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A mechanical resonator is a physicist’s most tangible example of a harmonic oscillator. With the advent of micro and nanoscale
mechanical resonators, researchers are rapidly progressing towards a tangible harmonic oscillator with motion that requires a
quantum description. Challenges include freezing out the thermomechanical motion to leave only zero-point quantum fluctuations
δxzp and, equally importantly, realizing a Heisenberg-limited displacement detector. Here, we introduce a detector that can be in
principle quantum limited and is also capable of efficiently coupling to the motion of small-mass, nanoscale objects, which have the
most accessible zero-point motion. Specifically, we measure the displacement of a nanomechanical beam using a superconducting
transmission-line microwave cavity. We realize excellent mechanical force sensitivity (3 aN Hz−1/2), detect thermal motion at tens of
millikelvin temperatures and achieve a displacement imprecision of 30 times the standard quantum limit.

As the imprecision of any detector is decreased to the level of
zero-point motion, quantum measurement backaction will become
an important source of displacement uncertainty. This backaction
emerges to enforce the Heisenberg uncertainty principle, which
for continuous displacement detection manifests as

√
Sx SF ≥ h̄.

Here, Sx and SF are respectively the displacement-imprecision
and backaction-force single-sided spectral densities1. In fact, at
the minimum allowed total position uncertainty, referred to as
the standard quantum limit (SQL), the measurement imprecision
and the motion due to backaction must together contribute an
uncertainty equal to the zero-point fluctuations.

A widely used displacement detector that, in principle, is
capable of reaching the SQL is an optical cavity interferometer
with a moving mirror2. Physically, at the SQL, our knowledge
of the mirror position is limited equally by shot noise in the
output signal and by motion of the mirror due to quantum
fluctuations in the intracavity radiation pressure. This limit
has long been of interest in quantum optics and in the
gravitational wave detection community. Optical cavities generally
outperform all other displacement detectors with regard to
measurement imprecision; they can achieve shot-noise-limited
position sensitivity as low as ∼10−19 m Hz−1/2 (ref. 3). Still, reaching
the SQL has historically been a challenge owing to the inaccessibility
of quantum backaction effects4,5. Recent experimental progress
using low-mass mirrored microcantilevers has made radiation
pressure effects more observable6–10.

However, the most successful approaches to the SQL
so far have been electromechanical experiments. These
experiments take place ‘on-chip’ in a dilution refrigerator,
where thermomechanical motion is significantly reduced, and
the mechanical objects are typically nanoscale and hence even
less massive than microcantilevers. Examples include using
a single-electron transistor11,12 or an atomic point contact13

for the displacement readout of a nanoscale flexural beam.

Electromechanical experiments have revealed a displacement
uncertainty less than 10 times the total uncertainty added by
the measurement at the SQL and evidence for backaction11,12.
Still, electromechanical experiments have not achieved the full
quantum limit, typically owing to technical noise sources common
to mesoscopic amplifiers.

Here, we present experiments that use the principles and
advantages of an optical cavity interferometer with a moving
mirror yet use ‘light’ at microwave frequencies. Operating
at microwave frequencies enables us to also benefit from
technology associated with electromechanical systems, such as low-
mass mechanical objects and dilution-refrigerator temperatures.
Specifically, we embed a nanomechanical flexural resonator
inside a superconducting transmission-line microwave cavity,
where the mechanical resonator’s position couples to the cavity
capacitance and thus to the cavity resonance frequency. Changes
in this frequency can be sensitively monitored via homodyne
detection of the phase shift of a microwave probe signal.
Advantages of superconducting transmission-line cavities include
large demonstrated quality factors (Q > 105) (ref. 14) and a tiny
mode volume. In addition, the cavities are fabricated via a single
deposition of a thin, superconducting film and thus are scalable
as well as compatible with patterning of other nanoscale devices.
These advantages have been leveraged in an array of other recent
applications including microwave kinetic inductance detectors14,
achieving circuit quantum electrodynamics15 and readout of
superconducting quantum interference devices16.

