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Appendix A: Basics of Classical and Quantum Noise

1. Classical noise correlators

Consider a classical random voltage signal V (t). The
signal is characterized by zero mean 〈V (t)〉 = 0, and
autocorrelation function

GV V (t− t′) = 〈V (t)V (t′)〉 (A1)

whose sign and magnitude tells us whether the voltage
fluctuations at time t and time t′ are correlated, anti-
correlated or statistically independent. We assume that
the noise process is stationary (i.e., the statistical proper-
ties are time translation invariant) so that GV V depends
only on the time difference. If V (t) is Gaussian dis-
tributed, then the mean and autocorrelation completely
specify the statistical properties and the probability dis-
tribution. We will assume here that the noise is due to
the sum of a very large number of fluctuating charges
so that by the central limit theorem, it is Gaussian dis-
tributed. We also assume that GV V decays (sufficiently
rapidly) to zero on some characteristic correlation time
scale τc which is finite.

The spectral density of the noise as measured by a
spectrum analyzer is a measure of the intensity of the
signal at different frequencies. In order to understand
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the spectral density of a random signal, it is useful to
define its ‘windowed’ Fourier transform as follows:

VT [ω] =
1√
T

∫ +T/2

−T/2
dt eiωtV (t), (A2)

where T is the sampling time. In the limit T � τc the
integral is a sum of a large number N ≈ T

τc
of random

uncorrelated terms. We can think of the value of the
integral as the end point of a random walk in the complex
plane which starts at the origin. Because the distance
traveled will scale with

√
T , our choice of normalization

makes the statistical properties of V [ω] independent of
the sampling time T (for sufficiently large T ). Notice
that VT [ω] has the peculiar units of volts

√
secs which is

usually denoted volts/
√

Hz.
The spectral density (or ‘power spectrum’) of the noise

is defined to be the ensemble averaged quantity

SV V [ω] ≡ lim
T→∞

〈|VT [ω]|2〉 = lim
T→∞

〈VT [ω]VT [−ω]〉 (A3)

The second equality follows from the fact that V (t) is
real valued. The Wiener-Khinchin theorem (derived in
Appendix A.2) tells us that the spectral density is equal
to the Fourier transform of the autocorrelation function

SV V [ω] =
∫ +∞

−∞
dt eiωtGV V (t). (A4)

The inverse transform relates the autocorrelation func-
tion to the power spectrum

GV V (t) =
∫ +∞

−∞

dω

2π
e−iωtSV V [ω]. (A5)

We thus see that a short auto-correlation time implies
a spectral density which is non-zero over a wide range of
frequencies. In the limit of ‘white noise’

GV V (t) = σ2δ(t) (A6)

the spectrum is flat (independent of frequency)

SV V [ω] = σ2 (A7)

In the opposite limit of a long autocorrelation time, the
signal is changing slowly so it can only be made up out
of a narrow range of frequencies (not necessarily centered
on zero).

Because V (t) is a real-valued classical variable, it natu-
rally follows that GV V (t) is always real. Since V (t) is not
a quantum operator, it commutes with its value at other
times and thus, 〈V (t)V (t′)〉 = 〈V (t′)V (t)〉. From this it
follows that GV V (t) is always symmetric in time and the
power spectrum is always symmetric in frequency

SV V [ω] = SV V [−ω]. (A8)

As a prototypical example of these ideas, let us con-
sider a simple harmonic oscillator of mass M and fre-
quency Ω. The oscillator is maintained in equilibrium

with a large heat bath at temperature T via some in-
finitesimal coupling which we will ignore in considering
the dynamics. The solution of Hamilton’s equations of
motion are

x(t) = x(0) cos(Ωt) + p(0)
1
MΩ

sin(Ωt)

p(t) = p(0) cos(Ωt)− x(0)MΩ sin(Ωt), (A9)

where x(0) and p(0) are the (random) values of the po-
sition and momentum at time t = 0. It follows that the
position autocorrelation function is

Gxx(t) = 〈x(t)x(0)〉 (A10)

= 〈x(0)x(0)〉 cos(Ωt) + 〈p(0)x(0)〉 1
MΩ

sin(Ωt).

Classically in equilibrium there are no correlations be-
tween position and momentum. Hence the second term
vanishes. Using the equipartition theorem 1

2MΩ2〈x2〉 =
1
2kBT , we arrive at

Gxx(t) =
kBT

MΩ2
cos(Ωt) (A11)

which leads to the spectral density

Sxx[ω] = π
kBT

MΩ2
[δ(ω − Ω) + δ(ω + Ω)] (A12)

which is indeed symmetric in frequency.

2. The Wiener-Khinchin Theorem

From the definition of the spectral density in Eqs.(A2-
A3) we have

SV V [ω] =
1
T

∫ T

0

dt

∫ T

0

dt′ eiω(t−t′)〈V (t)V (t′)〉

=
1
T

∫ T

0

dt

∫ +2B(t)

−2B(t)

dτ eiωτ 〈V (t+ τ/2)V (t− τ/2)〉

(A13)

where

B (t) = t if t < T/2
= T − t if t > T/2.

If T greatly exceeds the noise autocorrelation time τc
then it is a good approximation to extend the bound B(t)
in the second integral to infinity, since the dominant con-
tribution is from small τ . Using time translation invari-
ance gives

SV V [ω] =
1
T

∫ T

0

dt

∫ +∞

−∞
dτ eiωτ 〈V (τ)V (0)〉

=
∫ +∞

−∞
dτ eiωτ 〈V (τ)V (0)〉 . (A14)
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This proves the Wiener-Khinchin theorem stated in
Eq. (A4).

A useful application of these ideas is the following.
Suppose that we have a noisy signal V (t) = V̄ + η(t)
which we begin monitoring at time t = 0. The integrated
signal up to time t is given by

I(T ) =
∫ T

0

dt V (t) (A15)

and has mean

〈I(T )〉 = V̄ T. (A16)

Provided that the integration time greatly exceeds the
autocorrelation time of the noise, I(T ) is a sum of a large
number of uncorrelated random variables. The central
limit theorem tells us in this case that I(t) is gaussian
distributed even if the signal itself is not. Hence the
probability distribution for I is fully specified by its mean
and its variance

〈(∆I)2〉 =
∫ T

0

dtdt′ 〈η(t)η(t′)〉. (A17)

From the definition of spectral density above we have the
simple result that the variance of the integrated signal
grows linearly in time with proportionality constant given
by the noise spectral density at zero frequency

〈(∆I)2〉 = SV V [0]T. (A18)

As a simple application, consider the photon shot noise
of a coherent laser beam. The total number of photons
detected in time T is

N(T ) =
∫ T

0

dt Ṅ(t). (A19)

The photo-detection signal Ṅ(t) is not gaussian, but
rather is a point process, that is, a sequence of delta func-
tions with random Poisson distributed arrival times and
mean photon arrival rate Ṅ . Nevertheless at long times
the mean number of detected photons

〈N(T )〉 = ṄT (A20)

will be large and the photon number distribution will be
gaussian with variance

〈(∆N)2〉 = SṄṄ T. (A21)

Since we know that for a Poisson process the variance is
equal to the mean

〈(∆N)2〉 = 〈N(T )〉, (A22)

it follows that the shot noise power spectral density is

SṄṄ (0) = Ṅ . (A23)

Since the noise is white this result happens to be valid at
all frequencies, but the noise is gaussian distributed only
at low frequencies.

3. Square law detectors and classical spectrum analyzers

Now that we understand the basics of classical noise,
we can consider how one experimentally measures a clas-
sical noise spectral density. With modern high speed
digital sampling techniques it is perfectly feasible to di-
rectly measure the random noise signal as a function of
time and then directly compute the autocorrelation func-
tion in Eq. (A1). This is typically done by first per-
forming an analog-to-digital conversion of the noise sig-
nal, and then numerically computing the autocorrelation
function. One can then use Eq. (A4) to calculate the
noise spectral density via a numerical Fourier transform.
Note that while Eq. (A4) seems to require an ensemble
average, in practice this is not explicitly done. Instead,
one uses a sufficiently long averaging time T (i.e. much
longer than the correlation time of the noise) such that
a single time-average is equivalent to an ensemble aver-
age. This approach of measuring a noise spectral density
directly from its autocorrelation function is most appro-
priate for signals at RF frequencies well below 1 MHz.

For microwave signals with frequencies well above 1
GHz, a very different approach is usually taken. Here, the
standard route to obtain a noise spectral density involves
first shifting the signal to a lower intermediate frequency
via a technique known as heterodyning (we discuss this
more in Sec. B.3.c). This intermediate-frequency signal
is then sent to a filter which selects a narrow frequency
range of interest, the so-called ‘resolution bandwidth’.
Finally, this filtered signal is sent to a square-law detector
(e.g. a diode), and the resulting output is averaged over
a certain time-interval (the inverse of the so-called ‘video
bandwidth’). It is this final output which is then taken
to be a measure of the noise spectral density.

It helps to put the above into equations. Ignoring for
simplicity the initial heterodyning step, let

Vf [ω] = f [ω]V [ω] (A24)

be the voltage at the output of the filter and the input
of the square law detector. Here, f [ω] is the (ampli-
tude) transmission coefficient of the filter and V [ω] is the
Fourier transform of the noisy signal we are measuring.
From Eq. (A5) it follows that the output of the square
law detector is proportional to

〈I〉 =
∫ +∞

−∞

dω

2π
|f [ω]|2SV V [ω]. (A25)

Approximating the narrow band filter centered on fre-
quency ±ω0 as1

|f [ω]|2 = δ(ω − ω0) + δ(ω + ω0) (A26)

1 A linear passive filter performs a convolution Vout(t) =R +∞
−∞ dt′ F (t − t′)Vin(t′) where F is a real-valued (and causal)

function. Hence it follows that f [ω], which is the Fourier trans-
form of F , obeys f [−ω] = f∗[ω] and hence |f [ω]|2 is symmetric
in frequency.
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we obtain

〈I〉 = SV V (−ω0) + SV V (ω0) (A27)

showing as expected that the classical square law detector
measures the symmetrized noise power.

We thus have two very different basic approaches for
the measurement of classical noise spectral densities: for
low RF frequencies, one can directly measure the noise
autocorrelation, whereas for high microwave frequencies,
one uses a filter and a square law detector. For noise
signals in intermediate frequency ranges, a combination
of different methods is generally used. The whole story
becomes even more complicated, as at very high frequen-
cies (e.g. in the far infrared), devices such as the so-
called ‘Fourier Transform spectrometer’ are in fact based
on a direct measurement of the equivalent of an auto-
correlation function of the signal. In the infrared, visible
and ultraviolet, noise spectrometers use gratings followed
by a slit acting as a filter.

Appendix B: Quantum Spectrum Analyzers: Further Details

1. Two-level system as a spectrum analyzer

In this sub-appendix, we derive the Golden Rule tran-
sition rates Eqs. (2.6) describing a quantum two-level sys-
tem coupled to a noise source (cf. Sec. II.B). Our deriva-
tion is somewhat unusual, in that the role of the contin-
uum as a noise source is emphasized from the outset. We
start by treating the noise F (t) in Eq. (2.5) as being a
classically noisy variable. We assume that the coupling
A is under our control and can be made small enough
that the noise can be treated in lowest order perturba-
tion theory. We take the state of the two-level system to
be

|ψ(t)〉 =
(
αg(t)
αe(t)

)
. (B1)

In the interaction representation, first-order time-
dependent perturbation theory gives

|ψI(t)〉 = |ψ(0)〉 − i

~

∫ t

0

dτ V̂ (τ)|ψ(0)〉. (B2)

If we initially prepare the two-level system in its ground
state, the amplitude to find it in its excited state at time
t is from Eq. (B2)

αe = − iA
~

∫ t

0

dτ 〈e|σ̂x(τ)|g〉F (τ),

= − iA
~

∫ t

0

dτ eiω01τF (τ). (B3)

Since the integrand in Eq. (B3) is random, αe is a sum
of a large number of random terms; i.e. its value is the
endpoint of a random walk in the complex plane (as dis-
cussed above in defining the spectral density of classical

noise). As a result, for times exceeding the autocorre-
lation time τc of the noise, the integral will not grow
linearly with time but rather only as the square root of
time, as expected for a random walk. We can now com-
pute the probability

pe(t) ≡ |αe|2 =
A2

~2

∫ t

0

∫ t

0

dτ1dτ2 e
−iω01(τ1−τ2)F (τ1)F (τ2)

(B4)
which we expect to grow quadratically for short times
t < τc, but linearly for long times t > τc. Ensemble
averaging the probability over the random noise yields

p̄e(t) =
A2

~2

∫ t

0

∫ t

0

dτ1dτ2 e
−iω01(τ1−τ2) 〈F (τ1)F (τ2)〉

(B5)
Introducing the noise spectral density

SFF (ω) =
∫ +∞

−∞
dτ eiωτ 〈F (τ)F (0)〉, (B6)

and utilizing the Fourier transform defined in Eq. (A2)
and the Wiener-Khinchin theorem from Appendix A.2,
we find that the probability to be in the excited state
indeed increases linearly with time at long times,2

p̄e(t) = t
A2

~2
SFF (−ω01) (B7)

The time derivative of the probability gives the transition
rate from ground to excited states

Γ↑ =
A2

~2
SFF (−ω01) (B8)

Note that we are taking in this last expression the spec-
tral density on the negative frequency side. If F were a
strictly classical noise source, 〈F (τ)F (0)〉 would be real,
and SFF (−ω01) = SFF (+ω01). However, because as we
discuss below F is actually an operator acting on the en-
vironmental degrees of freedom,

[
F̂ (τ), F̂ (0)

]
6= 0 and

SFF (−ω01) 6= SFF (+ω01).
Another possible experiment is to prepare the two-level

system in its excited state and look at the rate of decay
into the ground state. The algebra is identical to that
above except that the sign of the frequency is reversed:

Γ↓ =
A2

~2
SFF (+ω01). (B9)

We now see that our two-level system does indeed act as a
quantum spectrum analyzer for the noise. Operationally,

2 Note that for very long times, where there is a significant de-
pletion of the probability of being in the initial state, first-order
perturbation theory becomes invalid. However, for sufficiently
small A, there is a wide range of times τc � t � 1/Γ for which
Eq. B7 is valid. Eqs. (2.6a) and (2.6b) then yield well-defined
rates which can be used in a master equation to describe the full
dynamics including long times.
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we prepare the system either in its ground state or in its
excited state, weakly couple it to the noise source, and
after an appropriate interval of time (satisfying the above
inequalities) simply measure whether the system is now
in its excited state or ground state. Repeating this pro-
tocol over and over again, we can find the probability
of making a transition, and thereby infer the rate and
hence the noise spectral density at positive and nega-
tive frequencies. Naively one imagines that a spectrom-
eters measures the noise spectrum by extracting a small
amount of the signal energy from the noise source and
analyzes it. This is not the case however. There must
be energy flowing in both directions if the noise is to be
fully characterized.

We now rigorously treat the quantity F̂ (τ) as a quan-
tum Heisenberg operator which acts in the Hilbert space
of the noise source. The previous derivation is unchanged
(the ordering of F̂ (τ1)F̂ (τ2) having been chosen cor-
rectly in anticipation of the quantum treatment), and
Eqs. (2.6a,2.6b) are still valid provided that we interpret
the angular brackets in Eq. (B5,B6) as representing a
quantum expectation value (evaluated in the absence of
the coupling to the spectrometer):

SFF (ω) =
∫ +∞

−∞
dτ eiωτ

∑
α,γ

ραα 〈α|F̂ (τ)|γ〉〈γ|F̂ (0)|α〉.

(B10)
Here, we have assumed a stationary situation, where
the density matrix ρ of the noise source is diagonal in
the energy eigenbasis (in the absence of the coupling to
the spectrometer). However, we do not necessarily as-
sume that it is given by the equilibrium expression. This
yields the standard quantum mechanical expression for
the spectral density:

SFF (ω) =
∫ +∞

−∞
dτ eiωτ

∑
α,γ

ραα e
i
~ (εα−εγ)τ |〈α|F̂ |γ〉|2

= 2π~
∑
α,γ

ραα |〈α|F̂ |γ〉|2δ(εγ − εα − ~ω).(B11)

Substituting this expression into Eqs. (2.6a,2.6b), we de-
rive the familiar Fermi Golden Rule expressions for the
two transition rates.

In standard courses, one is not normally taught that
the transition rate of a discrete state into a continuum
as described by Fermi’s Golden Rule can (and indeed
should!) be viewed as resulting from the continuum act-
ing as a quantum noise source which causes the am-
plitudes of the different components of the wave func-
tion to undergo random walks. The derivation presented
here hopefully provides a motivation for this interpreta-
tion. In particular, thinking of the perturbation (i.e. the
coupling to the continuum) as quantum noise with a
small but finite autocorrelation time (inversely related
to the bandwidth of the continuum) neatly explains why
the transition probability increases quadratically for very
short times, but linearly for very long times.

It it is important to keep in mind that our expressions
for the transition rates are only valid if the autocorrela-
tion time of our noise is much shorter that the typical
time we are interested in; this typical time is simply the
inverse of the transition rate. The requirement of a short
autocorrelation time in turn implies that our noise source
must have a large bandwidth (i.e. there must be large
number of available photon frequencies in the vacuum)
and must not be coupled too strongly to our system. This
is true despite the fact that our final expressions for the
transition rates only depend on the spectral density at
the transition frequency (a consequence of energy con-
servation).

One standard model for the continuum is an infinite
collection of harmonic oscillators. The electromagnetic
continuum in the hydrogen atom case mentioned above is
a prototypical example. The vacuum electric field noise
coupling to the hydrogen atom has an extremely short
autocorrelation time because the range of mode frequen-
cies ωα (over which the dipole matrix element coupling
the atom to the mode electric field ~Eα is significant) is
extremely large, ranging from many times smaller than
the transition frequency to many times larger. Thus, the
autocorrelation time of the vacuum electric field noise is
considerably less than 10−15s, whereas the decay time of
the hydrogen 2p state is about 10−9s. Hence the inequal-
ities needed for the validity of our expressions are very
easily satisfied.

2. Harmonic oscillator as a spectrum analyzer

We now provide more details on the system described
in Sec. II.B, where a harmonic oscillator acts as a spec-
trometer of quantum noise. We start with the coupling
Hamiltonian givein in Eq. (2.9). In analogy to the TLS
spectrometer, noise in F̂ at the oscillator frequency Ω
can cause transitions between its eigenstates. We as-
sume both that A is small, and that our noise source
has a short autocorrelation time, so we may again use
perturbation theory to derive rates for these transitions.
There is a rate for increasing the number of quanta in
the oscillator by one, taking a state |n〉 to |n+ 1〉:

Γn→n+1 =
A2

~2

[
(n+ 1)x2

ZPF

]
SFF [−Ω] ≡ (n+ 1)Γ↑

(B12)
As expected, this rate involves the noise at −Ω, as en-
ergy is being absorbed from the noise source. Similarly,
there is a rate for decreasing the number of quanta in the
oscillator by one:

Γn→n−1 =
A2

~2

(
nx2

ZPF

)
SFF [Ω] ≡ nΓ↓ (B13)

This rate involves the noise at +Ω, as energy is being
emitted to the noise source.

Given these transition rates, we may immediately write
a simple master equation for the probability pn(t) that
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there are n quanta in the oscillator:

d

dt
pn = [nΓ↑pn−1 + (n+ 1)Γ↓pn+1]

− [nΓ↓ + (n+ 1)Γ↑] pn (B14)

The first two terms describe transitions into the state |n〉
from the states |n + 1〉 and |n − 1〉, and hence increase
pn. In contrast, the last two terms describe transitions
out of the state |n〉 to the states |n+ 1〉 and |n− 1〉, and
hence decrease pn. The stationary state of the oscillator
is given by solving Eq. (B14) for d

dtpn = 0, yielding:

pn = e−n~Ω/(kBTeff )
(

1− e−~Ω/(kBTeff )
)

(B15)

where the effective temperature Teff [Ω] is defined in
Eq. (2.8). Eq. (B15) describes a thermal equilibrium
distribution of the oscillator, with an effective oscillator
temperature Teff [Ω] determined by the quantum noise
spectrum of F̂ . This is the same effective temperature
that emerged in our discussion of the TLS spectrum an-
alyzer. As we have seen, if the noise source is in thermal
equilibrium at a temperature Teq, then Teff [Ω] = Teq.
In the more general case where the noise source is not
in thermal equilibrium, Teff only serves to characterize
the asymmetry of the quantum noise, and will vary with
frequency 3.

We can learn more about the quantum noise spectrum
of F̂ by also looking at the dynamics of the oscillator.
In particular, as the average energy 〈E〉 of the oscillator
is just given by 〈E(t)〉 =

∑∞
n=0 ~Ω

(
n+ 1

2

)
pn(t), we can

use the master equation Eq. (B14) to derive an equa-
tion for its time dependence. One thus finds Eq. (2.10).
By demanding d〈E〉/dt = 0 in this equation, we find
that the combination of damping and heating effects
causes the energy to reach a steady state mean value
of 〈E〉 = P/γ. This implies that the finite ground state
energy 〈E〉 = ~Ω/2 of the oscillator is determined via the
balance between the ‘heating’ by the zero-point fluctua-
tions of the environment (described by the symmetrized
correlator at T = 0) and the dissipation. It is possible to
take an alternative but equally correct viewpoint, where
only the deviation 〈δE〉 = 〈E〉 − ~Ω/2 from the ground
state energy is considered. Its evolution equation

d

dt
〈δE〉 = 〈δE〉(Γ↑ − Γ↓) + Γ↑~Ω (B16)

only contains a decay term at T = 0, leading to 〈δE〉 → 0.

