier, spin

precession rates are observed to either switch or tune continuously as a function

of applied electric field.
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6.3 Coupled quantum well samples

6.3.1 Sample structure

The sample structure consists of a pair of undoped GaAs QWs with Al0.33Ga0.67As

barriers grown by molecular beam epitaxy [169] on top of a low temperature

Al.33Ga.67As back gate structure [102], which is 1.3 µm from the surface. The

sample structure is similar to that of the parabolic quantum wells discussed in

chapter 4 and is shown schematically in figure 6.1 (see appendix A.2 for the

exact sample structure). A Ni/Ge/Au/Ni/Au pad is annealed to contact the back

gate, while a semi-transparent 1-mm2 layer of Ti/Au deposited on the sample

surface acts as the front gate. Applying a voltage Ug across the gates creates

a uniform electric field in the QWs up to 30 kV cm−1 with negligible leakage

current (less than 50 µA). A positive value of Ug corresponds to a positive volt-

age at the front gate with respect to the back gate. Different samples are grown

with varying well widths w and well separations d. Here we shall discuss 6

such samples: sample 7-2-10 consists of a 10-nm QW grown on top of a 7-nm

QW separated by a 2-nm barrier. Other samples include 7-6-10, 7-20-10, 8-4-

8, 8-2-8, and 5.7-3.8-7.7 using the same naming convention. Experiments are

performed at 5 K in a magneto-optical cryostat with an applied magnetic field

B (along ẑ) in the plane of the sample and with the laser propagation parallel to

the growth direction (x̂||x̂′, i.e. θ = 0◦).

6.3.2 Photoluminescence

Figures 6.2a, b, and c show photoluminescence (PL) measurements as a func-

tion of Ug and detection energy Ed for samples 7-20-10, 7-6-10, and 7-2-10,

respectively. Samples 7-20-10 and 7-6-10 in figures 6.2a and b show two dis-
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view in the inset.
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Figure 6.2: PL intensity plotted on a logarithmic grayscale as a function of Ug and Ed . A CW
HeNe laser emitting at 1.96 eV is used to excite carriers at B = 0 T. (a) PL from sample 7-20-
10 shows two Stark shifted peaks corresponding to the 7- and 10-nm QWs without evidence
of inter-well coupling. (b) PL from sample 7-6-10 (i) reveals a strongly Stark shifted indirect
exciton peak, and (ii) shows the quenching of the 7-nm well PL peak and the corresponding
greater intensity in the 10-nm well peak. (c) Sample 7-2-10 shows a single PL peak which is
strongly Stark shifted.

tinct PL peaks each with FWHM of 2-3 meV centered around 1.54 and 1.57 eV

corresponding to emission from the 10-nm- and 7-nm-wide wells, respectively.

The red-shift observed for each peak for Ug < −2.0 V agrees well with the

Stark shift expected in QWs of similar thicknesses [170]. Figure 6.2b, however,

shows evidence of coupling between the two wells in the form of (i) a strongly

Stark shifted indirect exciton peak appearing below Ug = −2.0 V, and (ii) a

quenching of the higher energy PL peak together with an increase in the emis-

sion intensity of the lower energy peak around Ug = 0.0 V [162, 171]. These

features confirm that sample 7-6-10 with its 6 nm barrier between QWs is in-

deed a coupled system with a tunneling time τ shorter than the recombination

160



Chapter 6 Electron spin transfer and coherence in coupled quantum wells

lifetime Te-h, while sample 7-20-10 with its much wider 20-nm barrier contains

two uncoupled QWs with otherwise identical characteristics. Figure 6.2c shows

a single PL peak for sample 7-2-10 with a strong Stark shift at negative voltages

indicating an even shorter value of τ . Te-h has been measured to be of order 1

ns in similar structures [167], while τ is found to be as short as 1 ps for GaAs

CQWs with 2.5 nm Al0.2Ga0.8As barriers [172].

6.4 Electron spin Dynamics

6.4.1 Time-resolved Faraday rotation measurements

Time-resolved FR measurements are performed in a magnetic field in order

to examine carrier spin dynamics in CQWs. The measurement, which moni-

tors small rotations in the linear polarization of laser light transmitted through

a sample, is sensitive to the direction of spin polarization of electrons in the

conduction band as discussed in section 2.6.2. By tuning the laser energy EL

near the resonant absorption energy of different conduction band states, the po-

larization dynamics of these states can be selectively investigated. A 76-MHz

Ti:Sapphire laser produces 250-fs pulses which are split into pump and probe

with a FWHM of 8 meV and an average power of 2.0 mW and 100 µW, re-

spectively. The linearly polarized probe is modulated by an optical chopper at

f1 = 940 Hz and the circular polarization of the pump is varied by a photo-

elastic modulator at f2 = 55 kHz. Both beams are focused to an overlapping

50-µm spot on the semi-transparent front-gate. Thus, polarized electron spins

are injected and precess in a perpendicular field B. The time evolution of the

spins is well described by the expression for FR as a function of pump-probe
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delay,

θF (∆t) = θ⊥e−∆t/T ∗2 cos(2πνL∆t +φ) , (6.1)

where θ⊥ is proportional to the total spin injected perpendicular to the applied

field, T ∗2 is the inhomogeneous transverse spin lifetime, ∆t is time delay between

the pump and probe pulses, and φ is a phase offset. The Larmor frequency νL =

geµBB/h depends on the magnetic field B and the effective conduction band

Landé g-factor ge where µB is the Bohr magneton and h is Planck’s constant.

It is important to note that our measurement is insensitive to hole spins due to

their rapid spin relaxation (faster than 5 ps) in GaAs/AlxGa1−xAs QWs [173].

Figure 6.3a shows FR measured in sample 7-6-10 at an applied magnetic

field B = 6 T as a function of both ∆t and the gate voltage Ug. Two distinct

precession frequencies appear, as highlighted by the line-cuts at constant Ug

shown in figure 6.3b, with a sharp transition between the two occurring around

Ug = −2 V, i.e. at the same voltage as the onset of the indirect excitonic peak

in figure 6.2b. There is an accompanying 10-fold drop in the FR amplitude θ⊥
as a function of voltage, as well.

The voltage dependent shift of νL in sample 7-6-10 is due to a change in

the measured g-factor as shown in the inset to figure 6.3b. Here, the precession

frequency, obtained by fitting equation 6.1 to data similar to that shown in figure

6.3a, is plotted as a function of B for two fixed voltages: Ug = 0.0 V and Ug =

−4.0 V. The linear dependence of both distinct precession frequencies on B

demonstrates the presence of two independent g-factors (|ge| = 0.052± .001

and |ge|= 0.193± .005) whose relative weight can by controlled by Ug.
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6.4.2 The effects of inter-well coupling

The dependence of the g-factor on Ug is explored in greater detail in figure 6.4

for three samples with varying well separation d: 7-20-10, 7-6-10, and 7-2-10.

FR data taken at B = 6 T as a function of ∆t and Ug (as shown in figure 6.3a

are Fourier transformed. Grayscale plots show the logarithm of the Fourier am-

plitude as a function of Ug and of g-factor |ge| (extracted from the precession

frequency νL). Measurements are performed at a laser energy EL = 1.57 eV

resonant with the 7-nm well absorption. Figure 6.4a shows the presence of the

same two g-factors in sample 7-20-10, |ge| = 0.05 and |ge| = 0.19, as shown

in figure 6.3. Experimental and theoretical literature confirms that these values

of ge correspond to the 7- and 10-nm-wide wells, respectively [63]. Since EL

is resonant with the 7-nm well absorption and detuned from the 10-nm well

absorption by 20 meV, the Fourier amplitude of the |ge| = 0.05 oscillations is

observed to be an order of magnitude larger than the |ge| = 0.19 oscillations,

which correspond to the 10-nm well. Both g-factors show a weak dependence

on Ug corresponding to slightly increased penetration of the electron wave func-

tion into the barriers for Ug < −2.0 V [174, 175]. As shown schematically in

the center and right panels of figure 6.4a, the inter-well tunneling time τ in this

uncoupled sample is much longer than either the transverse spin lifetime T2 or

the recombination time Te-h.

The effect of reducing d to 6 nm and thus introducing inter-well coupling is

shown in figure 6.4b. Here, a distinct switching behavior is observed between

the 7- and 10-nm well g-factors as a function of Ug. Near Ug = 0 V, spin po-

larized electrons are excited and detected in the 7-nm well, however, in contrast

with the d = 20 nm case, spin precession in the 10-nm well is not observed,

even at a reduced amplitude. This behavior can be understood qualitatively
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from the center panel of figure 6.4b. Since the conduction band ground state of

the 10-nm well is energetically lower then that of the 7-nm well, and because d

is sufficiently small that τ < Te-h, electrons tunnel from the 7-nm well into the

10-nm well. In the process of electron transfer, the energy mismatch is compen-

sated by acoustic phonon emission [176]. Assuming that τ is shorter than T2 but

longer than a spin precession period 1/νL, spin transfers incoherently. Because

νL is unequal in the two wells, the incoherent tunneling randomizes the electron

spin polarization in the 10-nm well, thereby destroying its spin coherence and

quenching its FR signal. This picture is corroborated by the fact that in figure

6.2b, around Ug = 0 V no significant PL is found from the 7-nm well while PL

from the 10-nm well is increased, indicating that electrons excited in the 7-nm

QW tunnel into the 10-nm QW before recombination. For Ug < −2.0 V, spin

precession from the 7-nm well disappears and precession from the 10 nm well

emerges. In this case, as shown in the right panel of figure 6.4b, the applied elec-

tric field has raised the 10 nm well ground state energy above the 7-nm ground

state energy causing the incoherent tunneling to change directions. As a result,

spin coherence in the 7-nm well is destroyed and its corresponding FR signal

disappears. The amplitude of the 10-nm FR signal remains small due to the

detuning of EL. We can further conclude that near Ug = −2.6 V, where figure

6.2b shows that the electron ground state energy levels of the 10-nm and 7-nm

wells are degenerate, incoherent tunneling occurs in both directions, resulting

in the destruction of spin coherence in both wells as shown in figure 6.4b.