The analogy between our microwave system and an optical
cavity interferometer is quite rigorous; the Hamiltonian describing
both systems is

H = h̄ω0

(
a†a+

1

2

)
+ h̄ωm

(
b†b+

1

2

)
− h̄ga†a(b†

+b)δxzp, (1)
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Figure 1 Measurement schematic diagram. Distributed microwave resonators
(red and blue) with a line impedance of Z1 = 70� are capacitively coupled, Cc, to a
feedline (green). A nanomechanical beam (red) is coupled to each cavity via a
capacitance Cb and to the feedline via Cd used for an electrostatic drive. The cavity
coupling is characterized by 170 aF µm−1 and the drive coupling by 0.2 aF µm−1.
The beam motion is detected by measuring the phase shift of an injected microwave
signal. This signal travels through the device and is then amplified first by a
low-noise microwave HEMT amplifier and further at room temperature before going
to the radiofrequency (RF) port of an inphase-quadrature (IQ) mixer.
LO: local oscillator.

where we have left out cavity and mechanical damping and driving
terms. Here, the cavity and mechanical modes are described
respectively by the operators a and b, ω0 and ωm are the bare
resonant cavity and mechanical frequencies, and g is the effect of
the displacement x̂ = (b†

+b)δxzp on the perturbed cavity resonant
frequency, ωc. In both cases, the Heisenberg limit is enforced, as
discussed above, by fluctuations in the optical or microwave field,
that is, shot noise. Still, there are important practical differences
between optical experiments and our microwave work. Although
the optical shot-noise limit is achieved routinely, owing to the
smaller photon energy of microwaves, measurement of microwave
fields is currently dominated by amplifier noise. Nonetheless,
microwave amplifier technology is progressing quickly, and in
our experiments we use a commercially available high-electron-
mobility transistor (HEMT) amplifier that already reaches a noise
temperature of kbTN/h̄ωc = 30 (TN = 7.5 K). The small microwave
photon energy also requires an excellent force sensitivity to detect
quantum backaction, but our experiments aim to accommodate
this requirement by going to the extremes of force sensitivity using
floppy mechanical objects.

Our superconducting microwave cavities are formed from
distributed transmission lines in a coplanar waveguide geometry
and are patterned using an aluminium thin film on a high-purity
silicon substrate. We use one-sided cavities that are shorted on

10 µm

6 mm

x

a

b

Figure 2 Illustration of our device geometry. a, The drawing shows
frequency-multiplexed l/4 microwave cavities; the lines are meandered to fit a
quarter-wave on the chip. The cavity lines are formed from 5-µm-wide centre
conductors separated from the ground plane by 10 µm slots. The lower panels zoom
into a capacitive elbow coupler and a nanomechanical beam with the feedline
shown in green, the ground plane in blue and the centre conductor in red.
b, False-colour scanning electron microscope image of an embedded
nanomechanical beam. This room-temperature image shows a top view of the
beam, which is clamped on both ends and slightly bent owing to compressive stress
(see the Methods section). An angled view of the same beam reveals that it is also
bent out of the plane at its centre by 2.5 µm at room temperature. The area where
the silicon was etched to release the beam appears as the darker oblong region.

one end and coupled to a 50 � feedline on the other end (Figs 1
and 2a); the cavity is overcoupled (dominated by external coupling
not by internal losses) to minimize microwave power dissipation
and signal loss. We study multiple cavities on a single chip by
coupling six cavities to the feedline and address them individually
via frequency multiplexing14. The quarter-wave resonances of our
cavities are near ωc = 2π×5 GHz.

The nanomechanical objects we embed in the cavity are thin,
high-aspect-ratio beams of conducting aluminium clamped on
both ends (see the Methods section). We use a beam 50 µm long
with a 100 nm by 130 nm cross-section (Fig. 2b). The thin beam
gives us a small mass (an effective mass m of 2 pg), whereas
the length provides both good coupling to the microwave cavity
as well as a very small spring constant of a few millinewtons
per metre. The beam is placed in the cavity such that the
motion of its fundamental flexural mode changes the capacitance
between the cavity centre conductor and the ground plane in a
small section of the cavity (Fig. 2). To maximize the coupling,
the gap between the beam and the ground plane is as small
as is feasible (typically 1 µm), and the beam is embedded at a
voltage antinode of the cavity standing wave. With the beam at
this position, the cavity resonance frequency shifts according to
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Figure 3 Microwave cavity characterization. a, Power transmission past the
cavity normalized to transmission off resonance. The data are shown on a
logarithmic scale for incident powers of 1,070 (green), 680 (orange), 68 (blue) and
11 (red) pW. All microwave powers quoted in this work have a 3 dB systematic
uncertainty. At P= 68 pW, the quality factor of the resonance is
Q= (Q−1

int +Q−1
ext )

−1
= 10,000. At the highest microwave powers, the resonance

becomes nonlinear and eventually bistable when the superconducting critical
current density is exceeded36. b, Measurement of the double-sideband cavity phase
noise at incident powers of 1,070 (green), 68 (blue) and 11 (red) pW. The tone
indicated with the black arrow can be attributed to the nanomechanical beam; the
other tones are electronic in nature.