3. Practical quantum spectrum analyzers

As we have seen, a ‘quantum spectrum analyzer’ can
in principle be constructed from a two level system (or

3 Note that the effective temperature can become negative if the
noise source prefers emitting energy versus absorbing it; in the
present case, that would lead to an instability.

a harmonic oscillator) in which we can separately mea-
sure the up and down transition rates between states
differing by some precise energy ~ω > 0 given by the
frequency of interest. The down transition rate tells us
the noise spectral density at frequency +ω and the up
transition rate tells us the noise spectral density at −ω.
While we have already discussed experimental implemen-
tation of these ideas using two-level systems and oscilla-
tors, similar schemes have been implemented in other sys-
tems. A number of recent experiments have made use of
superconductor-insulator-superconductor junctions (Bil-
langeon et al., 2006; Deblock et al., 2003; Onac et al.,
2006) to measure quantum noise, as the current-voltage
characteristics of such junctions are very sensitive to
the absorption or emission of energy (so-called photon-
assisted transport processes). It has also been suggested
that tunneling of flux in a SQUID can be used to measure
quantum noise (Amin and Averin, 2008).

In this subsection, we discuss additional methods for
the detection of quantum noise. Recall from Sec. A.3 that
one of the most basic classical noise spectrum analyzers
consists of a linear narrow band filter and a square law
detector such as a diode. In what follows, we will consider
a simplified quantum treatment of such a device where we
do not explicitly model a diode, but instead focus on the
energy of the filter circuit. We then turn to various noise
detection schemes making use of a photomultiplier. We
will show that depending on the detection scheme used,
one can measure either the symmetrized quantum noise
spectral density S̄[ω], or the non-symmetrized spectral
density S[ω].

a. Filter plus diode

Using the simple treatment we gave of a harmonic os-
cillator as a quantum spectrum analyzer in Sec. B.2, one
can attempt to provide a quantum treatment of the clas-
sical ‘filter plus diode’ spectrum analyzer discussed in
Sec. A.3. This approach is due to Lesovik and Loosen
(1997) and Gavish et al. (2000). The analysis starts by
modeling the spectrum analyzer’s resonant filter circuit
as a harmonic oscillator of frequency Ω weakly coupled
to some equilibrium dissipative bath. The oscillator thus
has an intrinsic damping rate γ0 � Ω, and is initially at
a finite temperature Teq. One then drives this damped
oscillator (i.e. the filter circuit) with the noisy quantum
force F̂ (t) whose spectrum at frequency Ω is to be mea-
sured.

In the classical ‘filter plus diode’ spectrum analyzer,
the output of the filter circuit was sent to a square law
detector, whose time-averaged output was then taken as
the measured spectral density. To simplify the analy-
sis, we can instead consider how the noise changes the
average energy of the resonant filter circuit, taking this
quantity as a proxy for the output of the diode. Sure
enough, if we subject the filter circuit to purely classical
noise, it would cause the average energy of the circuit
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〈E〉 to increase an amount directly proportional to the
classical spectrum SFF [Ω]. We now consider 〈E〉 in the
case of a quantum noise source, and ask how it relates to
the quantum noise spectral density SFF [Ω].

The quantum case is straightforward to analyze using
the approach of Sec. B.2. Unlike the classical case, the
noise will both lead to additional fluctuations of the filter
circuit and increase its damping rate by an amount γ
(c.f. Eq. (2.12)). To make things quantitative, we let neq

denote the average number of quanta in the filter circuit
prior to coupling to F̂ (t), i.e.

neq =
1

exp
(

~Ω
kBTeq

)
− 1

, (B17)

and let neff represent the Bose-Einstein factor associated
with the effective temperature Teff [Ω] of the noise source
F̂ (t),

neff =
1

exp
(

~Ω
kBTeff [Ω]

)
− 1

. (B18)

One then finds (Gavish et al., 2000; Lesovik and Loosen,
1997):

∆〈E〉 = ~Ω · γ

γ0 + γ
(neff − neq) (B19)

This equation has an extremely simple interpretation:
the first term results from the expected heating effect
of the noise, while the second term results from the
noise source having increased the circuit’s damping by
an amount γ. Re-expressing this result in terms of the
symmetric and anti-symmetric in frequency parts of the
quantum noise spectral density SFF [Ω], we have:

∆〈E〉 =
S̄FF (Ω)−

(
neq + 1

2

)
(SFF [Ω]− SFF [−Ω])

2m (γ0 + γ)
(B20)

We see that ∆〈E〉 is in general not simply proportional
to the symmetrized noise S̄FF [Ω]. Thus, the ‘filter plus
diode’ spectrum analyzer does not simply measure the
symmetrized quantum noise spectral density. We stress
that there is nothing particularly quantum about this re-
sult. The extra term on the RHS of Eq. (B20) simply
reflects the fact that coupling the noise source to the fil-
ter circuit could change the damping of this circuit; this
could easily happen in a completely classical setting. As
long as this additional damping effect is minimal, the
second term in Eq. (B20) will be minimal, and our spec-
trum analyzer will (to a good approximation) measure
the symmetrized noise. Quantitatively, this requires:

neff � neq. (B21)

We now see where quantum mechanics enters: if the noise
to be measured is close to being zero point noise (i.e.

neff → 0), the above condition can never be satisfied, and
thus it is impossible to ignore the damping effect of the
noise source on the filter circuit. In the zero point limit,
this damping effect (i.e. second term in Eq. (B20)) will
always be greater than or equal to the expected heating
effect of the noise (i.e. first term in Eq. (B20)).

b. Filter plus photomultiplier

We now turn to quantum spectrum analyzers involving
a square law detector we can accurately model– a photo-
multiplier. As a first example of such a system, consider a
photomultiplier with a narrow band filter placed in front
of it. The mean photocurrent is then given by

〈I〉 =
∫ +∞

−∞
dω |f [ω]|2r[ω]SVV[ω], (B22)

where f is the filter (amplitude) transmission function
defined previously and r[ω] is the response of the pho-
todetector at frequency ω, and SVV represents the elec-
tric field spectral density incident upon the photodetec-
tor. Naively one thinks of the photomultiplier as a square
law detector with the square of the electric field repre-
senting the optical power. However, according to the
Glauber theory of (ideal) photo-detection (Gardiner and
Zoller, 2000; Glauber, 2006; Walls and Milburn, 1994),
photocurrent is produced if, and only if, a photon is
absorbed by the detector, liberating the initial photo-
electron. Glauber describes this in terms of normal or-
dering of the photon operators in the electric field auto-
correlation function. In our language of noise power at
positive and negative frequencies, this requirement be-
comes simply that r[ω] vanishes for ω > 0. Approximat-
ing the narrow band filter centered on frequency ±ω0 as
in Eq. (A26), we obtain

〈I〉 = r[−ω0]SVV[−ω0] (B23)

which shows that this particular realization of a quantum
spectrometer only measures electric field spectral density
at negative frequencies since the photomultiplier never
emits energy into the noise source. Also one does not
see in the output any ‘vacuum noise’ and so the output
(ideally) vanishes as it should at zero temperature. Of
course real photomultipliers suffer from imperfect quan-
tum efficiencies and have non-zero dark current. Note
that we have assumed here that there are no additional
fluctuations associated with the filter circuit. Our re-
sult thus coincides with what we found in the previous
subsection for the ‘filter plus diode’ spectrum analyzer
(c.f. Eq. (B20), in the limit where the filter circuit is ini-
tially at zero temperature (i.e. neq = 0).

c. Double sideband heterodyne power spectrum

At RF and microwave frequencies, practical spectrome-
ters often contain heterodyne stages which mix the initial
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frequency down to a lower frequency ωIF (possibly in the
classical regime). Consider a system with a mixer and lo-
cal oscillator at frequency ωLO that mixes both the upper
sideband input at ωu = ωLO+ωIF and the lower sideband
input at ωl = ωLO − ωIF down to frequency ωIF. This
can be achieved by having a Hamiltonian with a 3-wave
mixing term which (in the rotating wave approximation)
is given by

V = λ[âIFâlâ
†
LO + â†IFâ

†
l âLO] + λ[â†IFâuâ

†
LO + âIFâ

†
uâLO]
(B24)

The interpretation of this term is that of a Raman pro-
cess. Notice that there are two energy conserving pro-
cesses that can create an IF photon which could then
activate the photodetector. First, one can absorb an LO
photon and emit two photons, one at the IF and one at
the lower sideband. The second possibility is to absorb
an upper sideband photon and create IF and LO photons.
Thus we expect from this that the power in the IF chan-
nel detected by a photomultiplier would be proportional
to the noise power in the following way

I ∝ S[+ωl] + S[−ωu] (B25)

since creation of an IF photon involves the signal source
either absorbing a lower sideband photon from the mixer
or the signal source emitting an upper sideband photon
into the mixer. In the limit of small IF frequency this
expression would reduce to the symmetrized noise power

I ∝ S[+ωLO] + S[−ωLO] = 2S̄[ωLO] (B26)

which is the same as for a ‘classical’ spectrum analyzer
with a square law detector (c.f. Appendix A.3). For equi-
librium noise spectral density from a resistance R0 de-
rived in Appendix D we would then have

SVV[ω] + SVV[−ω] = 2R0~|ω|[2nB(~|ω|) + 1], (B27)

Assuming our spectrum analyzer has high input
impedance so that it does not load the noise source, this
voltage spectrum will determine the output signal of the
analyzer. This symmetrized quantity does not vanish at
zero temperature and the output contains the vacuum
noise from the input. This vacuum noise has been seen
in experiment. (Schoelkopf et al., 1997)

Appendix C: Modes, Transmission Lines and Classical
Input/Output Theory

In this appendix we introduce a number of important
classical concepts about electromagnetic signals which
are essential to understand before moving on to the study
of their quantum analogs. A signal at carrier frequency
ω can be described in terms of its amplitude and phase
or equivalently in terms of its two quadrature amplitudes

s(t) = X cos(ωt) + Y sin(ωt). (C1)

We will see in the following that the physical oscillations
of this signal in a transmission line are precisely the sinu-
soidal oscillations of a simple harmonic oscillator. Com-
parison of Eq. (C1) with x(t) = x0 cosωt+(p0/Mω) sinωt
shows that we can identify the quadrature amplitude X
with the coordinate of this oscillator and thus the quadra-
ture amplitude Y is proportional to the momentum con-
jugate to X. Quantum mechanically, X and Y become
operators X̂ and Ŷ which do not commute. Thus their
quantum fluctuations obey the Heisenberg uncertainty
relation.

Ordinarily (e.g., in the absence of squeezing), the phase
choice defining the two quadratures is arbitrary and so
their vacuum (i.e. zero-point) fluctuations are equal

XZPF = YZPF. (C2)

Thus the canonical commutation relation becomes

[X̂, Ŷ ] = iX2
ZPF. (C3)

We will see that the fact that X and Y are canoni-
cally conjugate has profound implications both classically
and quantum mechanically. In particular, the action of
any circuit element (beam splitter, attenuator, amplifier,
etc.) must preserve the Poisson bracket (or in the quan-
tum case, the commutator) between the signal quadra-
tures. This places strong constraints on the properties
of these circuit elements and in particular, forces every
amplifier to add noise to the signal.

1. Transmission lines and classical input-output theory

We begin by considering a coaxial transmission line
modeled as a perfectly conducting wire with inductance
per unit length of ` and capacitance to ground per unit
length c as shown in Fig. 1. If the voltage at position x
at time t is V (x, t), then the charge density is q(x, t) =
cV (x, t). By charge conservation the current I and the
charge density are related by the continuity equation

∂tq + ∂xI = 0. (C4)

The constitutive relation (essentially Newton’s law) gives
the acceleration of the charges

`∂tI = −∂xV. (C5)

We can decouple Eqs. (C4) and (C5) by introducing left
and right propagating modes

V (x, t) = [V→ + V←] (C6)

I(x, t) =
1
Zc

[V→ − V←] (C7)

where Zc ≡
√
`/c is called the characteristic impedance

of the line. In terms of the left and right propagating
modes, Eqs. (C4) and C5 become

vp∂xV
→ + ∂tV

→ = 0 (C8)
vp∂xV

← − ∂tV← = 0 (C9)
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where vp ≡ 1/
√
`c is the wave phase velocity. These

equations have solutions which propagate by uniform
translation without changing shape since the line is dis-
persionless

V→(x, t) = Vout(t−
x

vp
) (C10)

V←(x, t) = Vin(t+
x

vp
), (C11)

where Vin and Vout are arbitrary functions of their argu-
ments. For an infinite transmission line, Vout and Vin are
completely independent. However for the case of a semi-
infinite line terminated at x = 0 (say) by some system S,
these two solutions are not independent, but rather re-
lated by the boundary condition imposed by the system.
We have

V (x = 0, t) = [Vout(t) + Vin(t)] (C12)

I(x = 0, t) =
1
Zc

[Vout(t)− Vin(t)], (C13)

from which we may derive

Vout(t) = Vin(t) + ZcI(x = 0, t). (C14)

Zc , vp

0 d
x

V

I

Vin

Vout

V    (x,t)

V    (x,t)

I(x,t)
V(x,t)

a)

c)

L

a

b)
L L

C C C

FIG. 1 a) Coaxial transmission line, indicating voltages and
currents as defined in the main text. b) Lumped element
representation of a transmission line with capacitance per unit
length c = C/a and inductance per unit length ` = L/a. c)
Discrete LC resonator terminating a transmission line.

If the system under study is just an open circuit so
that I(x = 0, t) = 0, then Vout = Vin, meaning that the
outgoing wave is simply the result of the incoming wave
reflecting from the open circuit termination. In general
however, there is an additional outgoing wave radiated
by the current I that is injected by the system dynamics
into the line. In the absence of an incoming wave we have

V (x = 0, t) = ZcI(x = 0, t), (C15)

indicating that the transmission line acts as a simple re-
sistor which, instead of dissipating energy by Joule heat-
ing, carries the energy away from the system as propa-
gating waves. The fact that the line can dissipate energy
despite containing only purely reactive elements is a con-
sequence of its infinite extent. One must be careful with
the order of limits, taking the length to infinity before
allowing time to go to infinity. In this way the outgoing
waves never reach the far end of the transmission line and
reflect back. Since this is a conservative Hamiltonian sys-
tem, we will be able to quantize these waves and make a
quantum theory of resistors (Caldeira and Leggett, 1983)
in Appendix D. The net power flow carried to the right
by the line is

P =
1
Zc

[V 2
out(t)− V 2

in(t)]. (C16)

The fact that the transmission line presents a dissipa-
tive impedance to the system means that it causes damp-
ing of the system. It also however opens up the possibility
of controlling the system via the input field which par-
tially determines the voltage driving the system. From
this point of view it is convenient to eliminate the output
field by writing the voltage as

V (x = 0, t) = 2Vin(t) + ZcI(x = 0, t). (C17)

As we will discuss in more detail below, the first term
drives the system and the second damps it. From
Eq. (C14) we see that measurement of the outgoing field
can be used to determine the current I(x = 0, t) injected
by the system into the line and hence to infer the system
dynamics that results from the input drive field.

As a simple example, consider the system consisting of
an LC resonator shown in Fig. (1 c). This can be viewed
as a simple harmonic oscillator whose coordinate Q is the
charge on the capacitor plate (on the side connected to
L0). The current I(x = 0, t) = Q̇ plays the role of the
velocity of the oscillator. The equation of motion for the
oscillator is readily obtained from

Q = C0[−V (x = 0+, t)− L0İ(x = 0+, t)]. (C18)

Using Eq. (C17) we obtain a harmonic oscillator damped
by the transmission line and driven by the incoming
waves

Q̈ = −Ω2
0Q− γQ̇−

2
L0
Vin(t), (C19)

where the resonant frequency is Ω2
0 ≡ 1/

√
L0C0. Note

that the term ZcI(x = 0, t) in Eq. (C17) results in the
linear viscous damping rate γ ≡ Zc/L0.

If we solve the equation of motion of the oscillator, we
can predict the outgoing field. In the present instance of
a simple oscillator we have a particular example of the
general case where the system responds linearly to the
input field. We can characterize any such system by a
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complex, frequency dependent impedance Z[ω] defined
by

Z[ω] = −V (x = 0, ω)
I(x = 0, ω)

. (C20)

Note the peculiar minus sign which results from our def-
inition of positive current flowing to the right (out of the
system and into the transmission line). Using Eqs. (C12,
C13) and Eq. (C20) we have

Vout[ω] = r[ω]Vin[ω], (C21)

where the reflection coefficient r is determined by the
impedance mismatch between the system and the line
and is given by the well known result

r[ω] =
Z[ω]− Zc

Z[ω] + Zc
. (C22)

If the system is constructed from purely reactive (i.e.
lossless) components, then Z[ω] is purely imaginary and
the reflection coefficient obeys |r| = 1 which is consistent
with Eq. (C16) and the energy conservation requirement
of no net power flow into the lossless system. For exam-
ple, for the series LC oscillator we have been considering,
we have

Z[ω] =
1

jωC0
+ jωL0, (C23)

where, to make contact with the usual electrical engi-
neering sign conventions, we have used j = −i. If the
damping γ of the oscillator induced by coupling it to the
transmission line is small, the quality factor of the reso-
nance will be high and we need only consider frequencies
near the resonance frequency Ω0 ≡ 1/

√
L0C0 where the

impedance has a zero. In this case we may approximate

Z[ω] ≈ 2
jC0Ω2

0

[Ω0 − ω] = 2jL0(ω − Ω0) (C24)

which yields for the reflection coefficient

r[ω] =
ω − Ω0 + jγ/2
ω − Ω0 − jγ/2

(C25)

showing that indeed |r| = 1 and that the phase of the
reflected signal winds by 2π upon passing through the
resonance. 4

Turning to the more general case where the system
also contains lossy elements, one finds that Z[ω] is no
longer purely imaginary, but has a real part satisfying
Re Z[ω] > 0. This in turn implies via Eq. (C22) that
|r| < 1. In the special case of impedance matching
Z[ω] = Zc, all the incident power is dissipated in the

4 For the case of resonant transmission through a symmetric cav-
ity, the phase shift only winds by π.

system and none is reflected. The other two limits of in-
terest are open circuit termination with Z =∞ for which
r = +1 and short circuit termination Z = 0 for which
r = −1.

Finally, if the system also contains an active device
which has energy being pumped into it from a separate
external source, it may under the right conditions be de-
scribed by an effective negative resistance ReZ[ω] < 0
over a certain frequency range. Eq. (C22) then gives
|r| ≥ 1, implying |Vout| > |Vin|. Our system will thus act
like the one-port amplifier discussed in Sec. V.D: it am-
plifies signals incident upon it. We will discuss this idea
of negative resistance further in Sec. C.4; a physical real-
ization is provided by the two-port reflection parametric
amplifier discussed in Appendix V.C.

2. Lagrangian, Hamiltonian, and wave modes for a
transmission line

Prior to moving on to the case of quantum noise it
is useful to review the classical statistical mechanics of
transmission lines. To do this we need to write down
the Lagrangian and then determine the canonical mo-
menta and the Hamiltonian. Very conveniently, the sys-
tem is simply a large collection of harmonic oscillators
(the normal modes) and hence can be readily quantized.
This representation of a physical resistor is essentially the
one used by Caldeira and Leggett (Caldeira and Leggett,
1983) in their seminal studies of the effects of dissipation
on tunneling. The only difference between this model
and the vacuum fluctuations in free space is that the rel-
ativistic bosons travel in one dimension and do not carry
a polarization label. This changes the density of states as
a function of frequency, but has no other essential effect.

It is convenient to define a flux variable (Devoret, 1997)

ϕ(x, t) ≡
∫ t

−∞
dτ V (x, τ), (C26)

where V (x, t) = ∂tϕ(x, t) is the local voltage on the trans-
mission line at position x and time t. Each segment of
the line of length dx has inductance ` dx and the voltage
drop along it is −dx ∂x∂tϕ(x, t). The flux through this
inductance is thus −dx ∂xϕ(x, t) and the local value of
the current is given by the constitutive equation

I(x, t) = −1
`
∂xϕ(x, t). (C27)

The Lagrangian for the system is

Lg ≡
∫ ∞

0

dxL(x, t) =
∫ ∞

0

dx

(
c

2
(∂tϕ)2 − 1

2`
(∂xϕ)2

)
,

(C28)
The Euler-Lagrange equation for this Lagrangian is sim-
ply the wave equation

v2
p∂

2
xϕ− ∂2

t ϕ = 0. (C29)



11

The momentum conjugate to ϕ(x) is simply the charge
density

q(x, t) ≡ δL
δ∂tϕ

= c∂tϕ = cV (x, t) (C30)

and so the Hamiltonian is given by

H =
∫
dx

{
1
2c
q2 +

1
2`

(∂xϕ)2

}
. (C31)

We know from our previous results that the charge
density consists of left and right moving solutions of ar-
bitrary fixed shape. For example we might have for the
right moving case

q(t−x/vp) = αk cos[k(x−vpt)]+βk sin[k(x−vpt)]. (C32)

A confusing point is that since q is real valued, we see
that it necessarily contains both eikx and e−ikx terms
even if it is only right moving. Note however that for
k > 0 and a right mover, the eikx is associated with the
positive frequency term e−iωkt while the e−ikx term is
associated with the negative frequency term e+iωkt where
ωk ≡ vp|k|. For left movers the opposite holds. We can
appreciate this better if we define

Ak ≡
1√
L

∫
dx e−ikx

{
1√
2c
q(x, t)− i

√
k2

2`
ϕ(x, t)

}
(C33)

where for simplicity we have taken the fields to obey pe-
riodic boundary conditions on a length L. Thus we have
(in a form which anticipates the full quantum theory)

H =
1
2

∑
k

(A∗kAk +AkA
∗
k) . (C34)

The classical equation of motion (C29) yields the simple
result

∂tAk = −iωkAk. (C35)

Thus

q(x, t)

=
√

c

2L

∑
k

eikx
[
Ak(0)e−iωkt +A∗−k(0)e+iωkt

]
(C36)

=
√

c

2L

∑
k

[
Ak(0)e+i(kx−ωkt) +A∗k(0)e−i(kx−ωkt)

]
.