Reduction of d to 2-nm results in the smooth tuning of ge as a function of

Ug between the 10- and 7-nm values. In figure 6.4c, the g-factor is shown to

change from |ge| = 0.19 near Ug = 0 V to |ge| = 0.05 for Ug < 0 V. As shown

schematically in the right panels of figure 6.4c, this behavior corresponds to

a system in which τ is shorter than 1/νL resulting in an electron spin wave
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function which effectively spans both quantum wells. As an electric field is

applied across the structure, the relative amplitude of the wave function in each

well is altered. Since the measured g-factor is a weighted average over the full

electron wave function amplitude [15, 42], ge is observed to tune continuously

between the two single-well values. Near Ug = 0 V, the electron wave function

amplitude is almost completely contained within the 10-nm well resulting in

|ge|= 0.19. For Ug < 0 V, |ge| approaches 0.05 as the wave function amplitude

shifts to the 7-nm well.

The three regimes of interwell coupling represented by the samples with 20-

, 6-, and 2-nm barriers are depicted in the schematic energy diagram of figure

6.5 [177]. In the first case, the conduction electrons are described by isolated

single well states and interwell coupling is negligible as indicated by the lack

of anti-crossing behavior. In the intermediate case, inelastic tunneling, assisted

by phonons or defect states, dominates. As a result, spin coherence is disrupted

in the QW into which electrons are flowing. Finally, in the highly coupled

case, the electron eigenstate has an envelope function which spans the CQW

structure, resulting in an averaged effective g-factor; in other words the electron

spin reversibly tunnels between QWs many times over the course of a single

spin precession. Calculations based on our structural parameters and the simple

model of Dzyubenjo and Yablonskii yield tunneling times of τ ' 0.1 ps for

d = 2 nm [178].

Also note that our picture is corroborated by time-resolved FR measure-

ments performed at a laser energy EL = 1.54 eV resonant with the 10-nm well

absorption. In the case of samples 7-20-10 and 7-6-10, we observe only oscil-

lations at |ge| = 0.19, corresponding to the 10-nm-wide well, regardless of the

value of Ug. For sample 7-2-10, however, we observe the same smooth tuning

of ge as a function of Ug at EL = 1.54 eV as we observe at EL = 1.57 eV. This
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tion electrons are in isolated single well states; in the second, electron states are more coupled
and tunneling is allowed; and in the third, the electron eigenstates have envelope functions
spanning both QWs in the CQW structure. E is energy and F represents electric field across the
CQWs
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behavior is consistent with the three regimes, which we show schematically in

figure 6.4. In sample 7-6-10, electrons tunnel inelastically from the higher en-

ergy well to the lower energy well, while in sample 7-2-10, the electron spin

wave function spans both quantum wells resulting in reversible tunneling be-

tween wells.

6.4.3 Dependence of the g-factor on well width

In order to confirm the role of quantum well width and to rule out electron-hole

exchange in causing the voltage dependence of the observed g-factor [179],

experiments were done on three more structures. Figure 6.6a shows the Fourier

transform of FR data taken at B = 6 T and EL = 1.58 eV plotted as a function

of |ge| and Ug (similar to grayscale plots in figure 6.4) for sample 8-4-8. The

data indicate that spin oscillations occur at a single frequency corresponding

to |ge| = 0.105± .005 with no measurable dependence on Ug. This g-factor

corresponds to the expected value of ge for an 8-nm wide GaAs QW. In addition,

the lack of voltage dependence is expected in our model for a symmetric CQW

structure; in particular, we find no evidence for a second excitonic g-factor. Data

from sample 8-2-8 in figure 6.6b show a g-factor with a small dependence on Ug

centered around the expected ge for an 8-nm QW. The weak tuning is likely due

to the significant portion of the electron envelope function which is pulled into

the barrier in this highly coupled system. A similar Fourier transform is plotted

in figure 6.6c for sample 5.7-3.8-7.7. Here we observe continuous tuning of ge

as a function of Ug as seen in the highly coupled sample 7-2-10. In this case, |ge|
is observed to tune from 0.09 through 0 to 0.035 as Ug is varied from +1.0 V to

−2.0 V. Since GaAs/AlxGa1−xAs quantum wells are predicted to have negative

g-factors for w greater than 6 nm and positive values of ge for smaller values
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Figure 6.6: Dependence of g on QW width w. (a) Fourier transform of time resolved FR data
measured in sample 8-4-8 plotted in a logarithmic grayscale as a function of |ge| and Ug at B = 6
T and EL = 1.58 eV. Note that the g-factor, |ge|= 0.105, has no observable dependence on Ug.
(b) Similar data is plotted for sample 8-2-8 showing a very small change in g-factor as a function
of Ug. Sample 5.7-3.8-7.7 in (c) shows continuous tuning from |ge|= 0.09, via |ge|= 0 around
Ug = 0 V, and to |ge| = 0.035. The red dots map the peak position of the Fourier transform in
order to guide the eye. (d) ge is shown as a function of w. Data drawn from work by Snelling
et al. [63] is plotted as crosses and a fit to this data is shown as a solid line to guide the eye.
Values of ge extracted from FR data of our 5 samples for different w are plotted as filled circles.
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of w [63], we can conclude that this sample shows tuning of the g-factor from

-0.09 through 0 to 0.035.

Experimental data taken from work by Snelling et al. [63] showing ge as a

function of w are plotted as crosses in figure 6.6d. A fit to their data is shown

as a black line in order to guide the eye. Values of ge extracted from FR data

of our 5 samples and correlated to the well widths are plotted as filled circles

in figure 6.6d. From our samples we obtain g-factors of 0.038, -0.052, -0.065,

-0.105, and -0.193 for well widths of 5.74, 7, 7.65, 8, and 10 nm, respectively.

The sign of the g-factors was not explicitly measured, though an educated guess

was made for the purposes of this plot. Figure 6.6d shows close agreement of

our g-factor data with previous measurements of ge as a function of quantum

well width.

6.5 Localized moments in coupled quantum wells

The possibility of registering the conduction electron envelope function in one

or the other QW in a CQW system makes it an attractive structure for the study

of interactions between localized moments and conduction band electrons. Us-

ing a dynamic nuclear polarization (DNP) procedure similar to that described

for parabolic quantum well (PQW) structures in section 4.4, we attempt to cre-

ate nuclear polarization profiles in CQWs localized in one or the other QW

depending on the gate voltage Upol used during the DNP process. Such mea-

surements do not conclusively demonstrate our ability to controllably polarize

nuclei in one well or the other, mostly due to the low nuclear polarizations

achieved and the short T ∗2 of the electrons in the CQWs. Both of these ef-

fects contribute to a poor signal-to-noise ratio in our measurements compared

to analogous measurements in PQWs.
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CQW structures are also grown with spatially selective Mn-doping, i.e. with

Mn-doping in one of the two wells, in the other, or in both. While some of these

samples showed the presence of s-d coupling between electrons in the CQW

conduction band and the Mn impurities, none of the structures showed the ge

tuning properties as a function of Ug observed in non-magnetic CQWs and de-

scribed in section 6.4. It is likely that, even for low Mn-doping concentrations,

the dipolar field due to the loosely bound holes and the ionic cores of the A0

centers screens the externally applied electric field. In this case, changes in Ug

do not affect the electron envelope function position, effectively pinning it in

one of the two CQWs. Similar effects are observed in InGaMnAs/GaAs CQWs

as in the GaMnAs/AlGaAs CQWs. While working GaAs-based CQW devices

with Mn-doping may not be possible due to the electric charge of Mn impu-

rities, similar structures may be possible in II-VI materials such as ZnMnSe,

where Mn is electrically neutral [180].

6.6 Conclusion

The experimental data show electron spin precession in a fixed perpendicular

magnetic field for CQW systems at low temperature. The effective g-factor

of these structures is seen to depend both on which well electrons occupy and

on the strength of tunneling between wells. Spin-resolved measurements re-

veal two distinct regimes of inter-well coupling, resulting in either the abrupt

switching or the continuous tuning of ge as a function of an applied electric

field. Since the width of each QW determines the g-factor of electrons confined

therein, future CQW structures may be engineered to switch between a variety

of precession rates, including positive and negative rates and even ge = 0, as

observed in figure 6.6c.
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Conclusion

The main impetus behind our research into the coupling of mobile band electron

spin and fixed moments is to gain a clearer understanding of these interactions,

especially as the number of spins involved decreases an the dimensionality of

the system is reduced. The study of ever smaller systems with ever fewer de-

grees of freedom has long been a trend in condensed matter physics, where the

ultimate goal is to attain a fully quantum mechanical regime in which to do

experiments.

The inherent disorder of solid state systems as compared with, for instance,

trapped atomic gases, has always been a limitation in the application of pure

quantum mechanics in the their description. Conversely, the same isolation

and purity which makes atomic systems so spectroscopically clean and such

nice models of quantum mechanics, makes them difficult to address, hard to

couple, and virtually impossible to scale into useful devices. With advances in

the design of semiconductor heterostructures, in the processing of sub-micron

features, and with the increasing sensitivity of measurement techniques, single-

electron condensed matter systems have been achieved; systems approximating

artificial hydrogen atoms have been demonstrated, e.g. in single electron gate-
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defined quantum dots. The fundamental advantage in recreating such atomic

systems in a semiconductor is the inherent control and accessibility afforded

by the solid state. For instance, gate voltages can be used to alter quantum

states of the system while advanced processing techniques allow for the scalable

patterning of arrays of a given device.

Such atom-like devices could be used in the future to deepen our understand-

ing of mesoscopic physics and quantum mechanics in general, a result which is

already happening. Furthermore, they present the ideal medium in which to

apply quantum mechanics to tackle technological applications, whether in the

form of quantum computation or some other method of harnessing the behavior

of quantum states.

The research presented in this volume, represents a step forward in under-

standing and developing controllable spin interactions in solid state systems.

While none of the work discussed deals with single spin dynamics, the reduc-

tion of dimensionality and its effect on spin interactions is a central theme. The

work on electronic-nuclear spin coupling in chapter 3 looks toward the detec-

tion and manipulation of small number of nuclear spins in solid state systems. In

chapter 4 the patterning of a nano-scale nuclear polarization profile provides a

proof of concept that the contact hyperfine interaction can be used to manipulate

semiconductor nuclear spin in a spatially controllable way. As dimensionality

and the numbers of nuclear spins decrease, similar results should be possible,

e.g. in quantum wires and quantum dots. Measurements of the s-d coupling in

chapter 5 and its dependence on confinement also focus on the role of reducing

dimensionality. Indeed, the extension of the research towards the coupling of

band electrons to single Mn centers in low-dimensional structures is ongoing.