(1/ωc)(∂ωc/∂x) = −(∂Cb/∂x)4Z1ωc/2π for a l/4 cavity, where
∂Cb/∂x is the effect of the beam motion on the cavity capacitance
and −∂ωc/∂x is the coupling g of equation (1).

To detect nanomechanical motion with our microwave cavity
interferometer, we inject a microwave tone near a cavity resonance
and monitor the phase of the transmitted signal; this phase
directly reflects the cavity resonance frequency and hence the beam
displacement as described above. Figure 1 shows how we extract the
phase (Q) and amplitude (I) quadratures of the transmitted signal
using a homodyne detection scheme.

Figure 3a shows the microwave cavity resonant response. Here,
we measure the relative transmission past the cavity for a set of
incident microwave powers P at a dilution-refrigerator temperature
of 17 mK, far below the 1.2 K critical temperature of aluminium.
At low microwave power, the resonant behaviour is characterized
by unity transmission off resonance and by a lorentzian response
that dips to a value determined by the intracavity losses compared
with the feedline coupling. Our imprecision in the nanomechanical
beam position readout is determined by fluctuations in the
associated dispersive phase signal on resonance. Figure 3b shows
our experimentally observed cavity phase fluctuations as the
spectral density Sφ. At the highest response frequencies, we see a
phase noise consistent with the HEMT amplifier noise, whereas
at lower frequencies, the phase noise is enhanced. This extra
noise has recently been traced to two-level fluctuators in the
silicon substrate17.

An important feature of our experiment is the ability to
actuate the mechanical beam using an electrostatic drive. This
method avoids the problematic aspects of magnetomotive driving
such as large currents in the beam and applied magnetic fields
that are incompatible with high-Q superconducting cavities18. In
our device, we incorporate a small capacitive coupling between
the beam and the microwave feedline, which enables us to
electrostatically drive the beam by coupling low-frequency signals
onto the feedline (Fig. 1). Using a bias-tee, we introduce an a.c.
signal near the ωm and a d.c. voltage resulting in an electrostatic
force Fel(ω) = Vd.c.Va.c.(ω)(∂Cd/∂x), where Cd is the drive
capacitance between the feedline and the beam. To assure that the
effect of the beam motion remains in the phase quadrature of the
microwave signal, we design Cd to be much smaller than Cb.

2.3008 2.3010

δx
 (a

rb
. u

ni
ts

)
Ph

as
e

δx
 (a

rb
. u

ni
ts

)

Qm = 2,300 Qm = 120,000

236.5 237.0 237.5 238.0

0

–π

1

10

1

10

/2π (kHz)ω /2   (MHz)πω

a b

Ph
as

e

0

–π

Figure 4 Resonant response of an aluminium nanomechanical beam to an
electrostatic drive at Tcryo = 17mK. a, This experiment uses the beam shown in
Fig. 2b, and we find Qm = 2,300. b, Response of a beam under tensile stress. Here,
the resonance is near 2 MHz and the quality factor is greatly enhanced to
Qm = 120,000. The predominant effect of the tensile stress is to change the stiffness
while the dissipation, reflected by the resonant linewidth γm, remains approximately
constant. The red lines are the square root of lorentzian fits to the data.

Figure 4a demonstrates nanomechanical displacement
detection using our microwave cavity interferometer. Here, the
beam motion we are measuring is the response of the beam shown
in Fig. 2b to an electrostatic drive. We see a clean response on a
logarithmic scale, the expected π phase shift and good agreement
with the anticipated lorentzian response (red line) of our high-Q
resonance. We measure a quality factor of Qm = 2,300 and find the
mechanical resonance at ωm = 2π×237 kHz; this frequency is near
our expectation for a tension-free beam with our geometry.