(C37)

We see that for k > 0 (k < 0) the wave is right (left)
moving, and that for right movers the eikx term is asso-
ciated with positive frequency and the e−ikx term is as-
sociated with negative frequency. We will return to this
in the quantum case where positive (negative) frequency
will refer to the destruction (creation) of a photon. Note
that the right and left moving voltages are given by

V→ =

√
1

2Lc

∑
k>0

[
Ak(0)e+i(kx−ωkt) +A∗k(0)e−i(kx−ωkt)

]
(C38)

V← =

√
1

2Lc

∑
k<0

[
Ak(0)e+i(kx−ωkt) +A∗k(0)e−i(kx−ωkt)

]
(C39)

The voltage spectral density for the right moving waves is thus

S→V V [ω] =
2π
2Lc

∑
k>0

{〈AkA∗k〉δ(ω − ωk) + 〈A∗kAk〉δ(ω + ωk)} (C40)

The left moving spectral density has the same expression but k < 0.
Using Eq. (C16), the above results lead to a net power flow (averaged over one cycle) within a frequency band

defined by a pass filter G[ω] of

P = P→ − P← =
vp

2L

∑
k

sgn(k) [G[ωk]〈AkA∗k〉+G[−ωk]〈A∗kAk〉] . (C41)

3. Classical statistical mechanics of a transmission line

Now that we have the Hamiltonian, we can consider
the classical statistical mechanics of a transmission line in

thermal equilibrium at temperature T . Since each mode
k is a simple harmonic oscillator we have from Eq. (C34)
and the equipartition theorem

〈A∗kAk〉 = kBT. (C42)
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Using this, we see from Eq. (C40) that the right moving
voltage signal has a simple white noise power spectrum.
Using Eq. (C41) we have for the right moving power in
a bandwidth B (in Hz rather than radians/sec) the very
simple result

P→ =
vp

2L

∑
k>0

〈G[ωk]A∗kAk +G[−ωk]AkA∗k〉

=
kBT

2

∫ +∞

−∞

dω

2π
G[ω]

= kBTB. (C43)

where we have used the fact mentioned in connection
with Eq. (A26) and the discussion of square law detec-
tors that all passive filter functions are symmetric in fre-
quency.

One of the basic laws of statistical mechanics is Kirch-
hoff’s law stating that the ability of a hot object to emit
radiation is proportional to its ability to absorb. This
follows from very general thermodynamic arguments con-
cerning the thermal equilibrium of an object with its ra-
diation environment and it means that the best possible
emitter is the black body. In electrical circuits this princi-
ple is simply a form of the fluctuation dissipation theorem
which states that the electrical thermal noise produced
by a circuit element is proportional to the dissipation it
introduces into the circuit. Consider the example of a ter-
minating resistor at the end of a transmission line. If the
resistance R is matched to the characteristic impedance
Zc of a transmission line, the terminating resistor acts
as a black body because it absorbs 100% of the power
incident upon it. If the resistor is held at temperature T
it will bring the transmission line modes into equilibrium
at the same temperature (at least for the case where the
transmission line has finite length). The rate at which the
equilibrium is established will depend on the impedance
mismatch between the resistor and the line, but the final
temperature will not.

A good way to understand the fluctuation-dissipation
theorem is to represent the resistor R which is terminat-
ing the Zc line in terms of a second semi-infinite trans-
mission line of impedance R as shown in Fig. (2). First
consider the case when the R line is not yet connected to
the Zc line. Then according to Eq. (C22), the open termi-
nation at the end of the Zc line has reflectivity |r|2 = 1
so that it does not dissipate any energy. Additionally
of course, this termination does not transmit any sig-
nals from the R line into the Zc. However when the
two lines are connected the reflectivity becomes less than
unity meaning that incoming signals on the Zc line see
a source of dissipation R which partially absorbs them.
The absorbed signals are not turned into heat as in a
true resistor but are partially transmitted into the R line
which is entirely equivalent. Having opened up this port
for energy to escape from the Zc system, we have also
allowed noise energy (thermal or quantum) from the R
line to be transmitted into the Zc line. This is com-
pletely equivalent to the effective circuit shown in Fig. (3

a) in which a real resistor has in parallel a random cur-
rent generator representing thermal noise fluctuations of
the electrons in the resistor. This is the essence of the
fluctuation dissipation theorem.

In order to make a quantitative analysis in terms of
the power flowing in the two lines, voltage is not the best
variable to use since we are dealing with more than one
value of line impedance. Rather we define incoming and
outgoing fields via

Ain =
1√
Zc

V←c (C44)

Aout =
1√
Zc

V→c (C45)

Bin =
1√
R
V→R (C46)

Bout =
1√
R
V←R (C47)

Normalizing by the square root of the impedance allows
us to write the power flowing to the right in each line in
the simple form

Pc = (Aout)2 − (Ain)2 (C48)
PR = (Bin)2 − (Bout)2 (C49)

The out fields are related to the in fields by the s matrix(
Aout

Bout

)
= s

(
Ain

Bin

)
(C50)

Requiring continuity of the voltage and current at the
interface between the two transmission lines, we can solve
for the scattering matrix s:

s =
(

+r t
t −r

)
(C51)

where

r =
R− Zc

R+ Zc
(C52)

t =
2
√
RZc

R+ Zc
. (C53)

Note that |r|2 + |t|2 = 1 as required by energy conserva-
tion and that s is unitary with det (s) = −1. By moving
the point at which the phase of the Bin and Bout fields
are determined one-quarter wavelength to the left, we
can put s into different standard form

s′ =
(

+r it
it +r

)
(C54)

which has det (s′) = +1.
As mentioned above, the energy absorbed from the Zc

line by the resistor R is not turned into heat as in a
true resistor but is is simply transmitted into the R line,
which is entirely equivalent. Kirchhoff’s law is now easy
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VR

VcVR

VcR Zc

FIG. 2 (Color online) Semi-infinite transmission line of
impedance Zc terminated by a resistor R which is represented
as a second semi-infinite transmission line.

to understand. The energy absorbed from the Zc line by
R, and the energy transmitted into it by thermal fluctua-
tions in theR line are both proportional to the absorption
coefficient

A = 1− |r|2 = |t|2 =
4RZc

(R+ Zc)2
. (C55)

R

IN

SII SVV

R

VN

a) b)
FIG. 3 Equivalent circuits for noisy resistors.

The requirement that the transmission line Zc come to
equilibrium with the resistor allows us to readily compute
the spectral density of current fluctuations of the random
current source shown in Fig. (3 a). The power dissipated
in Zc by the current source attached to R is

P =
∫ +∞

−∞

dω

2π
SII [ω]

R2Zc

(R+ Zc)2

(C56)

For the special case R = Zc we can equate this to the
right moving power P→ in Eq. (C43) because left moving
waves in the Zc line are not reflected and hence cannot
contribute to the right moving power. Requiring P =
P→ yields the classical Nyquist result for the current
noise of a resistor

SII [ω] =
2
R
kBT (C57)

or in the electrical engineering convention

SII [ω] + SII [−ω] =
4
R
kBT. (C58)

We can derive the equivalent expression for the volt-
age noise of a resistor (see Fig. 3 b) by considering the

voltage noise at the open termination of a semi-infinite
transmission line with Zc = R. For an open termination
V→ = V← so that the voltage at the end is given by

V = 2V← = 2V→ (C59)

and thus using Eqs. (C40) and (C42) we find

SV V = 4S→V V = 2RkBT (C60)

which is equivalent to Eq. (C57).

4. Amplification with a transmission line and a negative
resistance

We close our discussion of transmission lines by fur-
ther expanding upon the idea mentioned at the end of
App. C.1 that one can view a one-port amplifier as a
transmission line terminated by an effective negative re-
sistance. The discussion here will be very general: we will
explore what can be learned about amplification by sim-
ply extending the results we have obtained on transmis-
sion lines to the case of an effective negative resistance.
Our general discussion will not address the important is-
sues of how one achieves an effective negative resistance
over some appreciable frequency range: for such ques-
tions, one must focus on a specific physical realization,
such as the parametric amplifier discussed in Sec. V.C.

We start by noting that for the case −Zc < R < 0 the
power gain G is given by

G = |r|2 > 1, (C61)

and the s′ matrix introduced in Eq. (C54) becomes

s′ = −
( √

G ±
√
G− 1

±
√
G− 1

√
G

)
(C62)

where the sign choice depends on the branch cut chosen
in the analytic continuation of the off-diagonal elements.
This transformation is clearly no longer unitary (because
there is no energy conservation since we are ignoring the
work done by the amplifier power supply). Note however
that we still have det (s′) = +1. It turns out that this
naive analytic continuation of the results from positive to
negative resistance is not strictly correct. As we will show
in the following, we must be more careful than we have
been so far in order to insure that the transformation
from the in fields to the out fields must be canonical.

In order to understand the canonical nature of the
transformation between input and output modes, it is
necessary to delve more deeply into the fact that the
two quadrature amplitudes of a mode are canonically
conjugate. Following the complex amplitudes defined
in Eqs. (C44-C47), let us define a vector of real-valued
quadrature amplitudes for the incoming and outgoing
fields

~q in =


X in
A

X in
B

Y in
B

Y in
A

 , ~q out =

 Xout
A

Xout
B

Y out
B
Y out
A

.

 (C63)
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The Poisson brackets amongst the different quadrature
amplitudes is given by

{qin
i , q

in
j } ∝ Jij , (C64)

or equivalently the quantum commutators are

[qin
i , q

in
j ] = iX2

ZPFJij , (C65)

where

J ≡

 0 0 0 +1
0 0 +1 0
0 −1 0 0
−1 0 0 0

 . (C66)

In order for the transformation to be canonical, the same
Poisson bracket or commutator relations must hold for
the outgoing field amplitudes

[qout
i , qout

j ] = iX2
ZPFJij . (C67)

In the case of a non-linear device these relations would
apply to the small fluctuations in the input and output
fields around the steady state solution. Assuming a linear
device (or linearization around the steady state solution)
we can define a 4 × 4 real-valued scattering matrix s̃ in
analogy to the 2× 2 complex-valued scattering matrix s
in Eq. (C51) which relates the output fields to the input
fields

qout
i = s̃ijq

in
j . (C68)

Eq. (C67) puts a powerful constraint on on the s̃ matrix,
namely that it must be symplectic. That is, s̃ and its
transpose must obey

s̃J s̃T = J. (C69)

From this it follows that

det s̃ = ±1. (C70)

This in turn immediately implies Liouville’s theorem
that Hamiltonian evolution preserves phase space volume
(since det s̃ is the Jacobian of the transformation which
propagates the amplitudes forward in time).

Let us further assume that the device is phase preserv-
ing, that is that the gain or attenuation is the same for
both quadratures. One form for the s̃ matrix consistent
with all of the above requirements is

s̃ =

 + cos θ sin θ 0 0
sin θ − cos θ 0 0

0 0 − cos θ sin θ
0 0 sin θ + cos θ

 . (C71)

This simply corresponds to a beam splitter and is the
equivalent of Eq. (C51) with r = cos θ. As mentioned in
connection with Eq. (C51), the precise form of the scat-
tering matrix depends on the choice of planes at which

the phases of the various input and output waves are
measured.

Another allowed form of the scattering matrix is:

s̃′ = −

 + cosh θ + sinh θ 0 0
+ sinh θ + cosh θ 0 0

0 0 + cosh θ − sinh θ
0 0 − sinh θ + cosh θ

 .

(C72)
If one takes cosh θ =

√
G, this scattering matrix is

essentially the canonically correct formulation of the
negative-resistance scattering matrix we tried to write in
Eq. (C62). Note that the off-diagonal terms have changed
sign for the Y quadrature relative to the naive expression
in Eq. (C62) (corresponding to the other possible an-
alytic continuation choice). This is necessary to satisfy
the symplecticity condition and hence make the transfor-
mation canonical. The scattering matrix s̃′ can describe
amplification. Unlike the beam splitter scattering ma-
trix s̃ above, s̃′ is not unitary (even though det s̃′ = 1).
Unitarity would correspond to power conservation. Here,
power is not conserved, as we are not explicitly tracking
the power source supplying our active system.

The form of the negative-resistance amplifier scattering
matrix s̃′ confirms many of the general statements we
made about phase-preserving amplification in Sec. V.B.
First, note that the requirement of finite gain G > 1 and
phase preservation makes all the diagonal elements of s̃′
(i.e. cosh θ ) equal. We see that to amplify the A mode,
it is impossible to avoid coupling to the B mode (via the
sinh θ term) because of the requirement of symplecticity.
We thus see that it is impossible classically or quantum
mechanically to build a linear phase-preserving amplifier
whose only effect is to amplify the desired signal. The
presence of the sinh θ term above means that the output
signal is always contaminated by amplified noise from
at least one other degree of freedom (in this case the B
mode). If the thermal or quantum noise in A and B
are equal in magnitude (and uncorrelated), then in the
limit of large gain where cosh θ ≈ sinh θ, the output noise
(referred to the input) will be doubled. This is true for
both classical thermal noise and quantum vacuum noise.

The negative resistance model of an amplifier here
gives us another way to think about the noise added by
an amplifier: crudely speaking, we can view it as being
directly analogous to the fluctuation-dissipation theorem
simply continued to the case of negative dissipation. Just
as dissipation can occur only when we open up a new
channel and thus we bring in new fluctuations, so ampli-
fication can occur only when there is coupling to an ad-
ditional channel. Without this it is impossible to satisfy
the requirement that the amplifier perform a canonical
transformation.
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Appendix D: Quantum Modes and Noise of a Transmission
Line

1. Quantization of a transmission line

Recall from Eq. (C30) and the discussion in Appendix
C that the momentum conjugate to the transmission line
flux variable ϕ(x, t) is the local charge density q(x, t).
Hence in order to quantize the transmission line modes
we simply promote these two physical quantities to quan-
tum operators obeying the commutation relation

[q̂(x), ϕ̂(x′)] = −i~δ(x− x′) (D1)

from which it follows that the mode amplitudes defined
in Eq. (C33) become quantum operators obeying

[Âk′ , Â
†
k] = ~ωkδkk′ (D2)

and we may identify the usual raising and lowering oper-
ators by

Âk =
√

~ωk b̂k (D3)

where b̂k destroys a photon in mode k. The quantum
form of the Hamiltonian in Eq. (C34) is thus

H =
∑
k

~ωk
[
b̂†k b̂k +

1
2

]
. (D4)

For the quantum case the thermal equilibrium expression
then becomes

〈Â†kÂk〉 = ~ωknB(~ωk), (D5)

which reduces to Eq. (C42) in the classical limit ~ωk �
kBT .

We have seen previously in Eqs. (C6) that the volt-
age fluctuations on a transmission line can be resolved
into right and left moving waves which are functions of a
combined space-time argument

V (x, t) = V→(t− x

vp
) + V←(t+

x

vp
). (D6)

Thus in an infinite transmission line, specifying V→ ev-
erywhere in space at t = 0 determines its value for all
times. Conversely specifying V→ at x = 0 for all times
fully specifies the field at all spatial points. In prepa-
ration for our study of the quantum version of input-
output theory in Appendix E, it is convenient to extend
Eqs. (C38-C39) to the quantum case (x = 0):

V̂→(t) =

√
1

2Lc

∑
k>0

√
~ωk

[
b̂ke
−iωkt + h.c.

]
=
∫ ∞

0

dω

2π

√
~ωZc

2

[
b̂→[ω]e−iωt + h.c.

]
(D7)

In the second line, we have defined:

b̂→[ω] ≡ 2π
√
vp
L

∑
k>0

b̂kδ(ω − ωk) (D8)

In a similar fashion, we have:

V̂←(t) =
∫ ∞

0

dω

2π

√
~ωZc

2

[
b̂←[ω]e−iωt + h.c.

]
(D9)

b̂←[ω] ≡ 2π
√
vp
L

∑
k<0

b̂kδ(ω − ωk) (D10)

One can easily verify that among the b̂→[ω], b̂←[ω] opera-
tors and their conjugates, the only non-zero commutators
are given by:[
b̂→[ω],

(
b̂→[ω′]

)†]
=
[
b̂←[ω],

(
b̂←[ω′]

)†]
= 2πδ(ω − ω′)

(D11)
We have taken the continuum limit L→∞ here, allowing
us to change sums on k to integrals. We have thus ob-
tained the description of a quantum transmission line in
terms of left and right-moving frequency resolved modes,
as used in our discussion of amplifiers in Sec. VI (see
Eqs. 6.2). Note that if the right-moving modes are fur-
ther taken to be in thermal equilibrium, one finds (again,
in the continuum limit):〈(

b̂→[ω]
)†
b̂→[ω′]

〉
= 2πδ(ω − ω′)nB(~ω) (D12a)〈

b̂→[ω]
(
b̂→[ω′]

)†〉
= 2πδ(ω − ω′) [1 + nB(~ω)]

. (D12b)

We are typically interested in a relatively narrow band
of frequencies centered on some characteristic drive or
resonance frequency Ω0. In this case, it is useful to work
in the time-domain, in a frame rotating at Ω0. Fourier
transforming 5 Eqs. (D8) and (D10), one finds:

b̂→(t) =
√
vp

L

∑
k>0

e−i(ωk−Ω0)tb̂k(0), (D13a)

b̂←(t) =
√
vp

L

∑
k<0

e−i(ωk−Ω0)tb̂k(0). (D13b)

These represent temporal right and left moving modes.
Note that the normalization factor in Eqs. (D13) has been
chosen so that the right moving photon flux at x = 0 and
time t is given by

〈Ṅ〉 = 〈b̂†→(t)b̂→(t)〉 (D14)

In the same rotating frame, and within the approxima-
tion that all relevant frequencies are near Ω0, Eq. (D7)
becomes simply:

V̂→(t) ≈
√

~Ω0Zc

2

[
b̂→(t) + b̂†→(t)

]
(D15)

5 As in the main text, we use in this appendix a convention which
differs from the one commonly used in quantum optics: â[ω] =R +∞
−∞ dt e+iωtâ(t) and â†[ω] = [â[−ω]]† =

R +∞
−∞ dt e+iωtâ†(t).
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We have already seen that using classical statistical
mechanics, the voltage noise in equilibrium is white.
The corresponding analysis of the temporal modes using
Eqs. (D13) shows that the quantum commutator obeys

[b̂→(t), b̂†→(t′)] = δ(t− t′). (D16)

In deriving this result, we have converted summations
over mode index to integrals over frequency. Further,
because (for finite time resolution at least) the integral is
dominated by frequencies near +Ω0 we can, within the
Markov (Wigner Weisskopf) approximation, extend the
lower limit of frequency integration to minus infinity and
thus arrive at a delta function in time. If we further take
the right moving modes to be in thermal equilibrium,
then we may similarly approximate:

〈b̂†→(t′)b̂→(t)〉 = nB(~Ω0)δ(t− t′) (D17a)

〈b̂→(t)b̂†→(t′)〉 = [1 + nB(~Ω0)] δ(t− t′). (D17b)

Equations (D15) to (D17b) indicate that V̂→(t) can be
treated as the quantum operator equivalent of white
noise; a similar line of reasoning applies mutatis mutan-
dis to the left moving modes. We stress that these re-
sults rely crucially on our assumption that we are dealing
with a relatively narrow band of frequencies in the vicin-
ity of Ω0; the resulting approximations we have made
are known as the Markov approximation. As one can al-
ready see from the form of Eqs. (D7,D9), and as will be
discussed further, the actual spectral density of vacuum
noise on a transmission line is not white, but is linear in
frequency. The approximation made in Eq. (D16) treats
it as a constant within the narrow band of frequencies
of interest. If the range of frequencies of importance is
large then the Markov approximation is not applicable.

2. Modes and the windowed Fourier transform

While delta function correlations can make the quan-
tum noise relatively easy to deal with in both the time
and frequency domain, it is sometimes the case that it
is easier to deal with a ‘smoothed’ noise variable. The
introduction of an ultraviolet cutoff regulates the math-
ematical singularities in the noise operators evaluated at
equal times and is physically sensible because every real
measurement apparatus has finite time resolution. A sec-
ond motivation is that real spectrum analyzers output a
time varying signal which represents the noise power in
a certain frequency interval (the ‘resolution bandwidth’)
averaged over a certain time interval (the inverse ‘video
bandwidth’). The mathematical tool of choice for dealing
with such situations in which time and frequency both
appear is the ‘windowed Fourier transform’. The win-
dowed transform uses a kernel which is centered on some
frequency window and some time interval. By summa-
tion over all frequency and time windows it is possible
to invert the transformation. The reader is directed to
(Mallat, 1999) for the mathematical details.