Furthermore, work on heterostructures and the control of carrier spin within

them is relevant to future systems with fewer dimensions and with electron oc-
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cupation numbers approaching 1. Hybrid systems combining the control of the

parabolic quantum wells of chapter 4 or the coupled quantum wells of chapter

6 with gate defined quantum dot geometries present a intriguing opportunity for

building devices with exquisite control of single charges and spins.
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Sample structures

A.1 Parabolic quantum wells

Table A.1 shows an example of the parabolic quantum well (PQW) structures

used in the experiments described in chapter 4. The first samples investigated

Table A.1: The layers in a typical PQW structure are listed here as they are grown on top of
an (001) semi-insulating GaAs substrate from bottom to top. SL stands for superlattice and LT
stands for low-temperature.

thickness (nm) layer description

5 GaAs
50 Al0.4Ga0.6As

100 PQW 40% to 7% to 40%
350 Al0.4Ga0.6As
7.2 6×0.6/0.6 GaAs/AlAs SL

485.6 LT-grown GaAs
7.2 6×0.6/0.6 GaAs/AlAs SL

200 GaAs
50 n-GaAs (n = 2×1018 cm−3)
50 GaAs
80 20×2/2 GaAs/AlAs SL
50 GaAs
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Table A.2: The layers in a typical 7-6-10 CQW device are listed here as they are grown on top
of an (001) semi-insulating GaAs substrate from bottom to top.

thickness (nm) layer description

7.5 GaAs
50 Al0.33Ga0.67As
10 GaAs QW (CQW)

6 Al0.33Ga0.67As barrier (CQW)
7 GaAs QW (CQW)

350 Al0.33Ga0.67As
500 LT-grown Al0.33Ga0.67As structure
200 digital Al0.13Ga0.87As
200 n-Al0.13Ga0.87As (n = 4×1018 cm−3)

1000 Al0.33Ga0.67As etch stop layer
300 GaAs

were grown by D. C. Driscoll and are the same ones samples used in experi-

ments on g-factor tuning and g-tensor modulation resonance by other members

of the Awschalom lab [15, 16, 57]. Later samples with the same fundamental

characteristics were grown by R. C. Myers.

A.2 Coupled quantum wells

We list the layers of a typical coupled quantum well (CQW) device discussed

in chapter 6 in table A.2. R. C. Myers grew all of these samples.

A.3 Etch stop layers

Etch stop layers are often incorporated into both PQW and CQW samples in

order to facilitate time-resolved Faraday rotation (FR) measurements which re-

quire transmission of the probe through the sample structure. The transmission

geometry is preferred to the reflection geometry (time-resolved Kerr rotation) in
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Figure A.1: A photograph taken with an optical microscope of a rectangular etched window in
a CQW sample. The inhomogeneous “bubbling out” of the sample due to strain mismatching
in the growth layers is clearly observable. The etched window is about 300 µm × 100 µm and
∼ 1 µm thick.

measurements requiring a non-zero angle θ between the sample surface and the

applied magnetic field. The geometry of the cryostat makes it difficult to col-

lect a reflected probe from an angled sample. Therefore, in most measurements

involving a non-zero nuclear polarization, the samples must be measured in the

transmission geometry. This requirement behooves us to etch a window into

the back of the sample removing the GaAs substrate, whose band-gap energy

is smaller than the GaAs/AlGaAs QW’s bandgap. The spray etch procedure

described in section B.8 and the incorporation of an AlGaAs etch stop layer in

the growth make this selective removal of the substrate possible.

If the experimental conditions do not require θ 6= 0◦, then the reflection

geometry is preferred and measurement can be done with θ ' 0◦. Samples

whose substrates have been etched away are very fragile as the material left

behind in the window is ∼ 1 µm thick. In addition, strain built into the sample

structure causes these windows to “bubble out” as shown in figure A.1 making

the sample surface inhomogeneous. Strain and the effective angle of incidence
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of the laser can vary across the sample window. In order to obtain consistent

and reproducible results, great care must be taken to stabilize the position of the

laser spot on the sample. Unetched samples measured in the reflection geometry

do not present these challenges.

Further details on the growth of these an all the other samples described

in this dissertation, especially the Mn-doped QWs described in chapter 5, can

undoubtedly be found in the upcoming thesis of the grower, R. C. Myers [127].
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Sample processing

B.1 Introduction

In order to take full advantage of the control over the carrier envelope functions

afforded by semiconductor heterostructures, it is often necessary to tilt the bands

by applying an external electric field. In this section we will cover a simple

process used to make devices in which an electric field can be applied across

quantum wells (QWs) along the confinement direction. In particular, we use this

process in the preparation of the parabolic quantum well (PQW) and coupled

quantum well (CQW) structures discussed in chapters 4 and 6.

The following process is meant for samples designed using the same princi-

ples as those discussed in appendix A. A low-temperature (LT) barrier of GaAs

or AlGaAs about 500-nm thick must separate the QW structure from the n-

doped layer acting as the back-gate. This layer acts as conduction barrier [102]

preventing current from flowing from the n-doped back-gate to the Ti/Au front-

gate deposited onto the sample surface. A brief outline of the process follows.

First, we etch away the QW layer from a region of the sample onto which we

deposit back-gate pads. We then anneal the sample so that these pads spike
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down and contact the n-doped back-gate layer, which lies about 1 µm below

the surface. Next we evaporate a transparent layer of Ti/Au onto the QW re-

gion of the sample to serve as a front-gate. If the sample is to be used in the

transmission geometry, an additional polishing, lithography, and spray-etching

step must be completed at this point. Finally, we mount the sample and con-

tact it either using a manual indium-bonding procedure or using a wire-bonder.

All of the aforementioned steps are described for students with a rudimentary

knowledge of clean-room techniques and should be fairly obvious for anyone

with extensive processing experience.

B.2 Etching a mesa

Before starting the process, we cleave a few pieces (usually 2 or 3, just in case)

of the sample for processing; typical samples are no larger than 5 mm × 6

mm. Depending on the application of the device, different amounts of the QW

structure are to be etched away. In the case of DC operation, the capacitance

of the device is irrelevant, and so we process large front-gate and and back-gate

pads, making them easy to contact, as shown in figures B.1 and B.2a. For such

devices, we typically etch away the QW layer from half of the sample surface.

To do so, we spin and develop photoresist (usually 4110, see table B.1) and

then use a wet-etch to etch down just above the back-gate (∼ 200 nm above

the n-doped region, meaning etching down ∼ 1 µm). Etching too far results

in the depletion of the n-doped layer; not etching far enough will prevent the

back-gate pads from contacting the n-doped layer during the anneal. We use a

wet-etch consisting of H2SO4:H2O2:H2O (1:8:80), whose etch rate is 6–10 nm

s−1 depending on the Al concentration of the structure (AlGaAs etches faster

in this solution than GaAs). It is a good idea to calibrate the etch rate for each
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Figure B.1: A photograph of a CQW sample wired to its sample mount. The front-gate is
visible as the lighter rectangular region on the bottom of the sample. The two back-gate pads
appear above it as two gold squares. Thin gold wire connects the two external pins to the indium
blobs stuck onto the sample contacts.

sample structure, using the Dektak to measure the etched depth.

For RF applications, a large capacitance is undesirable as it will result in a

low impedance (Z = i
ωC ) and thus small RF voltages across the QW structure.

In this case, we strive to make the overlap area of the front-gate and the back-

gate as small as possible, as shown in figure B.2b. These devices require a

two-step etch, leaving a thin strip of QW layer in the middle of the sample, a

region etched down to just above the back-gate layer (∼ 1 µm deep) on one

side, and a region etched through the back-gate layer (∼ 1.5 µm deep) on the

other. The same general photolithography techniques and wet-etch solution are

used with these devices as with the DC devices.
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Figure B.2: A diagram showing the final sample structure for the application of (a) DC and
(b) RF electric fields across a QW structure. On the right are diagrams of the sample viewed
from above, with black lines indicating changes in sample height, yellow squares indicating the
back-gate pads, and orange region representing the semi-transparent front-gate. On the left are
cross-sectional views of the side of the sample showing the QW and back-gate layers as blue
and red regions, respectively. Thicknesses of the metal and semiconductor layers are not to
scale.
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Table B.1: Developing 4110 photoresist (positive).

step description

1 Spin at 5 kHz for 40 s
2 Soft bake (90–100◦) for 1 min
3 Expose (positive) for 15 s at 7.5
4 Develop in 4:1 AZ400K:H2O for 1 min

Table B.2: Developing 5214 photoresist (negative).

step description

1 Spin at 5 kHz for 40 s
2 Soft bake (90–100◦) for 1 min
3 Expose (negative) for 15 s at 7.5
4 Hard bake (110–120◦) for 2 min
5 Flood expose for 1 min at 7.5
6 Develop in 4:1 AZ400K:H2O for 1 min

B.3 Evaporating back-gate pads

After confirming the success of the etching procedure using the Dektak, we are

ready to evaporate the back-gate pads. We typically evaporate two adjacent pads

so that after annealing we can check that they have made and ohmic contact to

the n-doped back-gate layer by measuring the resistance across the pads. Once

again, using photoresist (usually 5214, see table B.2) and a mask, we pattern

two back-gate pads of the desired size, typically 1.5 mm × 1.5 mm. Once

the resist is developed and the the whole sample surface, save the pad area, is

covered in resist, we are ready to deposit.

Using electron-beam deposition, we put down the following layer structure

from bottom to top: 5 nm of Ni, 25 nm of Ge, 65 nm of Au, 20 nm of Ni, and

500 nm of Au.

184



Appendix B Sample processing

B.4 Annealing the sample

Once the back-gate pads have been evaporated, we anneal the sample such that

the metal in the pads spikes down into the n-doped layer and forms an ohmic

contact with the back-gate. The procedure is usually done on the strip annealer,

but can also be done using the rapid thermal annealer. For the strip annealer, we

load the sample and pump down the chamber. We then flow forming gas such

that the pressure equilibrates to 1 Torr. We adjust the temperature set-point to

420◦C and as the temperature rises past 350◦C, we start a timer. After timing for

1 minute, we reset the set-point to 21◦C and wait until the temperature slowly

drops below 100◦C. At this point, we vent the chamber and remove the sample.

To confirm that the back-pads have spiked down into the n-doped layer, we

measure the resistance across the pads, which should be less than 100 Ω (it is

typically 10–20 Ω).