Figure 4b demonstrates the mechanical response we observe
using a 50-µm-long beam fabricated from an aluminium film
under tensile stress (see the Methods section). The stress
significantly increases ωm to near 2π×2.3 MHz and Qm to 120,000.
This quality factor is surprisingly, yet pleasingly, large for a beam
fabricated from an amorphous metal and of this surface-to-volume
ratio19–21. When working with mechanical objects with ωm in
the megahertz regime, we must take into account that the
sidebands generated by the beam’s motion move outside the
cavity bandwidth, γc = ωc/Q = 2π× 490 kHz. In this so-called
good-cavity limit, to acquire the response seen in Fig. 4b, we detune
the injected microwave signal off resonance by ωm to place one of
the sidebands on the cavity resonance.

The focus of this article will be on characterizing our
detector using the few-hundred-kilohertz mechanical resonance
of Fig. 4a and an injected microwave tone tuned to the cavity
resonance. Here, in the so-called bad-cavity limit, our microwave
interferometer faithfully reproduces the position of the beam.
Our first goal was to detect the thermally driven displacement
fluctuations of our beam at dilution-refrigerator temperatures,
which for our high-Q mechanical resonators are given by

Sx(1ωm) =
1

(mωmγm)2

4mγmkbT

1+41ω2
m/γ2

m

,

where γm =ωm/Qm, 1ωm =ω−ωm and T is the bath temperature.
The inset to Fig. 5 shows the observed displacement fluctuations,
with no intentional beam driving, at three different values
of the dilution-refrigerator temperature Tcryo. The white-noise
background is the imprecision Sim

x , whereas the height of the
peak above the background describes the real fluctuations in
the beam position. To understand the temperature-dependent
response (and to calibrate the beam-to-cavity coupling), in Fig. 5
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Figure 5 Integrated mechanical beam fluctuations in units of cavity resonance
frequency shift δωc. The three data sets correspond to P= 4 pW (blue squares),
27 pW (green triangles) and 68 pW (red circles). The dashed line shows the linear fit
described in the text from which we extract the coupling g. Inset: Examples of the
lorentzian response (near ωm = 2π×237 kHz) for dilution-refrigerator temperatures
of 210mK, 122mK and 40mK at P= 11 pW.

we examine the integrated signal under the lorentzian as a function
of Tcryo for a set of incident microwave powers P. In an ideal
system, the integrated response should depend linearly on the
temperature according to δω2

c = (g2kb/mω2
m)(Tcryo + Tba), where

Tba = Sba
F /4kbmγm is the equivalent backaction temperature. If

we focus on the lowest microwave power results (blue squares)
and the highest dilution-refrigerator temperatures, we see that the
response is linear down to ∼100 mK. Here, linear fits reveal that
the backaction is small compared with relevant uncertainties, and
we extract a coupling of g =2π×1.16 kHz nm−1 using points above
127 mK (dashed line). This value of g corresponds to a capacitance
change of ∂Cb/∂x = 170 aF µm−1, which is consistent with our
numerically calculated expectation.

At lower values of Tcryo and higher microwave powers (green
triangles and red circles), the beam temperature decouples from
Tcryo leading to a saturation behaviour. The nonlinear behaviour
can be explained by a deterioration of the thermal link between the
beam and the refrigerator at low temperatures in the presence of a
temperature-independent heat load on the beam. The microwave
power dependence of the magnitude of the effect suggests that the
origin of the heat load is microwave power dissipation. Whereas an
ideal, fully overcoupled device would dissipate no microwave power
on-chip, in our current device, because our external quality factor
of Qext =14,000 is not much smaller than our internal quality factor
Qint = 38,000, we dissipate power of the order of picowatts. We
have made an initial investigation into the mechanism by which the
microwave dissipation results in beam heating. By using a different
cavity on the same chip as a crude thermometer, we know that the
dissipated power does not heat the entire chip above Tcryo. Hence,
the heating must be a more local effect, but further experiments are
required to determine its full origin. Note that classical amplitude
or phase noise in the microwave drive could be another source of
heating, but we can rule out this mechanism because fluctuations
large enough to cause significant heating would be easily observed
above the noise level of our microwave amplifier.