For our present purposes where we are interested in
just a single narrow frequency range centered on Ω0, a
convenient windowed transform kernel for smoothing the
quantum noise is simply a box of width ∆t representing
the finite integration time of our detector. In the frame
rotating at Ω0 we can define

B̂→j =
1√
∆t

∫ tj+1

tj

dτ b̂→(τ) (D18)

where tj = j(∆t) denotes the time of arrival of the jth
temporal mode at the point x = 0. Recall that b̂→ has
a photon flux normalization and so B̂→j is dimensionless.
From Eq. (D16) we see that these smoothed operators
obey the usual bosonic commutation relations

[B̂→j , B̂
†→
k ] = δjk. (D19)

The state B†j |0〉 has a single photon occupying basis
mode j, which is centered in frequency space at Ω0 and in
time space on the interval j∆t < t < (j + 1)∆t (i.e. this
temporal mode passes the point x = 0 during the jth
time interval.) This basis mode is much like a note in a
musical score: it has a certain specified pitch and occurs
at a specified time for a specified duration. Just as we
can play notes of different frequencies simultaneously, we
can define other temporal modes on the same time in-
terval and they will be mutually orthogonal provided the
angular frequency spacing is a multiple of 2π/∆t. The
result is a set of modes Bm,p labeled by both a frequency
index m and a time index p. p labels the time interval as
before, while m labels the angular frequency:

ωm = Ω0 +m
2π
∆t

(D20)

The result is, as illustrated in Fig. (4), a complete lat-
tice of possible modes tiling the frequency-time phase
space, each occupying area 2π corresponding to the time-
frequency uncertainty principle.

We can form other modes of arbitrary shapes centered
on frequency Ω0 by means of linear superposition of our
basis modes (as long as they are smooth on the time scale
∆t). Let us define

Ψ =
∑
j

ψjB̂
→
j . (D21)

This is also a canonical bosonic mode operator obeying

[Ψ,Ψ†] = 1 (D22)

provided that the coefficients obey the normalization con-
dition ∑

j

|ψj |2 = 1. (D23)

We might for example want to describe a mode which is
centered at a slightly higher frequency Ω0 + δΩ (obeying
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area =  2π
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FIG. 4 (Color online) Schematic figure indicating how the
various modes defined by the windowed Fourier transform tile
the time-frequency plane. Each individual cell corresponds to
a different mode, and has an area 2π.

(δΩ)(∆t) << 1) and spread out over a large time interval
T centered at time T0. This could be given for example
by

ψj = N e−
(j∆t−T0)2

4T2 e−i(δΩ)(j∆t) (D24)

where N is the appropriate normalization constant.
The state having n photons in the mode is simply

1√
n!

(
Ψ†
)n |0〉. (D25)

The concept of ‘wave function of the photon’ is fraught
with dangers. In the very special case where we re-
strict attention solely to the subspace of single photon
Fock states, we can usefully think of the amplitudes {ψj}
as the ‘wave function of the photon’ (Cohen-Tannoudji
et al., 1989) since it tells us about the spatial mode which
is excited. In the general case however it is essential to
keep in mind that the transmission line is a collection of
coupled LC oscillators with an infinite number of degrees
of freedom. Let us simplify the argument by considering
a single LC oscillator. We can perfectly well write a wave
function for the system as a function of the coordinate
(say the charge q on the capacitor). The ground state
wave function χ0(q) is a gaussian function of the coor-
dinate. The one photon state created by Ψ† has a wave
function χ1(q) ∼ qχ0(q) proportional to the coordinate
times the same gaussian. In the general case χ is a wave
functional of the charge distribution q(x) over the entire
transmission line.

Using Eq. (D17a) we have

〈B̂†→j B̂→k 〉 = nB(~Ω0)δjk (D26)

independent of our choice of the coarse-graining time win-
dow ∆t. This result allows us to give meaning to the
phrase one often hears bandied about in descriptions of

amplifiers that ‘the noise temperature corresponds to a
mode occupancy of X photons’. This simply means that
the photon flux per unit bandwidth is X. Equivalently
the flux in bandwidth B is

Ṅ =
X

∆t
(B∆t) = XB. (D27)

The interpretation of this is that X photons in a tempo-
ral mode of duration ∆t pass the origin in time ∆t. Each
mode has bandwidth ∼ 1

∆t and so there are B∆t inde-
pendent temporal modes in bandwidth B all occupying
the same time interval ∆t. The longer is ∆t the longer it
takes a given mode to pass the origin, but the more such
modes fit into the frequency window.

As an illustration of these ideas, consider the following
elementary question: What is the mode occupancy of a
laser beam of power P and hence photon flux Ṅ = P

~Ω0
?

We cannot answer this without knowing the coherence
time or equivalently the bandwidth. The output of a
good laser is like that of a radio frequency oscillator–it
has essentially no amplitude fluctuations. The frequency
is nominally set by the physical properties of the oscilla-
tor, but there is nothing to pin the phase which conse-
quently undergoes slow diffusion due to unavoidable noise
perturbations. This leads to a finite phase coherence time
τ and corresponding frequency spread 1/τ of the laser
spectrum. (A laser beam differs from a thermal source
that has been filtered to have the same spectrum in that
it has smaller amplitude fluctuations.) Thus we expect
that the mode occupancy is X = Ṅτ . A convenient ap-
proximate description in terms of temporal modes is to
take the window interval to be ∆t = τ . Within the jth
interval we take the phase to be a (random) constant ϕj
so that (up to an unimportant normalization constant)
we have the coherent state∏

j

e
√
Xeiϕj B̂†→j |0〉 (D28)

which obeys

〈B̂→k 〉 =
√
Xeiϕk (D29)

and

〈B̂†→k B̂→k 〉 = X. (D30)

3. Quantum noise from a resistor

Let us consider the quantum equivalent to Eq. (C60),
SV V = 2RkBT , for the case of a semi-infinite transmis-
sion line with open termination, representing a resistor.
From Eq. (C27) we see that the proper boundary con-
dition for the ϕ field is ∂xϕ(0, t) = ∂xϕ(L, t) = 0. (We
have temporarily made the transmission line have a large
but finite length L.) The normal mode expansion that
satisfies these boundary conditions is

ϕ(x, t) =

√
2
L

∞∑
n=1

ϕn(t) cos(knx), (D31)
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where ϕn is the normal coordinate and kn ≡ πn
L . Sub-

stitution of this form into the Lagrangian and carrying
out the spatial integration yields a set of independent
harmonic oscillators representing the normal modes.

Lg =
∞∑
n=1

(
c

2
ϕ̇2
n −

1
2`
k2
nϕ

2
n

)
. (D32)

From this we can find the momentum operator p̂n canon-
ically conjugate to the coordinate operator ϕ̂n and quan-
tize the system to obtain an expression for the operator
representing the voltage at the end of the transmission
line in terms of the mode creation and destruction oper-
ators

V̂ =
∞∑
n=1

√
~Ωn
Lc

i(b̂†n − b̂n). (D33)

The spectral density of voltage fluctuations is then found
to be

SVV[ω] =
2π
L

∞∑
n=1

~Ωn
c

{
nB(~Ωn)δ(ω + Ωn)

+[nB(~Ωn) + 1]δ(ω − Ωn)
}
, (D34)

where nB(~ω) is the Bose occupancy factor for a photon
with energy ~ω. Taking the limit L→∞ and converting
the summation to an integral yields

SVV(ω) = 2Zc~|ω|
{
nB(~|ω|)Θ(−ω)+[nB(~|ω|)+1]Θ(ω)

}
,

(D35)
where Θ is the step function. We see immediately that
at zero temperature there is no noise at negative frequen-
cies because energy can not be extracted from zero-point
motion. However there remains noise at positive frequen-
cies indicating that the vacuum is capable of absorbing
energy from another quantum system. The voltage spec-
tral density at both zero and non-zero temperature is
plotted in Fig. (1).

Eq. (D35) for this ‘two-sided’ spectral density of a re-
sistor can be rewritten in a more compact form

SVV[ω] =
2Zc~ω

1− e−~ω/kBT
, (D36)

which reduces to the more familiar expressions in various
limits. For example, in the classical limit kBT � ~ω the
spectral density is equal to the Johnson noise result6

SVV[ω] = 2ZckBT, (D37)

in agreement with Eq. (C60). In the quantum limit it
reduces to

SVV[ω] = 2Zc~ωΘ(ω). (D38)

6 Note again that in the engineering convention this would be
SVV[ω] = 4ZckBT .

Again, the step function tells us that the resistor can only
absorb energy, not emit it, at zero temperature.

If we use the engineering convention and add the noise
at positive and negative frequencies we obtain

SVV[ω] + SVV[−ω] = 2Zc~ω coth
~ω

2kBT
(D39)

for the symmetric part of the noise, which appears in the
quantum fluctuation-dissipation theorem (cf. Eq. (2.16)).
The antisymmetric part of the noise is simply

SVV[ω]− SVV[−ω] = 2Zc~ω, (D40)

yielding

SVV[ω]− SVV[−ω]
SVV[ω] + SVV[−ω]

= tanh
~ω

2kBT
. (D41)

This quantum treatment can also be applied to any
arbitrary dissipative network (Burkhard et al., 2004; De-
voret, 1997). If we have a more complex circuit con-
taining capacitors and inductors, then in all of the above
expressions, Zc should be replaced by ReZ[ω] where Z[ω]
is the complex impedance presented by the circuit.

In the above we have explicitly quantized the stand-
ing wave modes of a finite length transmission line. We
could instead have used the running waves of an infinite
line and recognized that, as the in classical treatment in
Eq. (C59), the left and right movers are not independent.
The open boundary condition at the termination requires
V← = V→ and hence b→ = b←. We then obtain

SV V [ω] = 4S→V V [ω] (D42)

and from the quantum analog of Eq. (C40) we have

SV V [ω] =
4~|ω|
2cvp

{Θ(ω)(nB + 1) + Θ(−ω)nB}

= 2Zc~|ω| {Θ(ω)(nB + 1) + Θ(−ω)nB}
(D43)

in agreement with Eq. (D35).

Appendix E: Back Action and Input-Output Theory for
Driven Damped Cavities

A high Q cavity whose resonance frequency can be
parametrically controlled by an external source can act
as a very simple quantum amplifier, encoding informa-
tion about the external source in the phase and ampli-
tude of the output of the driven cavity. For example,
in an optical cavity, one of the mirrors could be move-
able and the external source could be a force acting on
that mirror. This defines the very active field of optome-
chanics, which also deals with microwave cavities cou-
pled to nanomechanical systems and other related setups
(Arcizet et al., 2006; Brown et al., 2007; Gigan et al.,
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2006; Harris et al., 2007; Höhberger-Metzger and Kar-
rai, 2004; Marquardt et al., 2007, 2006; Meystre et al.,
1985; Schliesser et al., 2006; Teufel et al., 2008; Thomp-
son et al., 2008; Wilson-Rae et al., 2007). In the case of a
microwave cavity containing a qubit, the state-dependent
polarizability of the qubit acts as a source which shifts
the frequency of the cavity (Blais et al., 2004; Schuster
et al., 2005; Wallraff et al., 2004).

The dephasing of a qubit in a microwave cavity and
the fluctuations in the radiation pressure in an optical
cavity both depend on the quantum noise in the number
of photons inside the cavity. We here use a simple equa-
tion of motion method to exactly solve for this quantum
noise in the perturbative limit where the dynamics of the
qubit or mirror degree of freedom has only a weak back
action effect on the cavity.

In the following, we first give a basic discussion of
the cavity field noise spectrum, deferring the detailed
microscopic derivation to subsequent subsections. We
then provide a review of the input-output theory for
driven cavities, and employ this theory to analyze the
important example of a dispersive position measurement,
where we demonstrate how the standard quantum limit
can be reached. Finally, we analyze an example where
a modified dispersive scheme is used to detect only one
quadrature of a harmonic oscillator’s motion, such that
this quadrature does not feel any back-action.

1. Photon shot noise inside a cavity and back action

Consider a degree of freedom ẑ coupled parametrically
with strength A to the cavity oscillator

Ĥint = ~ωc(1 +Aẑ) [â†â− 〈â†â〉] (E1)

where following Eq. (3.12), we have taken A to be dimen-
sionless, and use ẑ to denote the dimensionless system
variable that we wish to probe. For example, ẑ could
represent the dimensionless position of a mechanical os-
cillator

ẑ ≡ x̂

xZPF
. (E2)

We have subtracted the 〈â†â〉 term so that the mean
force on the degree of freedom is zero. To obtain the full
Hamiltonian, we would have to add the cavity damping
and driving terms, as well as the Hamiltonian governing
the intrinsic dynamics of the system ẑ. From Eq. (3.18)
we know that the back action noise force acting on ẑ is
proportional to the quantum fluctuations in the number
of photons n̂ = â†â in the cavity,

Snn(t) = 〈â†(t)â(t)â†(0)â(0)〉 − 〈â†(t)â(t)〉2. (E3)

For the case of continuous wave driving at frequency
ωL = ωc + ∆ detuned by ∆ from the resonance, the
cavity is in a coherent state |ψ〉 obeying

â(t) = e−iωLt[ā+ d̂(t)] (E4)

where the first term is the ‘classical part’ of the mode am-
plitude ψ(t) = āe−iωLt determined by the strength of the
drive field, the damping of the cavity and the detuning
∆, and d is the quantum part. By definition,

â|ψ〉 = ψ|ψ〉 (E5)

so the coherent state is annihilated by d̂:

d̂|ψ〉 = 0. (E6)

That is, in terms of the operator d̂, the coherent state
looks like the undriven quantum ground state . The dis-
placement transformation in Eq. (E4) is canonical since

[â, â†] = 1 ⇒ [d̂, d̂†] = 1. (E7)

Substituting the displacement transformation into
Eq. (E3) and using Eq. (E6) yields

Snn(t) = n̄〈d̂(t)d̂†(0)〉, (E8)

where n̄ = |ā|2 is the mean cavity photon number. If we
set the cavity energy damping rate to be κ, such that the
amplitude damping rate is κ/2, then the undriven state
obeys

〈d̂(t)d̂†(0)〉 = e+i∆te−
κ
2 |t|. (E9)

This expression will be justified formally in the subse-
quent subsection, after introducing input-output theory.
We thus arrive at the very simple result

Snn(t) = n̄ei∆t−
κ
2 |t|. (E10)

The power spectrum of the noise is, via the Wiener-
Khinchin theorem (Appendix A.2), simply the Fourier
transform of the autocorrelation function given in
Eq. (E10)

Snn[ω] =
∫ +∞

−∞
dt eiωtSnn(t) = n̄

κ

(ω + ∆)2 + (κ/2)2
.

(E11)
As can be seen in Fig. 5a, for positive detuning ∆ =
ωL − ωc > 0, i.e. for a drive that is blue-detuned with
respect to the cavity, the noise peaks at negative ω. This
means that the noise tends to pump energy into the de-
gree of freedom ẑ (i.e. it contributes negative damping).
For negative detuning the noise peaks at positive ω cor-
responding to the cavity absorbing energy from ẑ. Basi-
cally, the interaction with ẑ (three wave mixing) tries to
Raman scatter the drive photons into the high density of
states at the cavity frequency. If this is uphill in energy,
then ẑ is cooled.

As discussed in Sec. B.2 (c.f. Eq. (2.8)), at each fre-
quency ω, we can use detailed balance to assign the noise
an effective temperature Teff [ω]:

Snn[ω]
Snn[−ω]

= e~ω/kBTeff [ω] ⇔

kBTeff [ω] ≡ ~ω

log
[
Snn[ω]
Snn[−ω]

] (E12)
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FIG. 5 (Color online) (a) Noise spectrum of the photon num-
ber in a driven cavity as a function of frequency when the
cavity drive frequency is detuned from the cavity resonance
by ∆ = +3κ (left peak) and ∆ = −3κ (right peak). (b) Ef-
fective temperature Teff of the low frequency noise, ω → 0,
as a function of the detuning ∆ of the drive from the cavity
resonance. (c) Frequency-dependence of the effective noise
temperature, for different values of the detuning.

or equivalently

Snn[ω]− Snn[−ω]
Snn[ω] + Snn[−ω]

= tanh(β~ω/2). (E13)

If ẑ is the coordinate of a harmonic oscillator of frequency
ω (or some non-conserved observable of a qubit with level
splitting ω), then that system will acquire a temperature
Teff [ω] in the absence of coupling to any other environ-
ment. In particular, if the characteristic oscillation fre-
quency of the system ẑ is much smaller than κ, then we
have the simple result

1
kBTeff

= lim
ω→0+

2
~ω

Snn[ω]− Snn[−ω]
Snn[ω] + Snn[−ω]

= 2
d lnSnn[ω]

d~ω

=
1
~

−4∆
∆2 + (κ/2)2

. (E14)

As can be seen in Fig. 5, the asymmetry in the noise
changes sign with detuning, which causes the effective
temperature to change sign.

First we discuss the case of a positive Teff , where this
mechanism can be used to laser cool an oscillating me-
chanical cantilever, provided Teff is lower than the in-
trinsic equilibrium temperature of the cantilever. (Ar-
cizet et al., 2006; Brown et al., 2007; Gigan et al., 2006;
Harris et al., 2007; Höhberger-Metzger and Karrai, 2004;
Marquardt et al., 2007; Schliesser et al., 2006; Thompson
et al., 2008; Wilson-Rae et al., 2007). A simple classical
argument helps us understand this cooling effect. Sup-
pose that the moveable mirror is at the right hand end
of a cavity being driven below the resonance frequency.
If the mirror moves to the right, the resonance frequency
will fall and the number of photons in the cavity will rise.
There will be a time delay however to fill the cavity and
so the extra radiation pressure will not be fully effective
in doing work on the mirror. During the return part of
the oscillation as the mirror moves back to the left, the
time delay in emptying the cavity will cause the mirror to
have to do extra work against the radiation pressure. At
the end of the cycle it ends up having done net positive
work on the light field and hence is cooled. The effect can
therefore be understood as being due to the introduction
of some extra optomechanical damping.

The signs reverse (and Teff becomes negative) if the
cavity is driven above resonance, and consequently the
cantilever motion is heated up. In the absence of in-
trinsic mechanical losses, negative values of the effective
temperature indicate a dynamical instability of the can-
tilever (or population inversion in the case of a qubit),
where the amplitude of motion grows until it is finally
stabilized by nonlinear effects. This can be interpreted
as negative damping introduced by the optomechanical
coupling and can be used to create parametric amplifica-
tion of mechanical forces acting on the oscillator.

Finally, we mention that cooling towards the quantum
ground state of a mechanical oscillator (where phonon
numbers become much less than one), is only possible
(Marquardt et al., 2007; Wilson-Rae et al., 2007) in the
“far-detuned regime”, where −∆ = ω � κ (in contrast
to the ω � κ regime discussed above).

2. Input-output theory for a driven cavity

The results from the previous section can be more for-
mally and rigorously derived in a full quantum theory
of a cavity driven by an external coherent source. The
theory relating the drive, the cavity and the outgoing
waves radiated by the cavity is known as input-output
theory and the classical description was presented in Ap-
pendix C. The present quantum discussion closely fol-
lows standard references on the subject (Walls and Mil-
burn, 1994; Yurke, 1984; Yurke and Denker, 1984). The
crucial feature that distinguishes such an approach from
many other treatments of quantum-dissipative systems
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is the goal of keeping the bath modes instead of trac-
ing them out. This is obviously necessary for the situa-
tions we have in mind, where the output field emanating
from the cavity contains the information acquired during
a measurement of the system coupled to the cavity. As
we learned from the classical treatment, we can elimi-
nate the outgoing waves in favor of a damping term for
the system. However we can recover the solution for the
outgoing modes completely from the solution of the equa-
tion of motion of the damped system being driven by the
incoming waves.

In order to drive the cavity we must partially open one
of its ports which exposes the cavity both to the external
drive and to the vacuum noise outside which permits en-
ergy in the cavity to leak out into the surrounding bath.
We will formally separate the degrees of freedom into in-
ternal cavity modes and external bath modes. Strictly
speaking, once the port is open, these modes are not dis-
tinct and we only have ‘the modes of the universe’ (Gea-
Banacloche et al., 1990a,b; Lang et al., 1973). However
for high Q cavities, the distinction is well-defined and we
can model the decay of the cavity in terms of a spon-
taneous emission process in which an internal boson is
destroyed and an external bath boson is created. We
assume a single-sided cavity. For a high Q cavity, this
physics is accurately captured in the following Hamilto-
nian

Ĥ = Ĥsys + Ĥbath + Ĥint. (E15)

The bath Hamiltonian is

Ĥbath =
∑
q

~ωq b̂†q b̂q (E16)

where q labels the quantum numbers of the independent
harmonic oscillator bath modes obeying

[b̂q, b̂
†
q′ ] = δq,q′ . (E17)

Note that since the bath terminates at the system, there
is no translational invariance, the normal modes are
standing not running waves, and the quantum numbers
q are not necessarily wave vectors.

The coupling Hamiltonian is (within the rotating wave
approximation)

Ĥint = −i~
∑
q

[
fqâ
†b̂q − f∗q b̂†qâ

]
. (E18)

For the moment we will leave the system (cavity) Hamil-
tonian to be completely general, specifying only that it
consists of a single degree of freedom (i.e. we concentrate
on only a single resonance of the cavity with frequency
ωc) obeying the usual bosonic commutation relation

[â, â†] = 1. (E19)

(N.B. this does not imply that it is a harmonic oscilla-
tor. We will consider both linear and non-linear cavities.)