B.5 Evaporating a front-gate

At this point we pattern more resist (5214, see table B.2) onto the sample to

define the front-gate area as shown in figure B.2. The shape and alignment of the

particular front-gate design depends on the application of the device. A simple

square area about 1.7 mm × 1.7 mm in size suffices for most DC applications.

Using electron-beam deposition, we put down 5 nm of Ti followed by 3 nm

of Au. A number of other combinations work in the range of 2–10 nm of Ti

and 3–5 nm of Au. Thicker metal layers have lower resistances, but are also

less transparent than thin layers. Before depositing Ti, it is important remove

the oxide on the surface of the source. This can be accomplished by doing a

predeposition for a few seconds with the deposition shutter closed. Once the
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pressure in the electron-beam chamber begins to drop dramatically, the oxide

layer has been removed. We now can begin depositing Ti onto the sample.

When depositing Ti/Au on sample with an RF gate structure as shown schemat-

ically in figure B.2b, we mount the sample at a∼ 30◦ angle such that we deposit

an electrically continuous semi-transparent film across the ∼ 1.5 µm deep step

on the sample surface, as shown on the right side of figure B.2b. A custom-

made aluminum “angle jig” should be available for this purpose in one of the

group boxes in the clean room.

B.6 Polishing the sample

For optical experiments requiring the transmission of light through the sample,

e.g. Faraday rotation or absorption, we must etch away the GaAs substrate

from a small window in the front-gate area. Note that this is necessary for

GaAs/AlGaAs QWs, but not for InGaAs/GaAs QWs where the band-gap energy

of the QW is lower than that of the substrate. If a window is not required, we

can skip directly to mounting and contacting the sample discussed in section

B.9.

In order to minimize the amount of material which we have to etch away, we

polish the sample down, from the substrate side, to a thickness of 150–250 µm.

Polishing the sample further makes it extremely fragile and difficult to handle;

leaving more material makes the subsequent spray-etch lengthy, exaggerating

the effects of its anisotropy.

Before taking the sample out of the clean-room for polishing, we spin some

thick photoresist (4210) on the front side of the sample to protect its surface. We

develop the resist without exposing it, such that the entire surface is protected.

Note that we have noticed that failure to develop the resist, results in permanent
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residue on the sample surface which can interfere with optical experiments. At

this point we wax the sample, face-down (i.e. the contacts and the protective

resist facing down), onto a piece of a glass slide, which we cut slightly larger

than the size of the sample. This step protects the front of the sample during the

subsequent process and makes its handling easy even after it has been polished

down and is extremely fragile. Care must be taken in pressing the sample down

and in moving it around to squeeze out as much wax as possible from between

the sample and the glass slide. For the rest of the process to go smoothly, the

sample must be waxed flat to the glass slide.

We next wax the glass slide and sample flat to one of the polishing chucks

found in the sample processing area. This polishing chuck is then screwed

onto the bottom of our custom-made polishing rig. Then we hand polish the

sample using 9-µm Fibrmet discs from Buehler (part number: 69-3271). We

place the disks on a flat glass surface and flow de-ionized water as we polish.

We take care to use smooth circular or figure-eight motions as we polish off

no more than ∼ 25 µm (one tick on the polishing rig) of material at a time.

Checking the progress of the polish by measuring the sample height regularly

is recommended.

Once we attain the desired thickness (no thinner than 100 µm), we finish

the surface by polishing on a 8” Chemomet wheel from Buehler (part number:

40-7918) with a mixture of bleach and 0.05-µm abrasive powder from Buehler

(part number: 40-6301-016). There are no exact proportions for the bleach

mixture, but it should look “milky”. To achieve a nice mirror-finish, we advance

the polishing rig 75–100 µm (3–4 ticks) from its last position and polish the

sample with slow and smooth motions. We do not press down on the top of the

polishing rig as we did during the coarse polishing, simply letting the weight of

the polishing rig provide pressure on the sample. Finishing the sample usually
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takes some practice in order to consistently produce a clean mirror finish. Note

that some care should be taken to avoid getting bleach on one’s clothes as it will

permanently ruin them.

A smooth mirror finish on the back of the sample is important so that the

photoresist which is subsequently spun on this surface flows smoothly and cov-

ers the sample uniformly. If the surface is rough, small holes and gaps form

in the resist, which during the spray etch result in unintentional holes through

the sample. These holes compromise the structural integrity of the sample and

cause it to become extremely fragile and susceptible to breakage, especially

during the bonding procedure.

B.7 Defining the measurement window

Once the sample has been polished and cleaned, it should be brought back to the

clean-room, still attached to the glass slide. Here we use photoresist (usually

5214, see table B.2) to pattern the back surface of the sample (the side which

we have just polished) with a small window, usually 300 µm × 300 µm (due

to the anisotropy of the spray etch these dimensions will typically result in a

window which is about 100 µm × 200 µm). In order to align this window

behind the front-gate of the sample, we use the infrared (IR) mask aligner. This

aligner allows the user to shine a light through the sample and to look at the IR

light transmitted through it. In this way, we are able to align the mask used for

patterning the small window directly above the already patterned Ti/Au front-

gate on the other side of the sample. Care should be taken in this process not

to crush the sample between the mask and the glass slide, as it is very fragile at

this point. Once the resist has been patterned and developed, we take the sample

out of the clean-room for the final time and prepare for the spray-etch.
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B.8 Spray-etching the sample

To spray-etch the sample, we first wax it and its glass slide to a “T”-shaped

rig made of glass slides in order to suspend the sample in a beaker over the

spray-etching solution and in front of the spray-etcher nozzle. The spray-etcher

consists of two perpendicular glass nozzles joined together and it operates on the

Venturi principle: flowing pressurized nitrogen gas through the top tube sucks

up etchant through the bottom tube, whose intake is dipped into the etchant

solution, and delivers it onto the sample surface in a powerful spray [116]. The

etchant solution used is NH4OH:H2O2 (7:250). Care should be taken in aligning

patterned window on the back of the sample with the etcher nozzle in order to

achieve a speedy and uniform etch. During the spray-etch, we shine a bright

light onto the back of the sample (the side being etched) and set up a telescope

focused on the front of the sample aimed at the expected position of the window.

Once the substrate has been etched and we reach the AlGaAs stop-etch, light

will transmit through the newly etched window in the sample. After seeing

this transmission, we wait no more than 5 to 10 seconds to stop the spray-

etch and rinse the sample off in de-ionized water. Depending on the thickness

of the sample, the strength of the etchant, and the composition of the layers

preceding the stop-etch layer, the spray etch can take anywhere between 20 and

60 minutes. It is therefore, very important to carefully watch and time the first

sample etched.

After the spray-etch, we heat the sample and the “T”-shaped rig on a hot

plate to separate them and then we place the sample attached to its glass slide

in a beaker of acetone for lift-off. After soaking for 20–30 minutes, the sample

will either lift-off on its own or will easily slide off the glass slide. Extra care

should be taken in handling the sample at this point, as the window is very
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fragile. After cleaning, the sample is ready to be mounted and contacted.

Sometimes the sample can be slid off of the glass slide by simply heating

it on a hot plate and pushing it off with a pair of tweezers, though this is not

recommended as it often results in a shattered sample window. Also, we avoid

the use of the sonicator to aid in lift-off as the vibrations result in a shattered

window.

B.9 Contacting the sample

We affix the sample to its mount using either rubber cement or GE varnish. In

both cases, as little adhesive as possible should be used in order to avoid getting

residue on the windows of the sample space in the cryostat, as described in

section C.4.2. Using a conservative amount of adhesive also prevents an excess

from covering the sample surface. Once the adhesive has dried and fully cured,

we are ready to contact the sample.

If we have mounted the sample to a chip carrier, at this point we can use the

wire-bonder to contact the sample to the carrier. Once bonded, the chip carrier is

simply mounted into its slot on the sample mount. This scheme is preferred for

samples with RF applications, which have small gates and pads patterned on the

surface. Contacting small regions is often only possible using the wire-bonder,

which gives the user more precision and control in the contacting process than

manual indium-bonding does.

While the indium-bonding process is inherently “sloppier” than wire-bonding,

it is also faster and easier. Learning to use the wire-bonder efficiently requires

time and patience and is not always worth the effort, especially for samples used

in DC experiments where the contact pads can be quite large. For such samples,

indium-bonding is the preferred contacting scheme. In this process we use a
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Figure B.3: A typical I/V curve for a CQW structure taken at T = 5 K. PQW samples have
similar I/V characteristics. For the voltage ranges used during experiments I < 10 µA.

microscope to look at the sample surface and we contact thin gold wires to the

sample by pressing them down onto the contacts with small blobs of indium

metal. If the sample surface is clean, the indium sticks to the contacts and the

wire, providing a robust electrical connection. We typically use thin gold wire

with a diameter of 0.001” and pure indium in this process. On the other end, the

gold wires are soldered onto large pins on the sample mount using conventional

solder. A sample contacted using this method is shown in figure B.1, where the

pins, wires, indium blobs, and contacts are all clearly visible. For samples with

etched windows, special care should be taken not to put excessive pressure on

the sample as this will result in a shattered window or a broken sample.

Once the sample pads have been contacted, the connection should be tested

at room temperature and then again in the cryostat at the operating temperature,

e.g. T = 5 K. A typical I/V curve from a CQW structure with indium-bonded
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contacts is shown in figure B.3.
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Appendix C

Operation of an Oxford
Spectromag

C.1 Introduction

Magneto-optical cryostats are used to impose large magnetic fields (up to 8

or 9 T) and low temperatures (down to 1.5 K or even 350 mK using the he-

lium 3 insert) on a sample while providing optical access to it. In order to do

so, these systems use a split-coil superconducting magnet rather than a simple

solenoid. In the Awschalom lab, this instrument, and specifically the Oxford

Spectromag model (see figure C.1), has been a work-horse in a number of opti-

cal measurements of spin dynamics in semiconductors. There are several Spec-

tromag systems in the lab; in this section we cover some important maintenance

and trouble-shooting techniques which students running these systems should

know. This appendix is by no means a complete reference on the Spectromag,

but should serve as a supplementary resource to the manual [181] and other

literature available on the subject. Detailed instructions on cooling the system

down and on the helium transfers can be found elsewhere and are not covered
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here.

C.2 Installation

Installing a Spectromag system can be either a short and painless process or a

long drawn-out drama. In order to ensure the former scenario, there are several

steps which can be taken. First, the Oxford instruction manual has a detailed

section on the installation procedure which should be followed carefully. Addi-

tional precautions which should be taken in order to ensure a smooth installation

and to avoid future problems are covered in this section.