The results in Fig. 5 provide valuable information about our
ability to extract quantum backaction with our device. With a
well-understood and controllable bath temperature and precise
measurements, it is possible to detect very small equivalent
backaction temperatures Tba < Tcryo with a linear extrapolation
to zero temperature. In our case, the nonlinear dependence of
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Figure 6 Imprecision temperature (blue open circles) and saturation
temperature (red circles) as a function of incident microwave power. The lines
represent the expected imprecision due to our current microwave amplifier
(TN = 7.5 K); the dashed line includes the loss of microwave power in the cavity,
whereas the solid line represents the expectation for a lossless cavity. The right
vertical axis shows the position uncertainty in units of Sx (SQL). Inset: Over the same
range of power, we calculate the quantum limit of displacement detection for the
optimized parameters quoted in the text. The lines correspond to the shot-noise limit
(dashed–dotted line), the quantum backaction (dotted line) and the imprecision due
to a TN = 5 K voltage amplifier (solid line).

the beam fluctuations on Tcryo represents our largest limitation to
extracting Tba. Thus, as a conservative upper limit to Tba, we report
the equivalent temperature our beam fluctuations saturate to at
Tcryo = 17 mK, which we will refer to as Tsat. Figure 6 shows Tsat

along with the imprecision temperature Tim = Sim
x mω2

mγm/4kb as a
function of P. At the lowest powers, the imprecision dominates over
the beam fluctuations. As the power is increased, the imprecision
drops linearly with power as expected, but at the highest microwave
powers, it is enhanced by cavity phase noise to a value above our
microwave amplifier noise floor (dashed line).

From the results in Fig. 6, we can assess how close an approach
we have made to the SQL. The minimum uncertainty in continuous
position detection at the Heisenberg limit Sim

x Sba
F = h̄2 occurs at

the point where Sim
x = Sba

x = Sba
F /(mωmγm)2. Here, the imprecision

and the backaction both contribute Sx(SQL) = h̄/mωmγm. We can
convert the imprecision and saturation temperatures in Fig. 6 into
a position spectral density compared with this minimum value via
Sx/Sx(SQL) = 4kbT/h̄ωm. This result is shown on the right axis of
Fig. 6. Our limit on the imprecision alone at the highest microwave
powers corresponds to, in linear units, 30

√
Sx(SQL). The total

minimum position uncertainty we achieve occurs at P =20 pW and
is given by

√
Stot

x = 130
√

Stot
x (SQL), where to be explicit Stot

x here
is Sim

x + Ssat
x , which is an upper bound on our ability to measure

Sim
x +Sba

x .
We can also extract absolute values for the achieved sensitivity.

Our imprecision is limited to 200 fm Hz−1/2 at the highest
microwave powers, which is a modest achievement compared with
optical systems3. On the other hand, our total force sensitivity,√

Stot
F =

√
4kb(Tim +Tsat)mγm, is 3 aN Hz−1/2 at P = 20 pW.

This value is near the record mechanical force sensitivity of
0.8 aN Hz−1/2 achieved using a fibre-optic interferometer and a
silicon cantilever22.

To closer approach the SQL with our microwave cavity
interferometer, the foremost task will be to decrease the dissipation
that leads to a finite Tsat by using devices with a larger Qint.
Another route to improvement is to increase ωm, which will
decrease thermal fluctuations and the dissipative force compared
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with quantum fluctuations, as well as decrease the ν−1/2 cavity phase
noise. However, to maintain the force sensitivity, an increase in the
mechanical spring constant should be accompanied by an increase
in the beam-to-cavity coupling g . One option for increasing g
would be to decrease the total cavity capacitance by operating at
larger ωc or by using a higher-impedance microwave cavity or
lumped-element circuit.

It is instructive to assess what we could achieve in future
experiments using optimized, yet likely realizable, parameters.
Consider a device described by ωm = 2π× 2 MHz, m = 2 pg,
Qm = 100,000, ωc = 2π × 12 Hz, Qint � Qext = 3,000 and
g = 2π × 20 kHz nm−1. Furthermore, assume we modify our
geometry to measure in reflection off of a single-sided cavity with
a single port. For this more ideal geometry and a microwave probe
at ωc, the quantum-limited imprecision expected for detection via
a square-law detector would be the shot-noise limit

Ssn
x =

h̄ωc(1+4(ωm/γc)
2)

2(g/ωc)2P(4Q)2
,

and correspondingly Sba
F = h̄2

/Ssn
x . Our calculated expectation for

Ssn
x and Sba

F is shown in the inset to Fig. 6 and overall presents a
promising picture in which the SQL would occur at a realizable
power of 600 pW. Even with the added noise of a TN = 5 K HEMT
amplifier (solid line), the minimum uncertainty point, assuming
ideal backaction, would be a factor of two above the SQL in linear
units. A future goal will be to incorporate even better microwave
amplifiers that could soon be available given recent interest in
developing novel microwave amplifiers near the quantum limit23–25.
However, even a quantum-limited voltage amplifier measuring
both field quadratures will result in an imprecision a factor of two
above the shot-noise limit26, and to fully reach the SQL, an amplifier
that detects only one quadrature must be used.