Note that the most general linear coupling to the bath
modes would include terms of the form b̂†qâ

† and b̂qa but
these are neglected within the rotating wave approxima-
tion because in the interaction representation they os-
cillate at high frequencies and have little effect on the
dynamics.

The Heisenberg equation of motion (EOM) for the
bath variables is

˙̂
bq =

i

~
[Ĥ, b̂q] = −iωqb̂q + f∗q â (E20)

We see that this is simply the EOM of a harmonic oscil-
lator driven by a forcing term due to the motion of the
cavity degree of freedom. Since this is a linear system,
the EOM can be solved exactly. Let t0 < t be a time in
the distant past before any wave packet launched at the
cavity has reached it. The solution of Eq. (E20) is

b̂q(t) = e−iωq(t−t0)b̂q(t0) +
∫ t

t0

dτ e−iωq(t−τ)f∗q â(τ).

(E21)
The first term is simply the free evolution of the bath
while the second represents the waves radiated by the
cavity into the bath.

The EOM for the cavity mode is

˙̂a =
i

~
[Ĥsys, â]−

∑
q

fq b̂q. (E22)

Substituting Eq. (E21) into the last term above yields∑
q

fq b̂q =
∑
q

fqe
−iωq(t−t0)b̂q(t0)

+
∑
q

|fq|2
∫ t

t0

dτ e−i(ωq−ωc)(t−τ)[e+iωc(τ−t)â(τ)], (E23)

where the last term in square brackets is a slowly varying
function of τ . To simplify our result, we note that if
the cavity system were a simple harmonic oscillator of
frequency ωc then the decay rate from the n = 1 single
photon excited state to the n = 0 ground state would be
given by the following Fermi Golden Rule expression

κ(ωc) = 2π
∑
q

|fq|2δ(ωc − ωq). (E24)

From this it follows that∫ +∞

−∞

dν

2π
κ(ωc + ν)e−iν(t−τ) =

∑
q

|fq|2e−i(ωq−ωc)(t−τ).

(E25)
We now make the Markov approximation which assumes
that κ(ν) = κ is a constant over the range of frequencies
relevant to the cavity so that Eq. (E25) may be repre-
sented as∑

q

|fq|2e−i(ωq−ωc)(t−τ) = κδ(t− τ). (E26)
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Using ∫ x0

−∞
dx δ(x− x0) =

1
2

(E27)

we obtain for the cavity EOM

˙̂a =
i

~
[Ĥsys, â]− κ

2
â−

∑
q

fqe
−iωq(t−t0)b̂q(t0). (E28)

The second term came from the part of the bath motion
representing the wave radiated by the cavity and, within
the Markov approximation, has become a simple linear
damping term for the cavity mode. Note the important
factor of 2. The amplitude decays at half the rate of the
intensity (the energy decay rate κ).

Within the spirit of the Markov approximation it is
further convenient to treat f ≡

√
|fq|2 as a constant and

define the density of states (also taken to be a constant)
by

ρ =
∑
q

δ(ωc − ωq) (E29)

so that the Golden Rule rate becomes

κ = 2πf2ρ. (E30)

We can now define the so-called ‘input mode’

b̂in(t) ≡ 1√
2πρ

∑
q

e−iωq(t−t0)b̂q(t0) . (E31)

For the case of a transmission line treated in Appendix
D, this coincides with the field b̂→ moving towards the
cavity [see Eq. (D13a)]. We finally have for the cavity
EOM

˙̂a =
i

~
[Ĥsys, â]− κ

2
â−
√
κ b̂in(t). (E32)

Note that when a wave packet is launched from the bath
towards the cavity, causality prevents it from knowing
about the cavity’s presence until it reaches the cavity.
Hence the input mode evolves freely as if the cavity were
not present until the time of the collision at which point
it begins to drive the cavity. Since b̂in(t) evolves under
the free bath Hamiltonian and acts as the driving term in
the cavity EOM, we interpret it physically as the input
mode. Eq. (E32) is the quantum analog of the classi-
cal equation (C19), for our previous example of an LC-
oscillator driven by a transmission line. The latter would
also have been first order in time if as in Eq. (C35) we
had worked with the complex amplitude A instead of the
coordinate Q.

Eq. (E31) for the input mode contains a time label
just as in the interaction representation. However it is
best interpreted as simply labeling the particular linear
combination of the bath modes which is coupled to the
system at time t. Some authors even like to think of

the bath modes as non-propagating while the cavity flies
along the bath (taken to be 1D) at a velocity v. The
system then only interacts briefly with the local mode
positioned at x = vt before moving on and interacting
with the next local bath mode. We will elaborate on this
view further at the end of this subsection.

The expression for the power Pin (energy per time)
impinging on the cavity depends on the normalization
chosen in our definition of b̂in. It can be obtained, for
example, by imagining the bath modes b̂q to live on a one-
dimensional waveguide with propagation velocity v and
length L (using periodic boundary conditions). In that
case we have to sum over all photons to get the average
power flowing through a cross-section of the waveguide,
Pin =

∑
q ~ωq(vp/L)

〈
b̂†q b̂q

〉
. Inserting the definition for

b̂in, Eq. (E31), the expression for the input power carried
by a monochromatic beam at frequency ω is

Pin(t) = ~ω
〈
b̂†in(t)b̂in(t)

〉
(E33)

Note that this has the correct dimensions due to our
choice of normalization for b̂in (with dimensions

√
ω). In

the general case, an integration over frequencies is needed
(as will be discussed further below). An analogous for-
mula holds for the power radiated by the cavity, to be
discussed now.

The output mode b̂out(t) is radiated into the bath and
evolves freely after the system interacts with b̂in(t). If
the cavity did not respond at all, then the output mode
would simply be the input mode reflected off the cav-
ity mirror. If the mirror is partially transparent then
the output mode will also contain waves radiated by the
cavity (which is itself being driven by the input mode
partially transmitted into the cavity through the mirror)
and hence contains information about the internal dy-
namics of the cavity. To analyze this output field, let
t1 > t be a time in the distant future after the input
field has interacted with the cavity. Then we can write
an alternative solution to Eq. (E20) in terms of the final
rather than the initial condition of the bath

b̂q(t) = e−iωq(t−t1)b̂q(t1)−
∫ t1

t

dτ e−iωq(t−τ)f∗q â(τ).

(E34)
Note the important minus sign in the second term as-
sociated with the fact that the time t is now the lower
limit of integration rather than the upper as it was in
Eq. (E21).

Defining

b̂out(t) ≡
1√
2πρ

∑
q

e−iωq(t−t1)b̂q(t1), (E35)

we see that this is simply the free evolution of the bath
modes from the distant future (after they have interacted
with the cavity) back to the present, indicating that it is
indeed appropriate to interpret this as the outgoing field.
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Proceeding as before we obtain

˙̂a =
i

~
[Ĥsys, â] +

κ

2
â−
√
κ b̂out(t). (E36)

Subtracting Eq. (E36) from Eq. (E32) yields

b̂out(t) = b̂in(t) +
√
κ â(t) (E37)

which is consistent with our interpretation of the out-
going field as the reflected incoming field plus the field
radiated by the cavity out through the partially reflecting
mirror.

The above results are valid for any general cavity
Hamiltonian. The general procedure is to solve Eq. (E32)
for â(t) for a given input field, and then solve Eq. (E37)
to obtain the output field. For the case of an empty cav-
ity we can make further progress because the cavity mode
is a harmonic oscillator

Ĥsys = ~ωcâ
†â. (E38)

In this simple case, the cavity EOM becomes

˙̂a = −iωcâ−
κ

2
â−
√
κ b̂in(t). (E39)

Eq. (E39) can be solved by Fourier transformation, yield-
ing

â[ω] = −
√
κ

i(ωc − ω) + κ/2
b̂in[ω] (E40)

= −
√
κχc[ω − ωc]b̂in[ω] (E41)

and

b̂out[ω] =
ω − ωc − iκ/2
ω − ωc + iκ/2

b̂in[ω] (E42)

which is the result for the reflection coefficient quoted in
Eq. (3.13). For brevity, here and in the following, we will
sometimes use the susceptibility of the cavity, defined as

χc[ω − ωc] ≡ 1
−i(ω − ωc) + κ/2

(E43)

For the case of steady driving on resonance where ω = ωc,
the above equations yield

b̂out[ω] =
√
κ

2
â[ω]. (E44)

In steady state, the incoming power equals the outgoing
power, and both are related to the photon number inside
the single-sided cavity by

P = ~ω
〈
b̂†out(t)b̂out(t)

〉
= ~ω

κ

4
〈
â†(t)â(t)

〉
(E45)

Note that this does not coincide with the naive expecta-
tion, which would be P = ~ωκ

〈
â†â
〉
. The reason for this

discrepancy is the the interference between the part of the

incoming wave which is promptly reflected from the cav-
ity and the field radiated by the cavity. The naive expres-
sion becomes correct after the drive has been switched off
(where ignoring the effect of the incoming vacuum noise,
we would have b̂out =

√
κâ). We note in passing that for

a driven two-sided cavity with coupling constants κL and
κR (where κ = κL + κR), the incoming power sent into
the left port is related to the photon number by

P = ~ωκ2/(4κL)
〈
â†â
〉
. (E46)

Here for κL = κR the interference effect completely elim-
inates the reflected beam and we have in contrast to
Eq. (E45)

P = ~ω
κ

2
〈
â†â
〉
. (E47)

Eq. (E39) can also be solved in the time domain to
obtain

â(t) = e−(iωc+κ/2)(t−t0)â(t0)

−
√
κ

∫ t

t0

dτ e−(iωc+κ/2)(t−τ)b̂in(τ). (E48)

If we take the input field to be a coherent drive at fre-
quency ωL = ωc + ∆ so that its amplitude has a classical
and a quantum part

b̂in(t) = e−iωLt[b̄in + ξ̂(t)] (E49)

and if we take the limit t0 →∞ so that the initial tran-
sient in the cavity amplitude has damped out, then the
solution of Eq. (E48) has the form postulated in Eq. (E4)
with

ā = −
√
κ

−i∆ + κ/2
b̄in (E50)

and (in the frame rotating at the drive frequency)

d̂(t) = −
√
κ

∫ t

−∞
dτ e+(i∆−κ/2)(t−τ)ξ̂(τ). (E51)

Even in the absence of any classical drive, the input
field delivers vacuum fluctuation noise to the cavity. No-
tice that from Eqs. (E31, E49)

[b̂in(t), b̂†in(t′)] = [ξ̂(t), ξ̂†(t′)]

=
1

2πρ

∑
q

e−i(ωq−ωL)(t−t′)

= δ(t− t′), (E52)

which is similar to Eq. (D16) for a quantum transmission
line. This is the operator equivalent of white noise. Using
Eq. (E48) in the limit t0 → −∞ in Eqs. (E4,E51) yields

[â(t), â†(t)] = [d̂(t), d̂†(t)]

= κ

∫ t

−∞
dτ

∫ t

−∞
dτ ′ e−(−i∆+κ/2)(t−τ)

e−(+i∆+κ/2)(t−τ ′)δ(τ − τ ′)
= 1 (E53)
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as is required for the cavity bosonic quantum degree of
freedom. We can interpret this as saying that the cavity
zero-point fluctuations arise from the vacuum noise that
enters through the open port. We also now have a simple
physical interpretation of the quantum noise in the num-
ber of photons in the driven cavity in Eqs. (E3,E8,E11).
It is due to the vacuum noise which enters the cavity
through the same ports that bring in the classical drive.
The interference between the vacuum noise and the clas-
sical drive leads to the photon number fluctuations in the
cavity.

In thermal equilibrium, ξ̂ also contains thermal radi-
ation. If the bath is being probed only over a narrow
range of frequencies centered on ωc (which we have as-
sumed in making the Markov approximation) then we
have to a good approximation (consistent with the above
commutation relation)

〈ξ̂†(t)ξ̂(t′)〉 = Nδ(t− t′) (E54)

〈ξ̂(t)ξ̂†(t′)〉 = (N + 1)δ(t− t′) (E55)

where N = nB(~ωc) is the thermal equilibrium occupa-
tion number of the mode at the frequency of interest. We
can gain a better understanding of Eq. (E54) by Fourier
transforming it to obtain the spectral density

S[ω] =
∫ +∞

−∞
dt 〈ξ̂†(t)ξ̂(t′)〉eiω(t−t′) = N. (E56)

As mentioned previously, this dimensionless quantity is
the spectral density that would be measured by a photo-
multiplier: it represents the number of thermal photons
passing a given point per unit time per unit bandwidth.
Equivalently the thermally radiated power in a narrow
bandwidth B is

P = ~ωNB. (E57)

One often hears the confusing statement that the noise
added by an amplifier is a certain number N of photons
(N = 20, say for a good cryogenic HEMT amplifier op-
erating at 5 GHz). This means that the excess output
noise (referred back to the input by dividing by the power
gain) produces a flux of N photons per second in a 1 Hz
bandwidth, or 106N photons per second in 1 MHz of
bandwidth (see also Eq. (D27)).

We can gain further insight into input-output theory
by using the following picture. The operator b̂in(t) repre-
sents the classical drive plus vacuum fluctuations which
are just about to arrive at the cavity. We will be able
to show that the output field is simply the input field
a short while later after it has interacted with the cav-
ity. Let us consider the time evolution over a short time
period ∆t which is very long compared to the inverse
bandwidth of the vacuum noise (i.e., the frequency scale
beyond which the vacuum noise cannot be treated as con-
stant due to some property of the environment) but very
short compared to the cavity system’s slow dynamics. In

this circumstance it is useful to introduce the quantum
Wiener increment related to Eq. (D18)

dŴ ≡
∫ t+∆t

t

dτ ξ̂(τ) (E58)

which obeys

[dŴ , dŴ †] = ∆t. (E59)

In the interaction picture (in a displaced frame in
which the classical drive has been removed) the Hamilto-
nian term that couples the cavity to the quantum noise
of the environment is from Eq. (E18)

V̂ = −i~
√
κ(â†ξ̂ − âξ̂†). (E60)

Thus the time evolution operator (in the interaction pic-
ture) on the jth short time interval [tj , tj + ∆t] is

Ûj = e
√
κ(â dcW †−â† dcW ) (E61)

Using this we can readily evolve the incoming temporal
mode forward in time by a small step ∆t

dŴ ′ = Û†dŴ Û ≈ dŴ +
√
κ∆t â. (E62)

Recall that in input-output theory we formally defined
the outgoing field as the bath field far in the future prop-
agated back (using the free field time evolution) to the
present, which yielded

b̂out = b̂in +
√
κâ. (E63)

Eq. (E62) is completely equivalent to this. Thus we con-
firm our understanding that the incoming field is the bath
temporal mode just before it interacts with the cavity and
the outgoing field is the bath temporal mode just after it
interacts with the cavity.

This leads to the following picture which is especially
useful in the quantum trajectory approach to conditional
quantum evolution of a system subject to weak continu-
ous measurement (Gardiner et al., 1992; Walls and Mil-
burn, 1994). On top of the classical drive b̄in(t), the bath
supplies to the system a continuous stream of “fresh” har-
monic oscillators, each in their ground state (if T = 0).
Each oscillator with its quantum fluctuation dŴ inter-
acts briefly for a period ∆t with the system and then
is disconnected to propagate freely thereafter, never in-
teracting with the system again. Within this picture it
is useful to think of the oscillators arrayed in an infinite
stationary line and the cavity flying over them at speed
vp and touching each one for a time ∆t.

3. Quantum limited position measurement using a cavity
detector

We will now apply the input-output formalism intro-
duced in the previous section to the important example
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of a dispersive position measurement, which employs a
cavity whose resonance frequency shifts in response to
the motion of a harmonic oscillator. This physical sys-
tem was considered heuristically in Sec. III.B.3. Here we
will present a rigorous derivation using the (linearized)
equations of motion for the coupled cavity and oscillator
system.

Let the dimensionless position operator

ẑ =
1

xZPF
x̂ = [ĉ† + ĉ] (E64)

be the coordinate of a harmonic oscillator whose energy
is

HM = ~ωMĉ
†ĉ (E65)

and whose position uncertainty in the quantum ground
state is xZPF =

√
〈0|x̂2|0〉.

This Hamiltonian could be realized for example by
mounting one of the cavity mirrors on a flexible cantilever
(see the discussion above).

When the mirror moves, the cavity resonance fre-
quency shifts,

ω̃c = ωc[1 +Aẑ(t)] (E66)

where for a cavity of length L, A = −xZPF/L.
Assuming that the mirror moves slowly enough for the

cavity to adiabatically follow its motion (i.e. Ω� κ), the
outgoing light field suffers a phase shift which follows the
changes in the mirror position. This phase shift can be
detected in the appropriate homodyne set up as discussed
in Sec. III.B, and from this phase shift we can determine
the position of the mechanical oscillator. In addition to
the actual zero-point fluctuations of the oscillator, our
measurement will suffer from shot noise in the homodyne
signal and from additional uncertainty due to the back
action noise of the measurement acting on the oscillator.
All of these effects will appear naturally in the derivation
below.

We begin by considering the optical cavity equation
of motion based on Eq. (E32) and the optomechanical
coupling Hamiltonian in Eq. (E1). These yield

˙̂a = −iωc(1 +Aẑ)â− κ

2
â−
√
κb̂in. (E67)

Let the cavity be driven by a laser at a frequency ωL =
ωc +∆ detuned from the cavity by ∆. Moving to a frame
rotating at ωL we have

˙̂a = +i(∆−Aωcẑ)â−
κ

2
â−
√
κb̂in. (E68)

and we can write the incoming field as a constant plus
white noise vacuum fluctuations (again, in the rotating
frame)

b̂in = b̄in + ξ̂ (E69)

and similarly for the cavity field following Eq. (E4)

â = ā+ d̂. (E70)

Substituting these expressions into the equation of mo-
tion, we find that the constant classical fields obey

ā = −
√
κ

κ/2− i∆
b̄in (E71)

and the new quantum equation of motion is, after ne-
glecting a small term d̂ẑ:

˙̂
d = +i∆d̂− iAωcāẑ −

κ

2
d̂−
√
κξ̂. (E72)

The quantum limit for position measurement will be
reached only at zero detuning, so we specialize to the
case ∆ = 0. We also choose the incoming field amplitude
and phase to obey

b̄in = −i
√
Ṅ , (E73)

so that

ā = +2i

√
Ṅ

κ
, (E74)

where Ṅ is the incoming photon number flux. The quan-
tum equation of motion for the cavity then becomes

˙̂
d = +gẑ − κ

2
d̂−
√
κξ̂, (E75)

where the opto-mechanical coupling constant is propor-
tional to the laser drive amplitude

g ≡ 2Aωc

√
Ṅ

κ
= Aωc

√
n̄. (E76)

and

n̄ = |ā|2 = 4
Ṅ

κ
(E77)

is the mean cavity photon number. Eq. (E75) is easily
solved by Fourier transformation

d̂[ω] =
1

[κ/2− iω]

{
gẑ[ω]−

√
κξ̂[ω]

}
. (E78)

Let us assume that we are in the limit of low mechan-
ical frequency relative to the cavity damping, Ω � κ,
so that the cavity state adiabatically follows the motion
of the mechanical oscillator. Then we obtain to a good
approximation

d̂[ω] =
2
κ

{
gẑ[ω]−

√
κξ̂[ω]

}
(E79)

d̂†[ω] =
2
κ

{
gẑ[ω]−

√
κξ̂†[ω]

}
(E80)
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The mechanical oscillator equation of motion which is
identical in form to that of the optical cavity

∂tĉ = −[
γ0

2
+ iΩ]ĉ−√γ0η̂(t) +

i

~
[Ĥint, ĉ(t)], (E81)

where Ĥint is the Hamiltonian in Eq. (E1) and η̂ is
the mechanical vacuum noise from the (zero tempera-
ture) bath which is causing the mechanical damping at
rate γ0. Using Eq. (E70) and expanding to first order
in small fluctuations yields the equation of motion lin-
earized about the steady state solution

∂tĉ = −[
γ0

2
+ iΩ]ĉ−√γ0η̂(t) + 2

g√
κ

[ξ̂(t)− ξ̂†(t)]. (E82)

It is useful to consider an equivalent formulation in
which we expand the Hamiltonian in Eq. (E1) to second
order in the quantum fluctuations about the classical so-
lution

Ĥint ≈ ~ωcd̂
†d̂+ x̂F̂ , (E83)

where the force (including the coupling A) is (up to a
sign)

F̂ = −i ~g
xZPF

[d̂− d̂†]. (E84)

Note that the radiation pressure fluctuations (photon
shot noise) inside the cavity provide a forcing term. The
state of the field inside the cavity in general depends on
the past history of the cantilever position. However for
this special case of driving the cavity on resonance, the
dependence of the cavity field on the cantilever history is
such that the latter drops out of the radiation pressure.
To see this explicitly, consider the equation of motion for
the force obtained from Eq. (E75)

˙̂
F = −κ

2
F̂ + i

~g
xZPF

√
κ[ξ̂ − ξ̂†]. (E85)

Within our linearization approximation, the position of
the mechanical oscillator has no effect on the radiation
pressure (photon number in the cavity), but of course it
does affect the phase of the cavity field (and hence the
outgoing field) which is what we measure in the homo-
dyne detection.