Note that once the system is open, gloves should be used at all times while

working on it in order to prevent the accumulation of hand grease in the vacuum

space. While Oxford is notorious for shipping cryostats whose vacuum spaces

are covered in a film of pump oil, there is no reason to add to the mess. In fact,

it is a good idea to clean as much of the oil from the vacuum space as possible

using acetone, isopropyl alcohol, and methanol before proceeding with the first

cool-down. Oil left in the system may end up coating windows in the system.

C.2.1 Re-doing the indium seal

During the first stages of the installation, the tail of the system is removed and

the shipping bungs are removed. This is an ideal time to familiarize oneself with

the innards of the the cryostat and most importantly for re-doing the indium

seal at the bottom of the variable temperature insert (VTI). While these seals

are tight during testing in England, they can loosen in transit and cause a leak

during cool-down. It is wise to simply re-do the seal before going any further.

The indium seal in question is at the bottom of the VTI, between the VTI

and the capillary leading to the needle valve (NV) and the helium bath. The two
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Figure C.1: A photograph of Luigi, one of the Oxford Spectromags in the Awschalom Lab.

195



Appendix C Operation of an Oxford Spectromag

Figure C.2: A view from below the Spectromag of the two flanges involved in the indium seal.
The flange in the center leads to the bottom of the VTI, while the flange on the left leads to a
capillary attached to the NV assembly. Indium residue is visible on the center flange.

flanges between which the seal must be made are shown in figure C.2.

In order to undo the original seal, unscrew the bolts holding it together and

then use a small flat-head screw-driver to pry apart the flanges. Special care

must be taken in this process in order not to damage the soft brass flanges and

cause a permanent leak. Sometimes the flanges have holes for “jacking screws”

in which case the removal should be straightforward. We carefully remove the

indium from the flanges using a small wooden stick taking care not to scratch

the flange surface. Scratches, especially radial ones, can cause leaks in the seal.

Once the old seal has been removed and minimal indium residue remains,

we can make a new seal. In order to do so, we use thin indium wire, which
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is usually provided along with the spare parts for a new Spectromag, and wrap

it in a circle around the raised lip in the center of the flange. It is sufficient

to simply overlap the ends of the wire rather than twisting it. We then make

sure that the indium is short enough that it does not protrude from the edges of

the flanges. Also, we apply a light coat of silicone vacuum grease on the wire

before assembly in order to make the indium o-ring peel off more conveniently

next time. Carefully screwing the bolts back in with the indium o-ring in place,

we re-seal to flanges. Though tightening firmly, we take care not to distort the

brass flanges or to strip the screws. The seal should be leak-checked at room

temperature before proceeding with the cool-down.

C.2.2 Re-entrant tubes

As mentioned in section C.2, Oxford has a tendency to ship cryostats whose

vacuum spaces are covered in a film of oil. While a significant amount of oil

can be cleaned up during the first opening, it will always stick around, usually

hiding in the super-insulation where we cannot easily clean it. The oil’s pres-

ence rears its ugly head shortly after the first cool-down in the form of an opaque

annular film which forms on the four nitrogen windows as shown in figure C.3.

These windows are attached to the nitrogen shield shown in figure C.4 and are

therefore held at 77 K when the cryostat is cold. Acting as cold-traps for the

pump oil, the windows accumulate more and more oil as the cryostat stays cold,

eventually obscuring the optical path to the sample. This phenomenon has been

observed in several of Oxford’s latest Spectromags despite our alerting them to

the problem. Note that we have never observed oil to condense on any of the

other two sets of windows in the system: neither the outer windows nor the VTI

windows, even though the latter are also generally quite cold.
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Figure C.3: In the left panel is a photograph of an annular oily residue which tends to build
up on the nitrogen windows several days after cooling the system down. The re-entrant tubes
shown in the right panel are installed in place of the nitrogen windows to solve this problem.

To fix this problem we replace the nitrogen windows with copper re-entrant

tubes, shown in figure C.3. While this installation cuts down on the ease of

optical access to the sample, it has been the only successful strategy at fighting

the oil condensation. The tubes present a large area of copper at 77 K which acts

as a cold trap for the oil and essentially pumps it from the vacuum space. They

also serve as effective thermal radiation shields, keeping the cryostat’s boil-off

rates normal.

The tubes should be requested from Oxford before installation of the sys-

tem as they have to be custom made for it. In screwing the tubes to the nitrogen

shield, care must be taken not to cause a touch between them and the magnet

casing causing a thermal short between the helium and nitrogen spaces. As

Oxford is likely to ship crooked and asymmetrical tubes, there are preferred

orientations for the tubes. Even if a touch does not occur at room temperature,

it may develop upon cooling down as different components contract. Since the

re-entrant tubes protrude into the magnet casing with very little space between

them and the casing, they should be prime suspects in any investigation of a
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Figure C.4: The nitrogen shield is shown here once it has been unbolted from the tail and the
nitrogen windows have been removed.
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touch. Often the only way to solve these types of problems is to continue try-

ing new orientations and configurations of the re-entrant tubes until there is no

longer a touch.

C.2.3 Manifold design

Before running the system, we must prepare a gas-handling system to inter-

face with the cryostat. This apparatus is typically mounted on a wall near the

cryostat and is connected to it through a series of over-head bellows (typically

flexible metal tubing from American Boa Inc.). A design for a system with a

lambda space is shown in figure C.5. Systems without lambda spaces require

only two, rather than three, independent outlet ports. The manifold must be

welded together by the machine shop and carefully cleaned and leak checked

before use. A full manifold design, complete with Swagelok input fittings is

shown in figure C.6.

Along with preparing a manifold, it is also essential to build a respectable

break-out box in order to have orderly access to the handful of resistances and

heaters which must be monitored and used during the course of cooling down

and operating the system.

C.2.4 Setting up the power supply

Before first ramping up the magnet, we must install the magnet power supply.

We carefully follow the installation instructions, setting all of the appropriate

parameters and break-points in the supply’s memory.

Setting the correct maximum current is critically important. Each system

has a maximum current, i.e. magnetic field, which it can support before quench-

ing (more on this subject in section C.7). For Spectromag systems this is 7-8 T
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depending on the magnet; before changing the power supply settings, this value

should be double-checked in against the value listed in that system’s manual. If

the maximum current in the power supply is set above this threshold, it is very

likely that at some point during its operation, through some manual, program-

ming, or unforeseen computer error, the magnet will quench. Under the wrong

circumstances, quenches can damage a split-coil system beyond repair, so they

should be avoided at all costs. A correct setting of the maximum current will

prevent either the user or the computer from ramping the magnet beyond its

critical field.

In systems with a lambda fridge there are two maximum currents: the max-

imum current achievable under normal operation and that achievable when the

lambda fridge is cold, e.g. 8 and 9 T, respectively. Since the small boost in

magnetic field is rarely worth the effort and risk of using the lambda fridge, the

lower current should be set as the power supply’s maximum. This current is

easily changed if the user eventually wants to use the lambda fridge to go to

the true maximum field. Having the maximum set beyond the critical current

for normal operation, however, voids the benefit of this safety feature and will

eventually lead to a quench.

C.2.5 Condensation

Despite the carefully controlled humidity in the lab and the thermal isolation

of the inside of the Spectromag from it outer components, certain surfaces on

the Spectromag remain cold enough to often be covered in water condensation.

This mist can be especially annoying when it accumulates on the outer windows

as it can interfere with optical measurements. This problem is easily solved by

setting up a permanent spray of filtered nitrogen gas to dry out each window.
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Despite the filtration, particles are inevitably sprayed onto the windows along

with the nitrogen. Over time residue builds up and it is therefore a good idea to

periodically check the state of the windows and to clean them.

Another trouble spot is the top of the cryostat (see figure C.7), through which

the cold nitrogen and helium boil-off gases pass on their way out of the system.

Condensation from the fittings shown in figure C.7 drips onto the top flange of

the cryostat and seeps into the welds on this flange. This process causes the

welds to rust and eventually to leak. While these leaks can be repaired by open-

ing the system and re-welding the seals from the inside with the help of a skilled

welder, it is far easier to prevent them. In order to do so, we stop the water con-

densation from accumulating on the top plate. Wrapping absorptive paper or

cloth “collars” (we have found that clean-room wipes work best) around all the

tubes leading cold gas out of the system is an easy and effective solution for the

problem. Some extra wiping will be required during times of extreme conden-

sation, e.g. transfers, cool-downs, superfluid runs, and periods of extended field

ramping. Further protection can be added by covering the offending welds with

a lining of aquarium sealant, though it is our experience that this material will

peel away over time, exposing the welds.

C.3 Day to day care

C.3.1 Monitoring cryogen boil-off rates

Keeping a good record of the cryogen boil-off rates is an important part of the

day-to-day attention required by a Spectromag system. Having the computer

automatically monitor the levels and keeping a log of their values is the easiest

way to achieve this task. This log makes changes in the boil-off rates easy to
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Figure C.7: A view of the top of a Spectromag. Note the ice and condensation present on the
exit port from the helium bath (a transfer has recently been completed). Also note the “collars”
fitted to each port susceptible to condensation.
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spot and makes the analysis of the system’s long term stability straightforward.

In the case of a touch or leak in the system, the nitrogen and helium boil-off can

provide important information distinguishing between the two. For instance, in

the case of a touch between two parts in contact with the nitrogen and helium

spaces, respectively, a specific signature will be left in the boil-off data: the

nitrogen rate will drop while the helium rate will rise.

C.3.2 Transferring helium

Helium transfers are required in Spectromag systems every 2-4 days depending

on the intensity with which the system is being used. While this procedure is

routine and should be common knowledge among students in the lab, there are

couple of important things to keep in mind.

When cooling the cryostat down for the first time, the transfer stick which

goes into the cryostat should be fitted with the end-piece with the hole directed

straight down. This will channel helium into the magnet space cooling the sys-

tem down more efficiently. Using the end-piece with holes on the side directs

helium away from the magnet and into the helium space, making the initial

cool-down extremely slow. If helium liquid is simply dumped in at the top of

the system, it will evaporate long before it reaches the magnet at the bottom.