An advantage of our device is that in addition to being a
simple, yet promising detector, it presents a natural platform
for manipulation and cooling of mechanical motion. Possibilities
include active feedback cooling, or ‘cold damping’, using our ability
to apply electrostatic forces as well as passive cooling based on
radiation pressure. With the availability of these complementary
cooling techniques, we are well poised to attempt targeted cooling
of a mechanical mode below the tens of millikelvin temperatures
already achieved with our refrigerator27,28, a task that has proved
difficult in single-electron transistor devices11,12.

Of particular interest is the possibility of passive cooling
using radiation pressure in the good-cavity limit that we have
demonstrated here. As first explored by Braginsky29, dynamical
backaction due to radiation pressure can lead to a passive cooling
or amplification of the mechanical motion when the injected
tone is detuned from the cavity resonance. These effects have
recently been observed in optical cavities with micromechanical
mirrors6–10 and radiofrequency circuits30 and have been suggested
as a method of cooling and manipulating a beam coupled to a
transmission-line cavity31,32. In the good-cavity limit, the cooling
mechanism becomes analogous to resolved sideband cooling of
trapped ions33 and in principle, in this regime, it is possible to cool
fully to the mechanical ground state34,35.

METHODS

The device is fabricated using a combination of electron-beam lithography and
photolithography, and the beam and cavity are formed from the same thermally
evaporated aluminium film in a single lift-off process. The beam is patterned
directly on the silicon substrate and suspended at the end of the process with an
isotropic, dry silicon etch. A relatively deep etch of 4 µm is typically required
to release our mechanical beams with low spring constants. An insulating

layer of SiO2 underneath the rest of the pattern is used to protect the coplanar
waveguide slots during the etch.

Our initial thermally evaporated aluminium film contains significant
compressive stress. To adjust the stress of the aluminium beam, we partially
anneal the device at 150–350 ◦C in atmosphere before releasing the beam from
the substrate. The final stress of the beam at cryogenic temperatures is affected
by the differential thermal coefficient of expansion of silicon and amorphous
aluminium. We estimate that between room and cryogenic temperatures, the
aluminium film shrinks by a few tenths of a per cent compared with its clamping
locations. Hence, the beam in Fig. 4a has significant compressive stress at room
temperature (Fig. 2b) but less compressive stress at Tcryo; the beam in Fig. 4b
has little stress at room temperature but significant tensile stress at Tcryo.

As our inphase-quadrature mixer (Marki IQ03076XP) has orthogonal
outputs near 5 GHz, we can place all of the phase information in the Q channel
simply by rotating the phase of the signal into the local oscillator of the mixer.
The voltage fluctuations measured in the Q quadrature SQ

V are then all that is
required to extract the integrated cavity resonance frequency shift plotted in
Fig. 5. The relationship between the cavity resonance frequency fluctuations
and the voltage fluctuations is

Sωc =
ω2

c (1+4(ωm/γc)
2)

(2Q)2V 2
0 (1−Smin)2

SQ
V ,

where V0 is the voltage amplitude of the transmission off resonance and
Smin is the normalized transmission past the cavity on resonance. The term
1+4(ωm/γc)

2 accounts for filtering of the cavity response at ωm and goes
to unity in the bad-cavity limit. The integrated response in units of cavity
resonance frequency shift is then given by δω2

c = S0
ωc

γm/4, where S0
ωc

is the
magnitude of the lorentzian response at 1ωm =0. The temperature dependence
of the Q, Smin and Qm must be taken into account in these conversions, but we
restrict our measurements to below 300 mK, where the values change by less
than ∼20%.

In Fig. 6, we extend our measurement into the regime where the cavity
resonance becomes nonlinear (Fig. 3a) and hence conversion between SQ

V and
Sωc becomes less straightforward to calculate. To extract this conversion at
nonlinear microwave powers, we carry out a separate calibration experiment in
which we apply a constant electrostatic drive and compare the beam response at
high microwave power with the known response at low power.
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