Thus for this special case ẑ does not appear on the
RHS of either Eq. (E85) or Eq. (E82), which means that
there is no optical renormalization of the cantilever fre-
quency (‘optical spring’) or optical damping of the can-
tilever. The lack of back-action damping in turn implies
that the effective temperature Teff of the cavity detector
is infinite (cf. Eq. (2.8)). For this special case of zero
detuning the back action force noise is controlled by a
single quadrature of the incoming vacuum noise (which
interferes with the classical drive to produce photon num-
ber fluctuations). This is illustrated in the cavity ampli-
tude phasor diagram of Fig. (6). We see that the vac-
uum noise quadrature ξ̂+ ξ̂† conjugate to F̂ controls the

FIG. 6 (Color online) Phasor diagram for the cavity ampli-
tude showing that (for our choice of parameters) the imag-

inary quadrature of the vacuum noise ξ̂ interferes with the
classical drive to produce photon number fluctuations while
the real quadrature produces phase fluctuations which lead to
measurement imprecision. The quantum fluctuations are il-
lustrated in the usual fashion, depicting the Gaussian Wigner
density of the coherent state in terms of color intensity.

phase noise which determines the measurement impreci-
sion (shot noise in the homodyne signal). This will be
discussed further below.

The solution for the cantilever position can again be
obtained by Fourier transformation. For frequencies
small on the scale of κ the solution of Eq. (E85) is

F̂ [ω] =
2i~g

xZPF
√
κ

{
ξ̂[ω]− ξ̂†[ω]

}
(E86)

and hence the back action force noise spectral density is
at low frequencies

SFF [ω] =
4~2g2

x2
ZPFκ

(E87)

in agreement with Eq. (3.18).
Introducing a quantity proportional to the cantilever

(mechanical) susceptibility (within the rotating wave ap-
proximation we are using)

χM[ω − Ω] ≡ 1
−i(ω − Ω) + γ0

2

, (E88)

we find from Eq. (E82)

ẑ[ω] = ẑ0[ω]− i

~
xZPF {χM[ω − Ω]− χM[ω + Ω]} F̂ [ω],

(E89)
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where the equilibrium fluctuations in position are given
by

ẑ0[ω] ≡ −√γ0

{
χM[ω − Ω]η̂[ω] + χM[ω + Ω]η̂†[ω]

}
.

(E90)
We can now obtain the power spectrum Szz describing

the total position fluctuations of the cantilever driven by
the mechanical vacuum noise plus the radiation pressure
shot noise. From Eqs. (E89, E90) we find

Sxx[ω]
x2

ZPF

= Szz[ω]

= γ0|χ[ω − Ω]|2 (E91)

+
x2

ZPF

~2
|χM[ω − Ω]− χM[ω + Ω]|2 SFF .

Note that (assuming high mechanical Q, i.e. γ0 � Ω) the
equilibrium part has support only at positive frequencies
while the back action induced position noise is symmetric
in frequency reflecting the effective infinite temperature
of the back action noise. Symmetrizing this result with
respect to frequency (and using γ0 � Ω) we have

S̄xx[ω] ≈ S̄0
xx[ω]

(
1 +

S̄0
xx[Ω]
~2

S̄FF

)
, (E92)

where S̄0
xx[ω] is the symmetrized spectral density for posi-

tion fluctuations in the ground state given by Eq. (3.54).
Now that we have obtained the effect of the back action

noise on the position fluctuations, we must turn our at-
tention to the imprecision of the measurement due to shot
noise in the output. The appropriate homodyne quadra-
ture variable to monitor to be sensitive to the output
phase shift caused by position fluctuations is

Î = b̂out + b̂†out, (E93)

which, using the input-output results above, can be writ-
ten

Î = −(ξ̂ + ξ̂†) + λx̂. (E94)

We see that the cavity homodyne detector system acts
as a position transducer with gain

λ =
4g

xZPF
√
κ
. (E95)

The first term in Eq. (E94) represents the vacuum noise
that mixes with the homodyne local oscillator to produce
the shot noise in the output. The resulting measurement
imprecision (symmetrized) spectral density referred back
to the position of the oscillator is

S̄I
xx =

1
λ2
. (E96)

Comparing this to Eq. (E87) we see that we reach the
quantum limit relating the imprecision noise to the back
action noise

S̄I
xxS̄FF =

~2

4
(E97)

in agreement with Eq. (3.10).
Notice also from Eq. (E94) that the quadrature of the

vacuum noise which leads to the measurement impreci-
sion is conjugate to the one which produces the back
action force noise as illustrated previously in Fig. (6).
Recall that the two quadratures of motion of a harmonic
oscillator in its ground state have no classical (i.e., sym-
metrized) correlation. Hence the symmetrized cross cor-
relator

S̄IF [ω] = 0 (E98)

vanishes. Because there is no correlation between the
output imprecision noise and the forces controlling the
position fluctuations, the total output noise referred back
to the position of the oscillator is simply

S̄xx,tot[ω] = S̄xx[ω] + S̄I
xx (E99)

= S̄0
xx[ω]

(
1 +

S̄0
xx[Ω]
~2

S̄FF

)
+

~2

4S̄FF
.

This expression again clearly illustrates the competition
between the back action noise proportional to the drive
laser intensity and the measurement imprecision noise
which is inversely proportional. We again emphasize that
all of the above relations are particular to the case of zero
detuning of the cavity drive field from the cavity.

The total output noise at some particular frequency
will be a minimum at some optimal drive intensity. The
precise optimal value depends on the frequency chosen.
Typically this is taken to be the mechanical resonance
frequency where we find that the optimal coupling leads
to an optimal back action noise

S̄FF,opt =
~2

2S̄0
xx[Ω]

=
~2γ0

4x2
ZPF

. (E100)

This makes sense because the higher the damping the less
susceptible the oscillator is to back action forces. At this
optimal coupling the total output noise spectral density
at frequency Ω referred to the position is simply twice
the vacuum value

S̄xx,tot[Ω] = 2S̄0
xx[Ω], (E101)

in agreement with Eq. (3.62). Evaluation of Eq. (E100)
at the optimal coupling yields the graph shown in
Fig. (6). The background noise floor is due to the
frequency independent imprecision noise with value
1
2 S̄

0
xx[Ω]. The peak value at ω = Ω rises a factor of three

above this background.
We derived the gain λ in Eq. (E95) by direct solution

of the equations of motion. With the results we have de-
rived above, it is straightforward to show that the Kubo
formula in Eq. (4.3) yields equivalent results. We have
already seen that the classical (i.e. symmetrized) correla-
tions between the output signal Î and the force F̂ which
couples to the position vanishes. However the Kubo for-
mula evaluates the quantum (i.e. antisymmetric) corre-
lations for the uncoupled system (A = g = 0). Hence we
have
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χIF (t) = − i
~
θ(t)

〈[
−
(
ξ̂(t− δt) + ξ̂†(t− δt)

)
,

2i~g
xZPF

√
κ

(
ξ̂(0)− ξ̂†(0)

)]〉
0

, (E102)

where δt is a small (positive) time representing the delay
between the time when the vacuum noise impinges on
the cavity and when the resulting outgoing wave reaches
the homodyne detector. (More precisely it also compen-
sates for certain small retardation effects neglected in the
limit ω � κ used in several places in the above deriva-
tions.) Using the fact that the commutator between the
two quadratures of the vacuum noise is a delta function,
Fourier transformation of the above yields (in the limit
ω δt� 1 the desired result

χIF [ω] = λ. (E103)

Similarly we readily find that the small retardation
causes the reverse gain to vanish. Hence all our results
are consistent with the requirements needed to reach the
standard quantum limit.

Thus with this study of the specific case of an oscillator
parametrically coupled to a cavity, we have reproduced
all of the key results in Sec. V.E derived from completely
general considerations of linear response theory.

4. Back-action free single-quadrature detection

We now provide details on the cavity single-quadrature
detection scheme discussed in Sec. V.H.2. We again con-
sider a high-Q cavity whose resonance frequency is mod-
ulated by a high-Q mechanical oscillator with co-ordinate
x̂ (cf. Eqs. (E1) and (E64)). To use this system for ampli-
fication of a single quadrature, we will consider the typi-
cal case of a fast cavity (ωc � Ω), and take the “good cav-
ity” limit, where Ω� κ. As explained in the main text,
the crucial ingredient for single-quadrature detection is
to take an amplitude-modulated cavity drive described
by the classical input field b̄in given in Eq. (5.101). As
before (cf. Eq. (E4)), we may write the cavity annihila-
tion operator â as the sum of a classical piece ā(t) and a
quantum piece d̂; only d̂ is influenced by the mechanical
oscillator. ā(t) is easily found from the classical (noise-
free) equations of motion for the isolated cavity; making
use of the conditions ωc � Ω� κ, we have

ā(t) '

√
Ṅκ

2Ω
cos (Ωt+ δ) e−iωct (E104)

To proceed with our analysis, we work in an interac-
tion picture with respect to the uncoupled cavity and
oscillator Hamiltonians. Making standard rotating-wave
approximations, the Hamiltonian in the interaction pic-

ture takes the simple form corresponding to Eq. (5.102b):

Hint = ~Ã
(
d̂+ d̂†

) (
eiδ ĉ+ e−iδ ĉ†

)
= ~Ã

(
d̂+ d̂†

) X̂δ

xZPF
, (E105)

where

Ã = A · ωc

√
Ṅκ

4Ω
, (E106)

and in the second line, we have made use of the definition
of the quadrature operators X̂δ, Ŷδ given in Eqs. (5.92).
The form of Hint was discussed heuristically in the main
text in terms of Raman processes where photons are re-
moved from the classical drive b̄in and either up or down
converted to the cavity frequency via absorption or emis-
sion of a mechanical phonon. Alternatively, we can think
of the drive yielding a time-dependent cavity-oscillator
coupling which “follows” the Xδ quadrature. Note that
we made crucial of use of the good cavity limit (κ� Ω)
to drop terms in Ĥint which oscillate at frequencies ±2Ω.
These terms represent Raman sidebands which are away
from the cavity resonance by a distance ±2Ω. In the good
cavity limit, the density of photon states is negligible so
far off resonance and these processes are suppressed.

Similar to Eqs. (E39) and (E81), the Heisenberg equa-
tions of motion (in the rotating frame) follow directly
from Hint and the dissipative terms in the total Hamil-
tonian:

∂td̂ = −κ
2
d̂−
√
κξ̂(t)eiωct − iÃ

(
eiδ ĉ+ e−iδ ĉ†

)
(E107a)

∂tĉ = −γ0

2
ĉ−√γ0η̂(t)eiΩt − ie−iδ

[
Ã
(
d̂+ d̂†

)
− f(t)

]
(E107b)

As before, ξ̂(t) represents the unavoidable noise in the
cavity drive, and η̂(t), γ0 are the noisy force and damp-
ing resulting from an equilibrium bath coupled to the
mechanical oscillator. Note from Eq. (E107a) that as an-
ticipated, the cavity is only driven by one quadrature of
the oscillator’s motion. We have also included a driving
force F (t) on the mechanical oscillator which has some
narrow bandwidth centered on the oscillator frequency;
this force is parameterized as:

F (t) =
2~
xZPF

Re
[
f(t)e−iΩte−iδ

]
(E108)

where f(t) is a complex function which is slowly varying
on the scale of an oscillator period.
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The equations of motion are easily solved upon Fourier
transformation, resulting in:

X̂δ[ω] = −xZPF · χM [ω]

[
i (f∗[−ω]− f [ω]) (E109a)

+
√
γ0

(
eiδ η̂(ω + Ω) + e−iδ η̂†(ω − Ω)

) ]

Ŷδ[ω] = ixZPF · χM [ω]

[
(−i) (f [ω] + f∗[−ω]) (E109b)

+
√
γ0

(
eiδ η̂(ω + Ω)− e−iδ η̂†(ω − Ω)

)
−2iÃχc[ω]

√
κ
(
ξ̂(ω + ωc) + ξ̂†(ω − ωc)

)]

where the cavity and mechanical susceptibilities χc, χM

are defined in Eqs. (E43) and (E88).
As anticipated, the detected quadrature X̂δ is com-

pletely unaffected by the measurement: Eq. (E109a) is
identical to what we would have if there were no coupling
between the oscillator and the cavity. In contrast, the
conjugate quadrature Ŷδ experiences an extra stochastic
force due to the cavity: this is the measurement back-
action.

Turning now to the output field from the cavity b̂out,
we use the input-output relation Eq. (E37) to find in the
lab (i.e. non-rotating) frame:

b̂out[ω] = b̄out[ω] +
[
−i(ω − ωc)− κ/2
−i(ω − ωc) + κ/2

]
ξ̂[ω]

−i Ã
√
κ

xZPF
χc[ω − ωc] · X̂δ(ω − ωc)

(E110)

The first term on the RHS simply represents the output
field from the cavity in the absence of the mechanical
oscillator and any fluctuations. It will yield sharp peaks
at the two sidebands associated with the drive, ω = ωc±
Ω. The second term on the RHS of Eq. (E110) represents
the reflected noise of the incident cavity drive. This noise
will play the role of the “intrinsic ouput noise” of this
amplifier.

Finally, the last term on the RHS of Eq. (E110) is the
amplified signal: it is simply the amplified quadrature
X̂δ of the oscillator. This term will result in a peak in
the output spectrum at the resonance frequency of the
cavity, ωc. As there is no back-action on the measured
X̂δ quadrature, the added noise can be made arbitrarily
small by simply increasing the drive strength Ṅ (and
hence Ã).

Appendix F: Information Theory and Measurement Rate

Suppose that we are measuring the state of a qubit
via the phase shift ±θ0 from a one-sided cavity. Let I(t)

be the homodyne signal integrated up to time t as in
Sec. III.B. We would like to understand the relationship
between the signal-to-noise ratio defined in Eq. (3.23),
and the rate at which information about the state of the
qubit is being gained. The probability distribution for I
conditioned on the state of the qubit σ = ±1 is

p(I|σ) =
1√

2πSθθt
exp

[
−(I − σθ0t)2

2Sθθt

]
. (F1)

Based on knowledge of this conditional distribution, we
now present two distinct but equivalent approaches to
giving an information theoretic basis for the definition of
the measurement rate.

1. Method I

Suppose we start with an initial qubit density matrix

ρ0 =
(

1
2 0
0 1

2

)
. (F2)

After measuring for a time t, the new density matrix
conditioned on the results of the measurement is

ρ1 =
(
p+ 0
0 p−

)
(F3)

where it will be convenient to parameterize the two prob-
abilities by the polarization m ≡ Tr(σzρ1) by

p± =
1±m

2
. (F4)

The information gained by the measurement is the en-
tropy loss7 of the qubit

I = Tr(ρ1 ln ρ1 − ρ0 ln ρ0). (F5)

We are interested in the initial rate of gain of information
at short times θ2

0t � Sθθ where m will be small. In this
limit we have

I ≈ m2

2
. (F6)

We must now calculate m conditioned on the measure-
ment result I

mI ≡
∑
σ

σp(σ|I). (F7)

From Bayes theorem we can express this in terms of
p(I|σ), which is the quantity we know,

p(σ|I) =
p(I|σ)p(σ)∑
σ′ p(I|σ′)p(σ′)

. (F8)

7 It is important to note that we use throughout here the physi-
cist’s entropy with the natural logarithm rather than the log base
2 which gives the information in units of bits.
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Using Eq. (F1) the polarization is easily evaluated

mI = tanh
(
Iθ0

Sθθ

)
. (F9)

The information gain is thus

II =
1
2

tanh2

(
Iθ0

Sθθ

)
≈ I2

2

(
θ0

Sθθ

)2

(F10)

where the second equality is only valid for small |m|.
Ensemble averaging this over all possible measurement
results yields the mean information gain at short times

I ≈ 1
2
θ2

0

Sθθ
t (F11)

which justifies the definition of the measurement rate
given in Eq. (3.24).

2. Method II

An alternative information theoretic derivation is to
consider the qubit plus measurement device to be a sig-
naling channel. The two possible inputs to the channel
are the two states of the qubit. The output of the chan-
nel is the result of the measurement of I. By toggling
the qubit state back and forth, one can send information
through the signal channel to another party. The chan-
nel is noisy because even for a fixed state of the qubit,
the measured values of the signal I have intrinsic fluctu-
ations. Shannon’s noisy channel coding theorem (Cover
and Thomas, 1991) tells us the maximum rate at which
information can be reliably sent down the channel by tog-
gling the state of the qubit and making measurements of
I. It is natural to take this rate as defining the measure-
ment rate for our detector.

The reliable information gain by the receiver on a noisy
channel is a quantity known as the ‘mutual information’
of the communication channel (Clerk et al., 2003; Cover
and Thomas, 1991)

R = −
∫ +∞

−∞
dI

{
p(I) ln p(I)−

∑
σ

p(σ) [p(I|σ) ln p(I|σ)]

}
(F12)

The first term is the Shannon entropy in the signal I
when we do not know the input signal (the value of the
qubit). The second term represents the entropy given
that we do know the value of the qubit (averaged over
the two possible input values). Thus the first term is
signal plus noise, the second is just the noise. Subtracting
the two gives the net information gain. Expanding this
expression for short times yields

R =
1
8

(〈I(t)〉+ − 〈I(t)〉−)2

Sθθt

=
θ2

0

2Sθθ
t

= Γmeast (F13)

exactly the same result as Eq. (F11). (Here 〈I(t)〉σ is the
mean value of I given that the qubit is in state σ.)

Appendix G: Number Phase Uncertainty

In this appendix, we briefly review the number-phase
uncertainty relation, and from it we derive the relation-
ship between the spectral densities describing the photon
number fluctuations and the phase fluctuations. Con-
sider a coherent state labeled by its classical amplitude
α

|α〉 = exp
{
−|α|

2

2

}
exp{αâ†}|0〉. (G1)

This is an eigenstate of the destruction operator

â|α〉 = α|α〉. (G2)

It is convenient to make the unitary displacement trans-
formation which maps the coherent state onto a new vac-
uum state and the destruction operator onto

â = α+ d̂ (G3)

where d annihilates the new vacuum. Then we have

N̄ = 〈N̂〉 = 〈0|(α∗ + d̂†)(α+ d̂)|0〉 = |α|2, (G4)

and

(∆N)2 = 〈(N̂ − N̄)2〉 = |α|2〈0|d̂d̂†|0〉 = N̄ . (G5)

Now define the two quadrature amplitudes

X̂ =
1√
2

(â+ â†) (G6)

Ŷ =
i√
2

(â† − â). (G7)

Each of these amplitudes can be measured in a homodyne
experiment. For convenience, let us take α to be real and
positive. Then

〈X̂〉 =
√

2α (G8)

and

〈Ŷ 〉 = 0. (G9)

If the phase of this wave undergoes a small modulation
due for example to weak parametric coupling to a qubit
then one can estimate the phase by

〈θ〉 =
〈Ŷ 〉
〈X̂〉

. (G10)

This result is of course only valid for small angles, θ � 1.
For N̄ � 1, the uncertainty will be

(∆θ)2 =
〈Ŷ 2〉

(〈X̂〉)2
=

1
2 〈0|d̂d̂

†|0〉
2N̄

=
1

4N̄
. (G11)
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Thus using Eq. (G5) we arrive at the fundamental quan-
tum uncertainty relation

∆θ∆N =
1
2
. (G12)

Using the input-output theory described in Ap-
pendix E we can restate the results above in terms of
noise spectral densities. Let the amplitude of the field
coming in to the homodyne detector be

b̂in = b̄in + ξ̂(t) (G13)

where ξ̂(t) is the vacuum noise obeying

[ξ̂(t), ξ̂†(t′)] = δ(t− t′). (G14)

We are using a flux normalization for the field operators
so

Ṅ = 〈b̂†inb̂in〉 = |b̄in|2 (G15)

and

〈Ṅ(t)Ṅ(0)〉 − Ṅ
2

= 〈0|(b̄∗in + ξ̂†(t))(b̄in + ξ̂(t))(b̄∗in + ξ̂†(0))(b̄in + ξ̂(0))|0〉 −
∣∣b̄in∣∣4 = Ṅδ(t). (G16)

From this it follows that the shot noise spectral density
is

SṄṄ = Ṅ . (G17)

Similarly the phase can be estimated from the quadra-
ture operator

θ̂ =
i(b̂†in − b̂in)

〈b̂†in + b̂in〉
= 〈θ̂〉+ i

(ξ̂† − ξ̂)
2b̄in

(G18)

which has noise correlator

〈δθ̂(t)δθ̂(0)〉 =
1

4Ṅ
δ(t) (G19)

corresponding to the phase imprecision spectral density

Sθθ =
1

4Ṅ
. (G20)

We thus arrive at the fundamental quantum limit relation√
SθθSṄṄ =

1
2
. (G21)

Appendix H: Using feedback to reach the quantum limit

In Sec. (VI.B), we demonstrated that any two port am-
plifier whose scattering matrix has s11 = s22 = s12 = 0
will fail to reach quantum limit when used as a weakly
coupled op-amp; at best, it will miss optimizing the quan-
tum noise constraint of Eq. (5.88) by a factor of two.
Reaching the quantum limit thus requires at least one
of s11, s22 and s12 to be non-zero. In this subsection,
we demonstrate how this may be done. We show that
by introducing a form of negative feedback to the “min-
imal” amplifier of the previous subsection, one can take
advantage of noise correlations to reduce the back-action
current noise SII by a factor of two. As a result, one is

able to reach the weak-coupling (i.e. op-amp) quantum
limit. Note that quantum amplifiers with feedback are
also treated in Courty et al. (1999); Grassia (1998).