The fitting with the holes in the side is used in typical transfers, but is only nec-

essary for transfers performed with the magnet persistent at a non-zero magnetic

field. In this case, it is important to direct the flow of incoming helium liquid

away from the magnet in order not to cause vibrations in the windings which

could result in a quench. Special care should be taken when transferring at high

field including the use of low pressures and slow transfer speeds in order to

minimize perturbations of the magnet. Unless absolutely necessary, i.e. there
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is not enough helium in the bath to support ramping the magnet down to zero

field, these types of transfers should be avoided. Despite the risks, safe transfers

have been made in the lab with the magnet persistent at 8 T.

Also, a filter should always be fitted to the end-piece on the transfer stick

which dips into the storage dewar. These dewars of helium often contain ice

particles which should be kept out of the Spectromag system. The accumula-

tion of ice particles will eventually cause the clogging of the NV and in larger

quantities can cause more serious problems. The transfer sticks available in the

lab should all be fitted with 10-µm mesh filters for this purpose.

After starting a transfer, sometimes the gas at the bottom of the system can

form a relatively static plug inhibiting the flow of helium. In this case, we notice

that despite a full storage dewar with an overpressure, the helium level in the

cryostat does not rise and little gas is emitted from the blow-off port. A snug

fit between the bottom of the transfer line and the Spectromag’s inlet cone is

usually to blame. Simply sliding the transfer line up by a half inch releases the

trapped gas (at this point we notice a plume emitted from the blow-off port) and

the transfer will proceed normally.

It is also important not to be distracted during a transfer, lest the system

overfill. Such a mishap can potentially lead to the freezing of the large diameter

o-ring seal between the cryostat body and the top flange, making the vacuum

jacket soft and turning the Spectromag in question into an ice cube.

C.3.3 Loading and unloading samples

Loading and unloading samples should be done with care. Every time the VTI is

opened to the air while the systems is cold, we give water and air the opportunity

to enter the sample space. If we are not careful, the ice will cover the inside of

207



Appendix C Operation of an Oxford Spectromag

Figure C.8: How not to transfer helium.
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the VTI windows and cause serious problems with our optical measurements.

This ice can also result in the clogging of the NV.

For this reason, the probe stick should be removed and inserted into the

VTI carefully and quickly. An overpressure of helium gas passed through a

cold-trap (a coil of copper tubing dipped into an open-mouth dewar of liquid

nitrogen) should be applied to the sample space. Even with these precautions

taken, air or water can accumulate in the VTI over time. Therefore, it is a good

policy to minimize the number of times samples are loaded and unloaded from

a cold system.

C.3.4 The switch heater

The superconducting magnet in the Spectromag system is energized through a

persistent mode switch, known as the switch heater. When heated, this small

length of superconducting wire, which is wrapped with a heater wire, reverts

to its highly resistive normal state. The power supply is connected across this

length of wire and thus can be used to increase or decrease the current flowing

to the magnet when the switch heater is on.

This component is essential to the operation of the system and is impossible

to replace. In most systems Oxford includes a spare switch heater in case the

primary one should fail. Nevertheless, it is vitally important not to destroy

the switch heater. Such an event typically occurs when one forgets to turn the

switch heater off after ramping the magnet. Given a sufficient amount of time,

all of the helium in the system will boil away and without anywhere to dissipate

its heat, the switch heater will burn itself out. This process will take at most

one day since the helium boil-off rate is about 4 times the normal rate with the

switch heater on. In order to avoid such a course of events it is important to
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always check the status of the switch heater before leaving the cryostat for an

extended period of time. It is also important to write programs controlling the

magnet power supply which under no circumstance leave the switch heater on

after running.

C.4 Cleaning the VTI windows

C.4.1 Ice on the windows

In most cases, a layer of white cyrstaline residue on the VTI windows is ice

from impurities which entered the system during the loading and unloading of

samples. Usually this ice consists of air (mostly nitrogen) and is easily removed

by heating the VTI above 77 K, the boiling temperature of of nitrogen. This

type of ice is easily identified upon passing 63 K, the freezing temperature of

nitrogen, when the crystalline residue liquefies. If this liquefaction does not

occur, the ice probably consists of water and in this case the VTI must be heated

to 300 K and kept there until the water has evaporated. Care must be taken not

to heat the VTI at its maximum current for more than 10-15 minutes without a

short break, as the heater may burn itself out. In both the case of nitrogen and

water ice, it is important to thoroughly pump on the VTI while it is warm in

order to remove the offending gas from the VTI before cooling back down.

If the formation of ice becomes a chronic problem, rearing its head every

time the VTI is cooled down, chances are that there is a leak in one of the

sample stick’s o-rings: either the o-ring sealing the stick to the VTI or, more

likely, the o-ring forming the seal to the vertically sliding probe stick. Leaks of

this kind must be fixed before we proceed with measurements.
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Figure C.9: The bottom of a VTI window cleaner with lens paper in place.

C.4.2 Other detritus on the windows

If the procedures discussed in section C.4.1 are not effective, the residue on

the windows is not ice; a variety of different contaminants could be responsible

including particles out-gassing from GE varnish, rubber cement, or other adhe-

sives used to affix samples to the probe. To prevent contaminants from making

their way into the VTI, use as little adhesive as possible to affix samples and

allow adhesives, especially GE varnish, to fully dry and cure before inserting

them into the VTI.

In order to clean existing detritus from the windows, we wait until the sys-

tem has warmed up and then use a long rod fitted with a custom-made lens paper

holder (shown in figure C.9) to wipe the windows clean from the inside. This is

a two person job with one person holding the cleaning rod and another directing

operations while looking at the windows from the outside. Special care should

be taken not to scratch the windows or to put unnecessary pressure on them.

We do not use solvents as they can compromise the Ecobond seals around the

VTI windows and cause permanent leaks. Such a disaster would require the
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replacement of the VTI windows.

C.5 Needle valve problems

C.5.1 Over-tightening the needle valve

The NV is a typical source of problems during the day-to-day operation of a

Spectromag system. First, it is very important not to over-tighten the NV when

closing it. As seen in figure C.10, the NV makes a steel on brass seal which can

easily be made to leak by over tightening. Since brass is a soft metal, one must

be very careful not to tighten beyond “finger-tight.” For Spectromag systems

equipped with a motorized NV, we highly recommend the use of this system

in place of manually opening and closing the valve. Cryostats in the lab with

motorized controllers have remained leak tight far longer than those without.

Note that a leaky NV is not the end of the world; it simply results in a slightly

shorter helium hold time and the inability to completely seal off the VTI from

the helium space.

C.5.2 Ice in the needle valve

The most common problem encountered with NVs is their clogging with nitro-

gen ice floating around in the helium space. This tends to occur after several

months of keeping a system cold, when enough ice particles have accumulated

to cause a problem. Oxford, anticipating this problem, provides us with access

to a NV heater and a NV resistor for monitoring its temperature. These com-

ponents are mounted to a small copper block which is bolted to the brass NV

housing shown from below in figure C.11.

The main symptom of a clogged NV is the lack of liquid helium flow into
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Figure C.10: A photograph of the inside of a NV. This particular NV has been removed and
cut open after it seized. Residue from the seizure is still visible in the threads. The exit path at
the bottom of the NV housing leads to the VTI, while the hole drilled in the side leads to the
helium bath.

VTI. Typically, the NV will turn freely despite the lack of flow. If the NV has

seized or is difficult to turn, this may still be a simple problem with nitrogen ice.

It is likely, however, that more serious problems exist as discussed in section

C.5.3.

Once the problem has been diagnosed as a clogged NV, we proceed to heat-

ing it using the NV heater. To do so we connect a small current supply to the

heater and pass no more than 100 mA through it. At the same time we heat the

VTI using the VTI heater. We continue heating until both the VTI sensor and

the NV resistor indicate temperatures above 77 K. At this point, we pump on

the VTI and open and close the NV looking to see if the flow of helium starts.

It often takes few iterations of heating and pumping and a good deal of opening

and closing of the NV before a clog works itself out. It may even take 10 to

20 minutes of sustained NV and VTI temperatures above 77 K to melt a clog.

If the clog consists of water rather than nitrogen or oxygen, it will be virtually
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impossible to unclog the NV without warming the whole system up. Since the

NV is always in contact with he liquid helium bath, there is no way of heating

it up to sufficiently high temperatures to melt water ice. Though this outcome

is always a possibility, it is rare.

Note that care must be taken not to pass too much current for too much time

through either the NV heater or the VTI heater. Burning one of these heaters

out is a major headache and should be avoided at all costs. Generally we use

currents under 100 mA for no longer than 10-15 minutes at a time. We must

allow several minutes in between heating cycles for heat to dissipate away from

the heaters preventing permanent damage.

C.5.3 A seized needle valve

A seized NV is a far more serious problem than a clogged NV. It has only

occurred once in the Awschalom lab to date and required an extended inter-

vention to repair. This rare occurrence was likely due to a design flaw in the

NV which somehow became unthreaded and started to slowly chew away at the

brass threads of its housing until it seized. When such a disaster occurs it is

obvious as the NV does not budge at all no matter how hard one tries to turn it.

The NV itself is a threaded piece of steel with a conical tip as shown in figure

C.11 which is welded to the end of a long and hollow steel tube. This tube sits

in a snug cylindrical shaft and extends out to the outside of the cryostat where

it is attached to a motorized NV controller or a simple manual knob. In fact, the

NV can be inspected for damage (if it’s not seized) by fully unscrewing it from

its brass housing and pulling it out of its cylindrical shaft. Note, this should only

be done when the system is warm.

The NV housing is the threaded brass piece with an inlet and outlet port.
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Figure C.11: On top is a photograph of the magnet with the cryostat’s tail removed. The
small tube is the capillary carrying liquid helium from the NV to the VTI. On the bottom is a
photograph of the NV housing from below. Wires leading the NV heater and resistor are visible.
Here, the tail of the cryostat has been removed and we are looking up toward the cryogen spaces
from below. The NV is still in place.
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The housing from the seized NV was cut open and is shown in figure C.11. In

order to remove the seized NV, the NV had to be turned hard enough to break

the steel tube from the NV tip. The shaft was then removed and the NV housing

was heated with an acetylene torch until it could be detached from the tubes to

which it was soldered. A new NV tip was then welded to the steel shaft, making

sure to center it along the axis of the tube before attachment. Meanwhile a new

NV housing was machined by Oxford and installed by our skilled machinists

using the torch. This delicate procedure is complicated by the awkward position

of the NV in the cryostat and by the fact that its input and output connections

have to hold vacuum. Furthermore, we had to be careful not to heat the exposed

surfaces near the NV too much, lest we cause other damage to the cryostat. We

covered all surfaces near the NV housing with a protective coating of tin foil in

order to avert any possible damage due to the torch. Once in place, the new NV

worked perfectly and the system continues to show no signs of damage.

C.6 Touches and leaks

C.6.1 Touches

Touches and leaks in a Spectromag system can cause a lot of headaches for

students resulting in months of lost time. Therefore it is important to work

methodically to determine the exact cause of the touch or leak and to address it

appropriately.

Touches are more common than leaks, as leaks tend to be caught before

cool-down during the compulsory leak checks. The most common type of touch

is between the nitrogen shield (or the re-entrant tubes which are attached to it)

and the magnet housing. Such a touch is easily diagnosable as it is characterized
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by a drop off in the nitrogen boil-off rate and a simultaneous increase in the

helium boil-off rate. These touches are usually fixed by warming the system

up and making small adjustments in how the nitrogen shield is attached to the

tail of the cryostat. In typical Oxford fashion, there is quite a bit of slop in how

the nitrogen shield can be set with respect to the magnet housing. We find that

altering the configuration slightly, just enough to maximize the space between

the shield and the housing, usually fixes the problem, though it may take a few

iterations.

Touches can also happen between the VTI and the magnet housing. This

problem should be characterized by a drop in the equilibrium VTI temperature

and a rise in the helium boil-off rate. The insertion of a ring of Teflon spac-

ers around the VTI, between it and the magnet housing, can provide an easy

solution.

A touch between any of the cold surfaces and the outer housing of the cryo-

stat will have an obvious cooling effect on the outside of the system. Such

touches should be rare as there is quite a bit of space between the inner and

outer surfaces.

C.6.2 Leaks

The most common Spectromag leaks are caught in the early leak-checking

phases of a cool-down and tend to be leaks through the o-ring seal of an outer

window. An o-ring which is either cracked or has some dust or hair on it will

cause a leak. A more serious kind of leak can develop on the top flange of

the cryostat due to water condensation causing rust in one of the welds. Such

an occurrence can be prevented as discussed in section C.2.5 and can be fixed

by a having a skilled welder re-do the weld from the inside. Another common
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leak occurs in the indium seal below the VTI and is easily fixed by following

the directions in section C.2.1, unless permanent damage has been done to the

flanges.

A particularly hard leak to diagnose occurs in the o-ring inside the valve

used from pumping the outer vacuum jacket. Since the leak-checker is con-

nected through this valve, such a leak will elude identification by this procedure.

Though tricky to catch, this problem is easily fixed by cleaning or replacing the

valve’s o-ring.

Leaks have also been known to develop through the epoxy seals of the VTI

windows. Leaks in this area are usually the result of a violent quench or other

stress put on the windows. In the past, bumping the windows in the process of

cleaning them or forcing a sample probe without enough clearance past them

has lead to leaky seals. To fix this problem the cryostat must be warmed-up, the

VTI removed, and new windows must be epoxied in place.

Slow leaks can also develop and may not be apparent until the cryostat has

been cold for many months and the boil-off rates start to slowly rise. These

types of leaks can sometimes be ignored as they can be offset adequately by the

cryo-pumping action of the cold surfaces in the cryostat. Eventually, however,

when the surfaces are saturated, the cryostat will go soft. While a couple of

these types of leaks have been identified, it is still unclear what their origin is.

C.7 Quenches

When a large amount of current is passing through a superconducting magnet

and a small region of the superconductor becomes normal, heat will be gen-

erated. If this heat cannot be dissipated more quickly than it is generated, the

normal region will propagate throughout the material in an avalanche fashion.
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Once this process starts, there is no way to stop it: the magnet is quenching.

If this occurs during the operation of a Spectromag, the best thing to do is to

open all available release valves in order to let all the high pressure gas flow

from the system as freely as possible. These events are usually the result of

large forces imposed on the magnet windings, large amplitude vibrations, or the

surpassing of the critical current. In all cases something causes an element of

the winding wire to move within the applied magnetic field, converting some

electromagnetic energy into heat and providing a starting point for the quench.

The best protection against a quench is attentiveness and preventive measures

such as those described in section C.2.4. In addition, it is important to keep any

magnetic objects far from the stray fields of the magnet and to be careful not to

bump the system while it is energized.

Quenches can result in a number of very serious consequences for the sys-

tem including the damage of the magnet windings (very serious) or the VTI.

Sometimes, however, lady luck has smiled on students and a quench has left the

system unharmed.

A related problem can occur if by some human, computer, or power grid

problem, the magnet power supply no longer “knows” at which current the mag-

net is persisting. Due to UCSB’s notoriously flaky power grid, it is a good idea

not to run experiments requiring copious magnet ramping during periods of in-

clement weather, e.g. high winds or heavy rain. In case of such a loss of the

field setpoint, it is important to be aware at all times what the field of the magnet

is, even if only roughly. If the power supply and the magnet do not have match-

ing currents when the switch heater is turned on, all the excess current will be

released as heat in the helium bath through a pair of diodes. If the currents are

extremely different, enough heat could be dumped to cause a quench in the sys-

tem. If, however, the currents are close, not much besides a large waste of liquid
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helium is likely to occur. It is therefore important to keep track of the magnet

action mentally and perhaps in the form of an automatic computer log.

C.8 Probe design

While Oxford ships each Spectromag system with a generic probe stick, we

often need to make our own in order to accommodate the specific needs of our

experiment. An example of a probe design popular in the lab is shown in figures

C.13-C.25 and in a photograph in figure C.12. Four probes based on this original

design have been made so far. The design’s fundamental innovation with respect

to earlier probes is that it incorporates a semi-rigid coaxial line for transmitting

radio frequency (RF) voltages to the sample in addition to traditional DC signals

sent via twisted pairs. It is also designed such that a wide variety of mounts

can be made and used with it including RF coils (as shown in figures C.15-

C.17) and chip carriers. As long as these mounts are designed properly (for this

particular design, holding the sample 0.297” from their base), the sample will

sit on the probe stick’s axis of rotation. This design feature allows the user to

rotate the sample with respect to the applied magnetic field without changing the

position of the sample’s center line; such a feature is convenient for preserving

the alignment of optical experiments regardless of sample angle and should be

considered in future probe stick designs.
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Figure C.12: An RF probe for Spectromag (model F2001).
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Figure C.13: Design for the temperature stage at the bottom of an RF probe (model F2002)
for a 25-mm bore Oxford Spectromag.
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Figure C.14: Design for the sample stage at the bottom of an RF probe (model F2002) for
a 25-mm bore Oxford Spectromag. Springs from Majr Products Corp. (part number: 5250-
02R75-BC) should be braised to the upper perimeter of this part for stability.
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Figure C.21: A design for an electrical break-out of a Spectromag probe.
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Figure C.23: The top plate of the top part of a Spectromag probe; this part is outside the
cryostat at room temperature. It is machined from a standard Kwik-Flange component.
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Figure C.24: A view from above of the top part of a Spectromag probe; this part is outside
the cryostat at room temperature. It is machined from a standard Kwik-Flange component and
includes schematics of the Fischer and SMA plugs which feed through it.
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Figure C.25: A photograph of the bottom of an RF probe (model F2002) for a Spectromag.
The sample is wired with electrical contacts, temperature sensors, and an impedance matched
RF coil mounted to the bobbin whose design is shown in figure C.17. The variable capacitors
used for impedance matching are visible on the small breadboard near the end of the semi-rigid
coax.
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Coupling RF radiation to an NMR
coil

D.1 Introduction

The optical nuclear magnetic resonance (NMR) experiments described in chap-

ter 3 involve the creation of a radio frequency (RF) magnetic field with an am-

plitude of order one gauss at the position of the sample inside a magneto-optical

cryostat. RF voltages are transmitted from an RF source down into the cryostat

through a transmission line connected to an NMR coil. A number of challenges

present themselves in coupling RF fields efficiently to a sample coil since the

characteristic length l of the apparatus (the cryostat is about 1.3 m tall) is on the

order of the wavelength of the necessary RF radiation (e.g. for ν = 50 MHz,

λ = 6 m). In this limit, simple notions of circuits and circuit elements break

down; these assumptions are only valid for λ À l. We must think of our signals

in terms of transmitted and reflected waves and carefully consider the geometry

of our experimental setup. Fortunately, our task is significantly easier than the

design of a conventional NMR coil, which in addition to creating RF electro-
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magnetic fields, also must be able to detect them.

D.2 NMR probe design

D.2.1 The transmission line

The large temperature difference between the sample (typically at T = 5 K) and

the exterior of the cryostat (T = 300 K) forces us to use a semi-rigid stainless

steel coax to couple RF radiation from our source to the NMR coil near the

sample. Since stainless steel is a poor thermal conductor, it does not transport a

significant amount of heat into the cryostat, allowing us to adequately cool the

sample. This type of coax, however, is an efficient RF attenuator which severely

limits the amplitude of the magnetic fields produced at the sample position. As

a compromise, we use a semi-rigid coaxial cable with a stainless steel outer

conductor and a beryllium-copper inner conductor, which has slightly worse

thermal, but significantly better conductive properties than its stainless steel

counterpart. In order to couple as much RF to the bottom of the cryostat as

possible, we also choose the largest diameter coax which we can fit in our probe

design, d = 0.141”.

In order to minimize heat gradients in the semi-rigid coax, we also carefully

design the probe stick such that throughout its length it provides thermal contact

between the coax and the gas in the VTI. This task is accomplished by thermally

anchoring the coax to the sample stage and to all of the baffles, whose design is

shown in figures C.19 and C.20.

236



Appendix D Coupling RF radiation to an NMR coil

D.2.2 The coil

Care must also be taken in the design of the coil. In order to achieve an RF

field B1 perpendicular to both the applied magnetic field B and the the laser

propagation direction, as required by the experiments in chapter 3, we choose a

Helmholtz coil configuration. Using the Biot-Savart law we find that for such a

split-coil configuration the magnetic field at the center of the coil is maximized

for

r =
d√
2
, (D.1)

where r is the radius of the coils and d is the distance between their centers.

With the distance d fixed by the size of our sample, we use this simple relation

to solve for the appropriate r.

Typical Helmholtz coil parameters are easily inferred from the bobbin de-

signs shown in figures C.16 and C.17. One successful coil had d = 0.158” and

r = 0.096” and consisted of two coils made from 4 turns each of 22 AWG mag-

net wire. Its inductance and resistance were measured at 0.24 µH and 0.63 Ω,

respectively [182].