On a heuristic level, we can understand the need for
either reflections or reverse gain to reach the quantum
limit. A problem with the “minimal” amplifier of the
last subsection was that its input impedance was too low
in comparison to its noise impedance ZN ∼ Za. From
general expression for the input impedance, Eq. (6.7d),
we see that having non-zero reverse gain (i.e. s12 6= 0)
and/or non-zero reflections (i.e. s11 6= 0 and/or s22 6= 0)
could lead to Zin � Za. This is exactly what occurs
when feedback is used to reach the quantum limit. Keep
in mind that having non-vanishing reverse gain is danger-
ous: as we discussed earlier, an appreciable non-zero λ′I
can lead to the highly undesirable consequence that the
amplifier’s input impedance depends on the impedance
of the load connected to its output (cf. Eq. (6.6)).

1. Feedback using mirrors

To introduce reverse gain and reflections into the “min-
imal” two-port bosonic amplifier of the previous subsec-
tion, we will insert mirrors in three of the four arms lead-
ing from the circulator: the arm going to the input line,
the arm going to the output line, and the arm going
to the auxiliary “cold load” (Fig. 7). Equivalently, one
could imagine that each of these lines is not perfectly
impedance matched to the circulator. Each mirror will
be described by a 2× 2 unitary scattering matrix:(

âj,out

b̂j,out

)
= Uj ·

(
b̂j,in
âj,in

)
(H1)

Uj =
(

cos θj − sin θj
sin θj cos θj

)
(H2)

Here, the index j can take on three values: j = z for the
mirror in the input line, j = y for the mirror in the arm
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bz,out

bz,in

az,in

az,out

ideal
1-port
amp.

cold
load

input line output line

cin cout=G1/2cin+(G-1)1/2v†in

vin vout

ax,out bx,in

by,outby,in

ay,inay,out

ax,in bx,outXZ

Ymirror

FIG. 7 Schematic of a modified minimal two-port amplifier,
where partially reflecting mirrors have been inserted in the
input and output transmission lines, as well as in the line
leading to the cold load. By tuning the reflection coefficient
of the mirror in the cold load arm (mirror Y ), we can in-
duce negative feedback which takes advantage of correlations
between current and voltage noise. This then allows this sys-
tem to reach the quantum limit as a weakly coupled voltage
op amp. See text for further description

going to the cold load, and j = x for the mirror in the
output line. The mode aj describes the “internal” mode
which exists between the mirror and circulator, while the
mode bj describes the “external” mode on the other side
of the mirror. We have taken the Uj to be real for con-
venience. Note that θj = 0 corresponds to the case of no
mirror (i.e. perfect transmission).

It is now a straightforward though tedious exercise to
construct the scattering matrix for the entire system.
From this, one can identify the reduced scattering matrix
s appearing in Eq. (6.3), as well as the noise operators
Fj . These may then in turn be used to obtain the op-amp
description of the amplifier, as well as the commutators
of the added noise operators. These latter commutators
determine the usual noise spectral densities of the ampli-
fier. Details and intermediate steps of these calculations
may be found in Appendix I.6.

As usual, to see if our amplifier can reach the quantum
limit when used as a (weakly-coupled) op-amp , we need
to see if it optimizes the quantum noise constraint of
Eq. (5.88). We consider the optimal situation where both
the auxiliary modes of the amplifier (ûin and v̂†in) are in
the vacuum state. The surprising upshot of our analysis
(see Appendix I.6) is the following: if we include a small

amount of reflection in the cold load line with the correct
phase, then we can reach the quantum limit, irrespective
of the mirrors in the input and output lines. In particular,
if sin θy = −1/

√
G, our amplifier optimizes the quantum

noise constraint of Eq. (5.88) in the large gain (i.e. large
G) limit, independently of the values of θx and θy. Note
that tuning θy to reach the quantum limit does not have
a catastrophic impact on other features of our amplifier.
One can verify that this tuning only causes the voltage
gain λV and power gain GP to decrease by a factor of
two compared to their θy = 0 values (cf. Eqs. (I60) and
(I64)). This choice for θy also leads to Zin � Za ∼ ZN

(cf. (I62)), in keeping with our general expectations.
Physically, what does this precise tuning of θy corre-

spond to? A strong hint is given by the behaviour of the
amplifier’s cross-correlation noise S̄V I [ω] (cf. Eq. (I65c)).
In general, we find that S̄V I [ω] is real and non-zero.
However, the tuning sin θy = −1/

√
G is exactly what is

needed to have S̄V I vanish. Also note from Eq. (I65a)
that this special tuning of θy decreases the back-action
current noise precisely by a factor of two compared to
its value at θy = 0. A clear physical explanation now
emerges. Our original, reflection-free amplifier had cor-
relations between its back-action current noise and out-
put voltage noise (cf. Eq. (6.18c)). By introducing nega-
tive feedback of the output voltage to the input current
(i.e. via a mirror in the cold-load arm), we are able to
use these correlations to decrease the overall magnitude
of the current noise (i.e. the voltage fluctuations Ṽ par-
tially cancel the original current fluctuations Ĩ). For an
optimal feedback (i.e. optimal choice of θy), the current
noise is reduced by a half, and the new current noise is
not correlated with the output voltage noise. Note that
this is indeed negative (as opposed to positive) feedback–
it results in a reduction of both the gain and the power
gain. To make this explicit, in the next section we will
map the amplifier described here onto a standard op-amp
with negative voltage feedback.

2. Explicit examples

To obtain a more complete insight, it is useful to go
back and consider what the reduced scattering matrix of
our system looks like when θy has been tuned to reach
the quantum limit. From Eq. (I58), it is easy to see that
at the quantum limit, the matrix s satisfies:

s11 = −s22 (H3a)

s12 =
1
G
s21 (H3b)

The second equation also carries over to the op-amp pic-
ture; at the quantum limit, one has:

λ′I =
1
G
λV (H4)

One particularly simple limit is the case where there
are no mirrors in the input and output line (θx = θz = 0),
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only a mirror in the cold-load arm. When this mirror is
tuned to reach the quantum limit (i.e. sin θy = −1/

√
G),

the scattering matrix takes the simple form:

s =
(

0 1/
√
G√

G 0

)
(H5)

In this case, the principal effect of the weak mirror in
the cold-load line is to introduce a small amount of re-
verse gain. The amount of this reverse gain is exactly
what is needed to have the input impedance diverge
(cf. Eq. (6.7d)). It is also what is needed to achieve an
optimal, noise-canceling feedback in the amplifier. To
see this last point explicitly, we can re-write the ampli-
fier’s back-action current noise (Ĩ) in terms of its original
noises Ĩ0 and Ṽ0 (i.e. what the noise operators would have
been in the absence of the mirror). Taking the relevant
limit of small reflection (i.e. r̃ ≡ sin θy goes to zero as
|G| → ∞), we find that the modification of the current
noise operator is given by:

Ĩ ' Ĩ0 +
2
√
Gr̃

1−
√
Gr̃

Ṽ0

Za
(H6)

As claimed, the presence of a small amount of reflection
r̃ ≡ sin θy in the cold load arm “feeds-back” the original
voltage noise of the amplifier Ṽ0 into the current. The
choice r̃ = −1/

√
G corresponds to a negative feedback,

and optimally makes use of the fact that Ĩ0 and Ṽ0 are
correlated to reduce the overall fluctuations in Ĩ.

While it is interesting to note that one can reach the
quantum limit with no reflections in the input and output
arms, this case is not really of practical interest. The
reverse current gain in this case may be small (i.e. λ′I ∝
1/
√
G), but it is not small enough: one finds that because

of the non-zero λ′I , the amplifier’s input impedance is
strongly reduced in the presence of a load (cf. Eq. (6.6)).

There is a second simple limit we can consider which is
more practical. This is the limit where reflections in the
input-line mirror and output-line mirror are both strong.
Imagine we take θz = −θx = π/2 − δ/G1/8. If again
we set sin θy = −1/

√
G to reach the quantum limit, the

scattering matrix now takes the form (neglecting terms
which are order 1/

√
G):

s =
(

+1 0
δ2G1/4

2 −1

)
(H7)

In this case, we see that at the quantum limit, the reflec-
tion coefficients s11 and s22 are exactly what is needed
to have the input impedance diverge, while the reverse
gain coefficient s12 plays no role. For this case of strong
reflections in input and output arms, the voltage gain is
reduced compared to its zero-reflection value:

λV →
√
Zb
Za

(
δ

2

)2

G1/4 (H8)

The power gain however is independent of θx, θz, and is
still given by G/2 when θy is tuned to be at the quantum
limit.

Va
Vb

R1 R2

+
-
Gf

FIG. 8 Schematic of a voltage op-amp with negative feedback.

3. Op-amp with negative voltage feedback

We now show that a conventional op-amp with feed-
back can be mapped onto the amplifier described in
the previous subsection. We will show that tuning the
strength of the feedback in the op-amp corresponds to
tuning the strength of the mirrors, and that an optimally
tuned feedback circuit lets one reach the quantum limit.
This is in complete correspondence to the previous sub-
section, where an optimal tuning of the mirrors also lets
one reach the quantum limit.

More precisely, we consider a scattering description of
a non-inverting op-amp amplifier having negative voltage
feedback. The circuit for this system is shown in Fig. 8.
A fraction B of the output voltage of the amplifier is fed
back to the negative input terminal of the op-amp. In
practice, B is determined by the two resistors R1 and R2

used to form a voltage divider at the op-amp output. The
op-amp with zero feedback is described by the “ideal”
amplifier of Sec. VI.B: at zero feedback, it is described
by Eqs. (6.11a)- (6.11d). For simplicity, we consider the
relevant case where:

Zb � R1, R2 � Za (H9)

In this limit, R1 and R2 only play a role through the
feedback fraction B, which is given by:

B =
R2

R1 +R2
(H10)

Letting Gf denote the voltage gain at zero feedback
(B = 0), an analysis of the circuit equations for our op-
amp system yields:

λV =
Gf

1 +B ·Gf
(H11a)

λ′I =
B

1 +B ·Gf
(H11b)

Zout =
Zb

1 +B ·Gf
(H11c)

Zin = (1 +B ·Gf )Za (H11d)

GP =
G2
f/2

B ·Gf + 2Zb/Za
(H11e)

Again, Gf represents the gain of the amplifier in the ab-
sence of any feedback, Za is the input impedance at zero



34

feedback, and Zb is the output impedance at zero feed-
back.

Transforming this into the scattering picture yields a
scattering matrix s satisfying:

s11 = −s22 = −BGf (Za − (2 +BGf )Zb)
BGfZa + (2 +BGf )2Zb

(H12a)

s21 = − 2
√
ZaZbGf (1 +BGf )

BGfZa + (2 +BGf )2Zb
(H12b)

s12 =
B

Gf
s21 (H12c)

Note the connection between these equations and the nec-
essary form of a quantum limited s-matrix found in the
previous subsection.

Now, given a scattering matrix, one can always find a
minimal representation of the noise operators Fa and Fb
which have the necessary commutation relations. These
are given in general by:

F̂a =
√

1− |s11|2 − |s12|2 + |l|2 · ûin + l · v̂†in(H13)

F̂b =
√
|s21|2 + |s22|2 − 1 · v̂†in (H14)

l =
s11s

∗
21 + s12s

∗
22√

|s21|2 + |s22|2 − 1
(H15)

Applying this to the s matrix for our op-amp, and then
taking the auxiliary modes ûin and v̂†in to be in the vac-
uum state, we can calculate the minimum allowed S̄V V
and S̄II for our non-inverting op-amp amplifier. One can
then calculate the product S̄V V S̄II and compare against
the quantum-limited value (S̄IV is again real). In the
case of zero feedback (i.e. B = 0), one of course finds
that this product is twice as big as the quantum limited
value. However, if one takes the large Gf limit while

keeping B non-zero but finite, one obtains:

S̄V V S̄II → (~ω)2

(
1− 2B

Gf
+O

(
1
Gf

)2
)

(H16)

Thus, for a fixed, non-zero feedback ratio B, it is possible
to reach the quantum limit. Note that if B does not tend
to zero as Gf tends to infinity, the voltage gain of this
amplifier will be finite. The power gain however will be
proportional to Gf and will be large. If one wants a
large voltage gain, one could set B to go to zero with
Gf i.e. B ∝ 1√

Gf
. In this case, one will still reach

the quantum limit in the large Gf limit, and the voltage
gain will also be large (i.e. ∝

√
Gf ). Note that in all

these limits, the reflection coefficients s11 and s22 tend
to −1 and 1 respectively, while the reverse gain tends
to 0. This is in complete analogy to the amplifier with
mirrors considered in the previous subsection, in the case
where we took the reflections to be strong at the input
and at the output (cf. Eq. (H7)). We thus see yet again
how the use of feedback allows the system to reach the
quantum limit.
Appendix I: Additional Technical Details

This appendix provides further details of calculations
presented in the main text.

1. Proof of quantum noise constraint

Note first that we may write the symmetrized Î and F̂
noise correlators defined in Eqs. (4.4a) and (4.4b) as sums
over transitions between detector energy eigenstates:

S̄FF [ω] = π~
∑
i,f

〈i|ρ̂0|i〉 · |〈f |F̂ |i〉|2 [δ(Ef − Ei + ~ω) + δ(Ef − Ei − ~ω)] (I1)

S̄II [ω] = π~
∑
i,f

〈i|ρ̂0|i〉 · |〈f |Î|i〉|2 [δ(Ef − Ei + ~ω) + δ(Ef − Ei − ~ω)] (I2)

Here, ρ̂0 is the stationary density matrix describing the
state of the detector, and |i〉 (|f〉) is a detector energy
eigenstate with energy Ei (Ef ). Eq. (I1) expresses the
noise at frequency ω as a sum over transitions. Each
transition starts with an an initial detector eigenstate
|i〉, occupied with a probability 〈i|ρ0|i〉, and ends with a
final detector eigenstate |f〉, where the energy difference
between the two states is either +~ω or −~ω . Further,
each transition is weighted by an appropriate matrix el-
ement.

To proceed, we fix the frequency ω > 0, and let the
index ν label each transition |i〉 → |f〉 contributing to the
noise. More specifically, ν indexes each ordered pair of
detector energy eigenstates states {|i〉, |f〉} which satisfy
Ef − Ei ∈ ±~[ω, ω + dω] and 〈i|ρ0|i〉 6= 0. We can now
consider the matrix elements of Î and F̂ which contribute
to S̄II [ω] and S̄FF [ω] to be complex vectors ~v and ~w.
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Letting δ be any real number, let us define:

[~w]ν = 〈f(ν)|F̂ |i(ν)〉 (I3)

[~v]ν =

{
e−iδ〈f(ν)|Î|i(ν)〉 if Ef(ν) − Ei(ν) = +~ω,
eiδ〈f(ν)|Î|i(ν)〉 if Ef(ν) − Ei(ν) = −~ω.

(I4)

Introducing an inner product 〈·, ·〉ω via:

〈~a,~b〉ω = π
∑
ν

〈i(ν)|ρ̂0|i(ν)〉 · (aν)∗ bν , (I5)

we see that the noise correlators S̄II and S̄FF may be
written as:

S̄II [ω]dω = 〈~v,~v〉ω (I6)
S̄FF [ω]dω = 〈~w, ~w〉ω (I7)

We may now employ the Cauchy-Schwartz inequality:

〈~v,~v〉ω〈~w, ~w〉ω ≥ |〈~v, ~w〉ω|2 (I8)

A straightforward manipulation shows that the real
part of 〈~v, ~w〉ω is determined by the symmetrized cross-
correlator S̄IF [ω] defined in Eq. (4.4c):

Re 〈~v, ~w〉ω = Re
[
eiδS̄IF [ω]

]
dω (I9)

In contrast, the imaginary part of 〈~v, ~w〉ω is independent
of S̄IF ; instead, it is directly related to the gain χIF and
reverse gain χFI of the detector:

Im 〈~v, ~w〉ω =
~
2

Re
[
eiδ
(
χIF [ω]− [χFI [ω]]∗

)]
dω (I10)

Substituting Eqs. (I10) and (I9) into Eq. (I8), one im-
mediately finds the quantum noise constraint given in
Eq. (4.16). As in the main text, we let χ̃IF = χIF −χ∗FI .
Maximizing the RHS of this inequality with respect to
the phase δ, one finds that the maximum is achieved for
δ = δ0 = − arg(χ̃IF ) + δ̃0 with

tan 2δ̃0 = − |S̄IF | sin 2φ
(~/2)|χ̃IF |+ |S̄IF | cos 2φ

(I11)

where φ = arg(S̄IF χ̃IF ∗). At δ = δ0, Eq. (4.16) becomes
the final noise constraint of Eq. (4.11).

The proof given here also allows one to see what must
be done in order to achieve the “ideal” noise condition
of Eq. (4.17): one must achieve equality in the Cauchy-
Schwartz inequality of Eq. (I8). This requires that the
vectors ~v and ~w be proportional to one another; there
must exist a complex factor α (having dimensions [I]/[F ])
such that:

~v = α · ~w (I12)

Equivalently, we have that

〈f |I|i〉 =

{
eiδα〈f |F |i〉 if Ef − Ei = +~ω
e−iδα〈f |F |i〉 if Ef − Ei = −~ω.

(I13)

for each pair of initial and final states |i〉, |f〉 contributing
to S̄FF [ω] and S̄II [ω] (cf. Eq. (I1)). Note that this not
the same as requiring Eq. (I13) to hold for all possible
states |i〉 and |f〉. This proportionality condition in turn
implies a proportionality between the input and output
(unsymmetrized) quantum noise spectral densities:

SII [ω] = |α|2SFF [ω] (I14)

It thus also follows that the imaginary parts of the input
and output susceptibilities are proportional:

Im χII [ω] = |α|2Im χFF [ω], (I15)

as well as the symmetrized input and output noise (i.e.
Eq. (4.18)). Finally, one can also use Eq. (I13) to relate
the unsymmetrized I-F quantum noise correlator SIF [ω]
to SFF [ω]: (cf. Eq. (4.7)):

SIF [ω] =

{
e−iδα∗SFF [ω] if ω > 0,
eiδα∗SFF [ω] if ω < 0

(I16)

Note that SFF [ω] is necessarily real and positive.
Finally, for a detector with quantum-ideal noise prop-

erties, the magnitude of the constant α can be found from
Eq. (4.18). The phase of α can also be determined from:

−Im α

|α|
=

~|χ̃IF |/2√
S̄II S̄FF

cos δ̃0 (I17)

For zero frequency or for a large detector effective tem-
perature, this simplifies to:

−Im α

|α|
=

~χ̃IF /2√
S̄II S̄FF

(I18)

Note importantly that to have a non-vanishing gain
and power gain, one needs Im α 6= 0. This in turn places
a very powerful constraint on a quantum-ideal detectors:
all transitions contributing to the noise must be to final
states |f〉 which are completely unoccupied. To see this,
imagine a transition taking an initial state |i〉 = |a〉 to
a final state |f〉 = |b〉 makes a contribution to the noise.
For a quantum-ideal detector, Eq. (I13) will be satisfied:

〈b|Î|a〉 = e±iδα〈b|F̂ |a〉 (I19)

where the plus sign corresponds to Eb > Ea, the mi-
nus to Ea > Eb. If now the final state |b〉 was also oc-
cupied (i.e. 〈b|ρ̂0|b〉 6= 0), then the reverse transition
|i = b〉 → |f = a〉) would also contribute to the noise.
The proportionality condition of Eq. (I13) would now re-
quire:

〈a|Î|b〉 = e∓iδα〈a|F̂ |b〉 (I20)

As Î and F̂ are both Hermitian operators, and as α must
have an imaginary part in order for there to be gain, we
have a contradiction: Eq. (I19) and (I20) cannot both be
true. It thus follows that the final state of a transition
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contributing to the noise must be unoccupied in order
for Eq. (I13) to be satisfied and for the detector to have
ideal noise properties. Note that this necessary asym-
metry in the occupation of detector energy eigenstates
immediately tells us that a detector or amplifier cannot
reach the quantum limit if it is in equilibrium.

2. Proof that a noiseless detector does not amplify

With the above results in hand, we can now prove as-
sertions made in Sec. IV.A.4 that detectors which evade
the quantum noise constraint of Eq. (4.11) and simply
satisfy

S̄FF S̄II = |S̄IF |2 (I21)

are at best transducers, as their power gain is limited to
being at most one.

The first way to make the RHS of Eq. (4.11) vanish is
to have χIF = χ∗FI . We have already seen that when-
ever this relation holds, the detector power gain cannot
be any larger than one (c.f. Eq. (5.53)). Now, imagine
that the detector also has a minimal amount of noise,
i.e. Eq. (I21) also holds. This latter fact implies that the
proportionality condition of Eq. (I13) also must hold. In
this situation, the detector must have a power gain of
unity, and is thus a transducer. There are two possibil-
ities to consider here. First, S̄FF and S̄II could both
be non-zero, but perfectly correlated: |S̄IF |2 = S̄FF S̄II .
In this case, the proportionality constant α must be real
(c.f. Eq. (I17)). Using this fact along with Eqs. (I16) and
(4.8b), one immediately finds that SFF [ω] = SFF [−ω].
This implies the back-action damping γ associated with
the detector input vanishes (c.f. Eq. (2.12)). It thus fol-
lows immediately from Eq. (5.52) and Eq. (5.53) that the
power gain GP,rev (defined in a way that accounts for the
reverse gain) is exactly one. The detector is thus simply a
transducer. The other possibility here is that χIF = χ∗FI
and one or both of S̄II , S̄FF are equal zero. Note that if
the symmetrized noise vanishes, then so must the asym-
metric part of the noise. Thus, it follows that either the
damping induced by the detector input, γ, or that in-
duced by the output, γout (c.f. Eq. (5.48)) (or both) must
be zero. Eqs. (5.52) and (5.53) then again yield a power
gain GP,rev = 1. We thus have shown that any detector
which has χFI = χ∗IF and satisfies S̄FF S̄II = |S̄IF |2 must
necessarily be a transducer, with a power gain precisely
equal to one.