D.2.3 Impedance matching

In order to couple RF radiation into the coil while minimizing losses due to re-

flections and interference, we must impedance match the coil to the to the trans-

mitter electronics. This is usually achieved by transforming the coil impedance

to a standard impedance such as 50 Ω, which is the characteristic impedance

of most transmission lines and RF electronics. We can transform the coil im-

pedance by including low-loss reactive elements (capacitors) in the circuit and

by tuning their impedance to achieve a 50 Ω total impedance.

Two matching schemes are typically used [183]. In the resonant-coax scheme,
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Figure D.1: A schematic representation of the two typical coil matching schemes. (a) shows
the resonant-coax scheme and (b) the matched-load scheme. L is the inductance of the coil, and
C1 and C2 are the capacitances of the tuning capacitors.

shown in figure D.1a, the coil is connected directly to the coax at the bottom of

the cryostat and the matching capacitors are connected at the top of the probe

stick outside the cryostat. The coax is therefore included in the resonant circuit.

This scheme has the advantage that the matching capacitors are easily tuned

to optimize the circuit’s performance. Unfortunately, however, the inclusion of

the coax in the resonant circuit has a strong attenuating effect and makes the

maximum achievable RF magnetic field at the sample quite small.

In a second scheme, the matched-load scheme, shown in figure D.1b, the

matching capacitors are connected to the coil at the bottom of the cryostat and

the whole circuit is in turn connected to the semi-rigid coax. Here, the coax is

not part of the resonant circuit and its attenuating effects are significantly re-

duced in comparison with the resonant-coax scheme. The drawback here is that

the matching network is near the sample and is therefore both at low tempera-
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ture and very difficult to access for circuit optimization purposes.

In both cases, the impedance of the load to be matched is the total impedance

of the first capacitor with capacitance C1 in series with the parallel capacitance

and inductance of the second capacitor and the coil, C2 and L, respectively. In

the case of the resonant-coax scheme, the basic circuit is the same, though we

must also account for the capacitance of the coax in parallel with C2. For conve-

nience, we will absorb the coax capacitance into C2 for the following analysis.

Therefore the total impedance of the load can be expressed as,

Z =
1

iωC1
+RC1 +

(
1

iωC2
+RC2

)
(iωL+RL)

1
iωC2

+RC2 + iωL+RL
, (D.2)

where RC1 , RC2 , and RL are the resistances associated with the two tuning ca-

pacitors and the coil, respectively. Simplifying this expression we have,

Z =

(
L
C +RCRL +RC1RC2 − 1

ω2C1C2

)
+ i

(
ωLRC− RL

ωC −
RC2
ωC1

− RC1
ωC2

)

RC2 +RCL + i
(

ωL− 1
ωC2

) , (D.3)

where C = C1C2
C1+C2

and RC = RC1 + RC2 . Since we use low-loss elements, all of

the resistances RL, RC1 , and RC2 should be small and to first order all terms

containing a resistance can be ignored. In this case, the total impedance will be

completely real (resistive) only when,

− ωL2

C
+

L
ωC1C2

+
L

ωCC2
− 1

ω3C1C2
2

= 0. (D.4)

Solving this equation results in ω = ±
√

1
LC2

, ±
√

1
L(C1+C2)

. The first pair of

roots correspond to the resonance of the tank circuit containing L and C2 and to

first order has a total resonant impedance Z = L
C2(RC2+RL) . The second pair of

roots correspond to a lower frequency with a lower impedance Z which is more

complicated to express, but is also completely resistive as shown graphically in

figure D.2.
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C
1

Re[Z]

Im[Z]

ω

2

1

LC
=ω

)(

1

21 CCL +
=ω

C
2

C
2

Figure D.2: The real and imaginary impedance of a matched-load circuit or resonant-coax cir-
cuit shown in figure D.1. The red and blue curve show the real and imaginary parts, respectively,
of the total impedance Z as a function of angular frequency ω , with the black line indicating
zero-impedance. The labeled dotted lines indicate the resonant angular frequencies at which the
total impedance is completely real, i.e. resistive. As shown by the dashed arrows, changing C2

tends to move both Re[Z] and Im[Z] along the ω axis, while changing C1 only has the effect of
moving Im[Z] along the impedance (vertical) axis. By a judicious choice of C1 and C2 we can
set the impedance at the desired ω =

√
1

l(C1+C2) to Z = 50 Ω.
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It is important to note that at ω =
√

1
LC2

, the impedance and the frequency

are completely independent of C1. Therefore, in tuning the circuit we set C2

such that
√

1
LC2

is slightly higher than the desired operating frequency and its

impedance is also higher than the desired 50 Ω. As it turns out, changing C1

only affects the imaginary part of Z without changing the real part. Therefore,

by tuning C1 we are then able to set the frequency
√

1
L(C1+C2)

at which Z again

becomes completely resistive. In this way we can choose any real value for Z

lying on the right side of the peak in figure D.2a. With the appropriate choice

of C1 and C2, we can set a resistive impedance of 50 Ω at the desired frequency.

In practice, we match the circuit by tuning a pair of variable capacitors while

looking at the reflected power from the circuit as a function of drive frequency.

In this process we make use of an RF reflectometer which is described in de-

tail in section D.3.2. A dip in the reflected power, corresponding to a peak in

the transmitted power, occurs at the Z = 50 Ω matching condition. Tuning the

circuit is very simple in the resonant-coax scheme since it can be done from out-

side the cryostat while the sample is cold. In the matched-load scheme, tuning

must be done outside the cryostat at room temperature where we can access C1

and C2. The subsequent cool-down results in some degradation of the matching

efficiency mostly due to the thermal contraction of the circuit elements. De-

tailed study of the changes in the capacitances of the variable capacitors as a

function of temperature, however, make this change predictable: for our vari-

able capacitors (purchased from Newark and made by Johanson Manufacturing,

Series: 9400 and Seal-Trim, 0.25-100 pF), capacitances increase by a factor of

∼ 1.3 when cooled down from 300 K to 5 K. Therefore, we can achieve ex-

cellent matching even in the matched-load scheme. This fact, coupled with the

higher transmitted powers of the matched-load scheme in comparison with the
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resonant-coax scheme, make it the more attractive option. We use this method

to impedance match the coils used in most of the experiments described in chap-

ter 3. A photograph of a coil matched using the matched-load scheme is shown

in figure C.25.

Examples of capacitances used in the our matching circuits are: C1 = 5.03

pF and C2 = 39.7 pF to achieve a resonance of 48.7 MHz in conjunction with

the coil described in section D.2.2.

D.3 Measurement methods

D.3.1 Measuring capacitance

In order to measure capacitance, we simply need a lock-in amplifier with a

current input. We then connect one lead of the capacitance to be measured to

the internal oscillator of the lock-in and the other to the current input as shown

in figure D.3. Since the current measured will be,

I =
V

R+ 1
iωC

=
V

R2 + 1
ω2C2

(
R+ i

1
ωC

)
, (D.5)

where V and ω are the voltage and angular frequency, respectively, of the in-

ternal oscillator, and R and C are the resistance and capacitance associated with

the capacitive element being measured. If the element is not lossy, it should be

easy to choose a sufficiently small ω such that 1
ωC À R. Then,

lim
1

ωCÀR
I = iωCV. (D.6)

Therefore, the lock-in amplifier will measure a current at angular frequency ω

with a 90◦ phase shift from the driving voltage and an amplitude proportional

to the capacitance C. In this way we measure the capacitance of our circuit
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lock-in
ref. out

current in

C

R

Figure D.3: A schematic representation of a simple method for measuring an unknown capac-
itance.

elements typically using values for V and 2πω of 100 mV and 100 Hz, respec-

tively.

D.3.2 An RF reflectometer

A simple RF relfectometer can be assembled using a directional coupler and a

oscilloscope. The configuration shown in figure D.4 saves us the need of us-

ing an expensive and cumbersome network analyzer to impedance match our

circuits. The directional coupler can be purchased from Mini-Circuits (part

number ZFDC-20-4). In this configuration the signal sent the oscilloscope cor-

responds to the RF voltage reflected by the circuit in question. By writing a

simple computer program which sweeps the source frequency and fits the am-

plitude of the reflected voltage, we can obtain a reliable reflectance spectrum

from most circuits.
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Mini-Circuits:

ZFDC-20-4

to  RF source

“IN”

“OUT” “CPL”

to circuit

to oscilloscope

Figure D.4: A schematic representation of an RF reflectometer.
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Appendix E

Nuclear gyromagnetic ratios for
relevant isotopes

Table E.1: Nuclear gyromagnetic rations for relevant isotopes [184].

isotope S γN
2π (MHz/T) quadrupole moment (m2) abundance (%)

69Ga 3/2 10.257 0.178×10−28 60.11
71Ga 3/2 13.032 0.112×10−28 39.89
75As 3/2 7.317 0.3×10−28 100
27Al 5/2 11.135 0.4193×10−28 100
115In 9/2 9.364 1.16×10−28 95.7
113In 9/2 9.344 1.14×10−28 4.3
29Si 1/2 8.490 − 4.67

55Mn 5/2 10.575 0.55×10−28 100
9Be 3/2 6.005 − 100

167Er 7/2 1.235 −2.83×10−28 22.95
121Sb 5/2 10.226 −0.53×10−28 57.3
123Sb 7/2 5.538 −0.68×10−28 42.7
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Physical Constants

Speed of light c 2.99792458 × 108 m s−1

Dielectric constant ε0 8.8541878 × 10−12 F m−1

8.8541878 fF mm−1

Magnetic permeability µ0 4π × 10−7 T m A−1

12.5663706 mT µm mA−1

Planck constant h 6.62606876(52) × 10−34 J s

4.13566727(16) × 10−15 eV s

4.13566727(16) meV ps

h̄ = h/(2π) 1.054571596(82) × 10−34 J s

6.58211889(26) × 10−16 eV s

658.211889(26) µeV ps

Electronic charge e 1.602176462(63) × 10−19 C

Free electron mass me 9.10938188(72) × 10−31 kg

Bohr magneton µB = eh̄/2me 57.88381749(43) µeV T−1

Boltzman constant kB 86.17342(15) µeV K−1

h/e2 25.812807572(95) kΩ

h̄/µB 11.37125914(94) ps T

hc/e 1239.84185(68) eV nm

e/h 2.41798948(88) × 1014 Hz eV−1

0.241798948(88) GHz µeV−1