A second way to make the RHS of Eq. (4.11) vanish is
to have S̄IF /χ̃IF be purely imaginary and larger in mag-
nitude than ~/2. Suppose this is the case, and that the
detector also satisfies the minimal noise requirement of
Eq. (I21). Without loss of generality, we take χ̃IF to be
real, implying that S̄IF is purely imaginary. Eqs. (I10)
and (I11) then imply that the phase factor eiδ appear-
ing in the proportionality relation of Eq. (I16) is purely
imaginary, while the constant α is purely real. Using this

proportionality relation in Eq. (4.8b) for χ̃IF yields:

χ̃IF =
α

~
(SFF [ω]− SFF [−ω])

= 2α [−Im χFF [ω]] (I22)

Using this result and the relation between χFF and χII
in Eq. (I15), we can write the power gain in the absence
of reverse gain, GP (c.f. Eq. (5.52)), as

GP = 1/ |1− χFI/χIF |2 (I23)

If the reverse gain vanishes (i.e. χFI = 0), we immedi-
ately find that GP = 1: the detector has a power gain of
one, and is thus simply a transducer. If the reverse gain
is non-zero, we must take the expression for GP above
and plug it into Eq. (5.53) for the power gain with re-
verse gain, GP,rev. Some algebra again yields that the
full power gain is at most unity. We again have the con-
clusion that the detector does not amplify.

3. Simplifications for a quantum-limited detector

In this appendix, we derive the additional constraints
on the property of a detector that arise when it satisfies
the quantum noise constraint of Eq. (4.17). We focus on
the ideal case where the reverse gain χFI vanishes.

To start, we substitute Eq. (I16) into Eqs. (4.8b)-
(4.8a); writing SFF [ω] in terms of the detector effective
temperature Teff (cf. Eq. (2.8)) yields:

~λ[ω]
2

= −e−iδ~ [−Im χFF [ω]] (I24)[
(Im α) coth

(
~ω

2kBTeff

)
+ i (Re α)

]
S̄IF [ω] = e−iδ~ [−Im χFF [ω]] (I25)[

(Re α) coth
(

~ω
2kBTeff

)
− i (Im α)

]
To proceed, let us write:

e−iδ =
λ

|λ|
e−iδ̃ (I26)

The condition that |λ| is real yields the condition:

tan δ̃ =
Re α
Imα

tanh
(

~ω
2kBTeff

)
(I27)

We now consider the relevant limit of a large detector
power gain GP . GP is determined by Eq. (5.56); the only
way this can become large is if kBTeff/(~ω) → ∞ while
Im α does not tend to zero. We will thus take the large
Teff limit in the above equations while keeping both α and
the phase of λ fixed. Note that this means the parameter
δ̃ must evolve; it tends to zero in the large Teff limit. In
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this limit, we thus find for λ and S̄IF :

~λ[ω]
2

= −2e−iδkBTeffγ[ω] (Im α)

[
1 +O

[(
~ω

kBTeff

)2
]]

(I28)

S̄IF [ω] = 2e−iδkBTeffγ[ω] (Re α)
[
1 +O

(
~ω

kBTeff

)]
(I29)

Thus, in the large power-gain limit (i.e. large Teff

limit), the gain λ and the noise cross-correlator S̄IF have
the same phase: S̄IF /λ is purely real.

4. Derivation of non-equilibrium Langevin equation

In this appendix, we prove that an oscillator weakly
coupled to an arbitrary out-of-equilibrium detector is de-
scribed by the Langevin equation given in Eq. (5.41), an
equation which associates an effective temperature and
damping kernel to the detector. The approach taken here
is directly related to the pioneering work of Schwinger
(Schwinger, 1961).

We start by defining the oscillator matrix Keldysh
green function:

Ǧ(t) =
(
GK(t) GR(t)
GA(t) 0

)
(I30)

where GR(t− t′) = −iθ(t− t′)〈[x̂(t), x̂(t′)]〉, GA(t− t′) =
iθ(t′− t)〈[x̂(t), x̂(t′)]〉, and GK(t− t′) = −i〈{x̂(t), x̂(t′)}〉.
At zero coupling to the detector (A = 0), the oscillator
is only coupled to the equilibrium bath, and thus Ǧ0 has
the standard equilibrium form:

Ǧ0[ω] =
~
m

(
−2Im g0[ω] coth

(
~ω

2kBTbath

)
g0[ω]

g0[ω]∗ 0

)
(I31)

where:

g0[ω] =
1

ω2 − Ω2 + iωγ0/m
(I32)

and where γ0 is the intrinsic damping coefficient, and
Tbath is the bath temperature.

We next treat the effects of the coupling to the detector
in perturbation theory. Letting Σ̌ denote the correspond-
ing self-energy, the Dyson equation for Ǧ has the form:[

Ǧ[ω]
]−1

=
[
Ǧ0[ω]

]−1 −
(

0 ΣA[ω]
ΣR[ω] ΣK [ω]

)
(I33)

To lowest order in A, Σ̌[ω] is given by:

Σ̌[ω] = A2Ď[ω] (I34)

≡ A2

~

∫
dt eiωt (I35)(

0 iθ(−t)〈[F̂ (t), F̂ (0)]〉
−iθ(t)〈[F̂ (t), F̂ (0)]〉 −i〈{F̂ (t), F̂ (0)}〉

)

Using this lowest-order self energy, Eq. (I33) yields:

GR[ω] =
~

m(ω2 − Ω2)−A2Re DR[ω] + iω(γ0 + γ[ω])
(I36)

GA[ω] =
[
GR[ω]

]∗
(I37)

GK [ω] = −2iIm GR[ω]×

γ0 coth
(

~ω
2kBTbath

)
+ γ[ω] coth

(
~ω

2kBTeff

)
γ0 + γ[ω]

(I38)

where γ[ω] is given by Eq. (2.12), and Teff [ω] is defined by
Eq. (2.8). The main effect of the real part of the retarded
F̂ Green function DR[ω] in Eq. (I36) is to renormalize the
oscillator frequency Ω and massm; we simply incorporate
these shifts into the definition of Ω and m in what follows.

If Teff [ω] is frequency independent, then Eqs. (I36)
- (I38) for Ǧ corresponds exactly to an oscillator cou-
pled to two equilibrium baths with damping kernels γ0

and γ[ω]. The correspondence to the Langevin equa-
tion Eq. (5.41) is then immediate. In the more general
case where Teff [ω] has a frequency dependence, the cor-
relators GR[ω] and GK [ω] are in exact correspondence
to what is found from the Langevin equation Eq. (5.41):
GK [ω] corresponds to symmetrized noise calculated from
Eq. (5.41), while GR[ω] corresponds to the response co-
efficient of the oscillator calculated from Eq. (5.41). This
again proves the validity of using the Langevin equation
Eq. (5.41) to calculate the oscillator noise in the presence
of the detector to lowest order in A.

5. Linear-response formulas for a two-port bosonic amplifier

In this appendix, we use the standard linear-response
Kubo formulas of Sec. V.F to derive expressions for
the voltage gain λV , reverse current gain λ′I , input
impedance Zin and output impedance Zout of a two-port
bosonic voltage amplifier (cf. Sec. VI). We recover the
same expressions for these quantities obtained in Sec. VI
from the scattering approach. We stress throughout this
appendix the important role played by the causal struc-
ture of the scattering matrix describing the amplifier.

In applying the general linear response formulas, we
must bear in mind that these expressions should be ap-
plied to the uncoupled detector, i.e. nothing attached to
the detector input or output. In our two-port bosonic
voltage amplifier, this means that we should have a
short circuit at the amplifier input (i.e. no input voltage,
Va = 0), and we should have open circuit at the out-
put (i.e. Ib = 0, no load at the output drawing current).
These two conditions define the uncoupled amplifier. Us-
ing the definitions of the voltage and current operators
(cf. Eqs. (6.2a) and (6.2b)), they take the form:

âin[ω] = −âout[ω] (I39a)

b̂in[ω] = b̂out[ω] (I39b)
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The scattering matrix equation Eq. (6.3) then allows us
to solve for âin and âout in terms of the added noise
operators F̂a and F̂b.

âin[ω] = −1− s22

D
F̂a[ω]− s12

D
F̂b[ω] (I40a)

b̂in[ω] = −s21

D
F̂a[ω] +

1 + s11

D
F̂b[ω] (I40b)

where D is given in Eq. (6.8), and we have omitted writ-
ing the frequency dependence of the scattering matrix.
Further, as we have already remarked, the commutators
of the added noise operators is completely determined by
the scattering matrix and the constraint that output op-
erators have canonical commutation relations. The non-
vanishing commutators are thus given by:[
F̂a[ω], F̂†a(ω′)

]
= 2πδ(ω − ω′)

(
1− |s11|2 − |s12|2

)
(I41a)[

F̂b [ω], F̂†b (ω′)
]

= 2πδ(ω − ω′)
(
1− |s21|2 − |s22|2

)
(I41b)[

F̂a[ω], F̂†b (ω′)
]

= −2πδ(ω − ω′) (s11s
∗
21 + s12s

∗
22)

(I41c)

The above equations, used in conjunction with
Eqs. (6.2a) and (6.2b), provide us with all all the infor-
mation needed to calculate commutators between current
and voltage operators. It is these commutators which en-
ter into the linear-response Kubo formulas. As we will
see, our calculation will crucially rely on the fact that
the scattering description obeys causality: disturbances
at the input of our system must take some time before
they propagate to the output. Causality manifests itself
in the energy dependence of the scattering matrix: as a
function of energy, it is an analytic function in the upper
half complex plane.

a. Input and output impedances

Eq. (5.84) is the linear response Kubo formula for
the input impedance of a voltage amplifier. Recall
that the input operator Q̂ for a voltage amplifier is re-
lated to the input current operator Îa via −dQ̂/dt =
Îa (cf. Eq. (5.83)). The Kubo formula for the input
impedance may thus be re-written in the more familiar
form:

Yin,Kubo[ω] ≡ i

ω

(
− i

~

∫ ∞
0

dt〈[Îa(t), Îa(0)]〉eiωt
)

(I42)

where Yin[ω] = 1/Zin[ω],
Using the defining equation for Îa (Eq. (6.1b)) and

Eq. (I39a) (which describes an uncoupled amplifier), we
obtain:

Yin,Kubo[ω] = (I43)
2
Za

∫ ∞
0

dteiωt
∫ ∞

0

dω′

2π
ω′

ω
Λaa(ω′)

(
e−iω

′t − eiω
′t
)

where we have defined the real function Λaa[ω] for ω > 0
via: [

âin[ω], â†in(ω′)
]

= 2πδ(ω − ω′)Λaa[ω] (I44)

It will be convenient to also define Λaa[ω] for ω < 0
via Λaa[ω] = Λaa[−ω]. Eq. (I43) may then be written as:

Yin,Kubo[ω] =
2
Za

∫ ∞
0

dt

∫ ∞
−∞

dω′

2π
ω′

ω
Λaa(ω′)ei(ω−ω

′)t

=
Λaa[ω]
Za

+
i

πω
P
∫ ∞
−∞

dω′
ω′Λaa(ω′)/Za

ω − ω′

(I45)

Next, by making use of Eq. (I40a) and Eqs. (I41) for
the commutators of the added noise operators, we can
explicitly evaluate the commutator in Eq. (I44) to cal-
culate Λaa[ω]. Comparing the result against the result
Eq. (6.7d) of the scattering calculation, we find:

Λaa[ω]
Za

= Re Yin,scatt[ω] (I46)

where Yin,scatt[ω] is the input admittance of the ampli-
fier obtained from the scattering approach. Returning to
Eq. (I45), we may now use the fact that Yin,scatt[ω] is
an analytic function in the upper half plane to simplify
the second term on the RHS, as this term is simply a
Kramers-Kronig integral:

1
πω
P
∫ ∞
−∞

dω′
ω′Λaa(ω′)/Za

ω − ω′

=
1
πω
P
∫ ∞
−∞

dω′
ω′Re Yin,scatt(ω′)

ω − ω′

= Im Yin,scatt[ω] (I47)

It thus follows from Eq. (I45) that input impedance cal-
culated from the Kubo formula is equal to what we found
previously using the scattering approach.

The calculation for the output impedance proceeds in
the same fashion, starting from the Kubo formula given
in Eq. (5.85). As the steps are completely analogous to
the above calculation, we do not present it here. One
again recovers Eq. (6.7c), as found previously within the
scattering approach.

b. Voltage gain and reverse current gain

Within linear response theory, the voltage gain of the
amplifier (λV ) is determined by the commutator between
the “input operator” Q̂ and V̂b (cf. Eq. (4.3); recall that
Q̂ is defined by dQ̂/dt = −Îa. Similarly, the reverse
current gain (λ′I) is determined by the commutator be-
tween Îa and Φ̂, where Φ̂ is defined via dΦ̂/dt = −V̂b
(cf. Eq. (4.6)). Similar to the calculation of the input
impedance, to properly evaluate the Kubo formulas for
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the gains, we must make use of the causal structure of
the scattering matrix describing our amplifier.

Using the defining equations of the current and volt-
age operators (cf. Eqs. (6.1a) and (6.1b)), as well as
Eqs. (I39a) and (I39b) which describe the uncoupled am-
plifier, the Kubo formulas for the voltage gain and reverse
current gain become:

λV,Kubo[ω] = 4
√
Zb
Za

(I48)

×
∫ ∞

0

dt eiωtRe
[∫ ∞

0

dω′

2π
Λba(ω′)e−iω

′t

]
λ′I,Kubo[ω] = −4

√
Zb
Za

(I49)

×
∫ ∞

0

dt eiωtRe
[∫ ∞

0

dω′

2π
Λba(ω′)eiω

′t

]
where we define the complex function Λba[ω] for ω > 0
via: [

b̂in[ω], â†in(ω′)
]
≡ (2πδ(ω − ω′)) Λba[ω] (I50)

We can explicitly evaluate Λba[ω] by using Eqs. (I40a)-
(I41) to evaluate the commutator above. Comparing the
result against the scattering approach expressions for the
gain and reverse gain (cf. Eqs. (6.7a) and (6.7b)), one
finds:

Λba[ω] = λV,scatt[ω]−
[
λ′I,scatt[ω]

]∗ (I51)

Note crucially that the two terms above have different
analytic properties: the first is analytic in the upper half
plane, while the second is analytic in the lower half plane.
This follows directly from the fact that the scattering
matrix is causal.

At this stage, we can proceed much as we did in the
calculation of the input impedance. Defining Λba[ω] for
ω < 0 via Λba[−ω] = Λ∗ba[ω], we can re-write Eqs. (I48)
and (I49) in terms of principle part integrals.

λV,Kubo[ω] =
Zb
Za

(
Λba[ω] +

i

π
P
∫ ∞
−∞

dω′
Λba(ω′)
ω − ω′

)
λ′I,Kubo[ω] = −Zb

Za

(
Λba[ω] +

i

π
P
∫ ∞
−∞

dω′
Λba(ω′)
ω + ω′

)
(I52)

Using the analytic properties of the two terms in Eq. (I51)
for Λba[ω], we can evaluate the principal part integrals
above as Kramers-Kronig relations. One then finds that
the Kubo formula expressions for the voltage and cur-
rent gain coincide precisely with those obtained from the
scattering approach.

While the above is completely general, it is useful to
go through a simpler, more specific case where the role of
causality is more transparent. Imagine that all the energy

dependence in the scattering in our amplifier arises from
the fact that there are small transmission line “stubs” of
length a attached to both the input and output of the
amplifier (these stubs are matched to the input and out-
put lines). Because of these stubs, a wavepacket incident
on the amplifier will take a time τ = 2a/v to be either
reflected or transmitted, where v is the characteristic ve-
locity of the transmission line. This situation is described
by a scattering matrix which has the form:

s[ω] = e2iωa/v · s̄ (I53)

where s̄ is frequency-independent and real. To further
simplify things, let us assume that s̄11 = s̄22 = s̄12 = 0.
Eqs. (I51) then simplifies to

Λba[ω] = = s21[ω] = s̄21e
iωτ (I54)

where the propagation time τ = 2a/v We then have:

λV [ω0] = 2
√
Zb
Za
s̄21

∫ ∞
0

dt eiω0tδ(t− τ) (I55)

λI [ω0] = −2
√
Zb
Za
s̄21

∫ ∞
0

dt eiω0tδ(t+ τ) (I56)

If we now do the time integrals and then take the limit
τ → 0+, we recover the results of the scattering approach
(cf. Eqs. (6.7a) and (6.7b)); in particular, λI = 0. Note
that if we had set τ = 0 from the outset of the calculation,
we would have found that both λV and λI are non-zero!

6. Details for the two-port bosonic voltage amplifier with
feedback

In this appendix, we provide more details on the calcu-
lations for the bosonic-amplifier-plus-mirrors system dis-
cussed in Sec. H. Given that the scattering matrix for
each of the three mirrors is given by Eq. (H2), and that
we know the reduced scattering matrix for the mirror-free
system (cf. Eq. (6.10)), we can find the reduced scattering
matrix and noise operators for the system with mirrors.
One finds that the reduced scattering matrix s is now
given by:

s =
1
M
× (I57)(

sin θz +
√
G sin θx sin θy − cos θx cos θz sin θy√

G cos θx cos θz sin θx +
√
G sin θy sin θz

)
where the denominator M describes multiple reflection
processes:

M = 1 +
√
G sin θx sin θz sin θy (I58)

Further, the noise operators are given by:
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(
Fa
Fb

)
=

1
M

(
cos θy cos θz

√
G− 1 cos θz sin θx sin θy

−
√
G cos θx cos θy sin θz

√
G− 1 cos θx

)(
uin
v†in

)
(I59)

The next step is to convert the above into the op-amp
representation, and find the gains and impedances of the
amplifier, along with the voltage and current noises. The
voltage gain is given by:

λV =
√
ZB
ZA

2
√
G

1−
√
G sin θy

· 1 + sin θx
cos θx

1− sin θz
cos θz

(I60)

while the reverse gain is related to the voltage gain by
the simple relation:

λ′I = − sin θy√
G
λV (I61)

The input impedance is determined by the amount of
reflection in the input line and in the line going to the
cold load:

Zin = Za
1−
√
G sin θy

1 +
√
G sin θy

· 1 + sin θz
1− sin θz

(I62)

Similarly, the output impedance only depends on the
amount of reflection in the output line and the in the
cold-load line:

Zout = Zb
1 +
√
G sin θy

1−
√
G sin θy

· 1 + sin θx
1− sin θx

(I63)

Note that as sin θy tends to −1/
√
G , both the input

admittance and output impedance tend to zero.
Given that we now know the op-amp parameters of our

amplifier, we can use Eq. (6.5) to calculate the amplifier’s
power gain GP . Amazingly, we find that the power gain
is completely independent of the mirrors in the input and
output lines:

GP =
G

1 +G sin2 θy
(I64)

Note that at the special value sin θy = −1
√
G (which

allows one to reach the quantum limit), the power gain
is reduced by a factor of two compared to the reflection
free case (i.e. θy = 0).

Turning to the noise spectral densities, we assume the
optimal situation where both the auxiliary modes ûin and
v̂†in are in the vacuum state. We then find that both ˆ̃I

and ˆ̃V are independent of the amount of reflection in the

output line (e.g. θx):

S̄II =
2~ω
Za

[
1− sin θz
1 + sin θz

]
×G sin2 θy + cos(2θy)(√

G sin θy − 1
)2

 (I65a)

S̄V V = ~ωZa
[

1 + sin θz
1− sin θz

]
×(

3 + cos(2θy)
4

− 1
2G

)
(I65b)

S̄V I =
√
G(1− 1/G) sin θy + cos2 θy

1−
√
G sin θy

(I65c)

As could be expected, introducing reflections in the input
line (i.e. θz 6= 0) has the opposite effect on S̄II versus
S̄V V : if one is enhanced, the other is suppressed.

It thus follows that the product of noise spectral
densities appearing in the quantum noise constraint of
Eq. (5.88) is given by (taking the large-G limit):

S̄II S̄V V

(~ω)2 =
(
2− sin2 θy

)
· 1 +G sin2 θy(

1−
√
G sin θy

)2 (I66)

Note that somewhat amazingly, this product (and hence
the amplifier noise temperature) is completely indepen-
dent of the mirrors in the input and output arms (i.e. θz
and θx). This is a result of both S̄V V and S̄II having
no dependence on the output mirror (θx), and their hav-
ing opposite dependencies on the input mirror (θz). Also
note that Eq. (I66) does indeed reduce to the result of
the last subsection: if θy = 0 (i.e. no reflections in the
line going to the cold load), the product S̄II S̄V V is equal
to precisely twice the quantum limit value of (~ω)2. For
sin(θy) = −1/

√
G, the RHS above reduces to one, imply-

ing that we reach the quantum limit for this tuning of
the mirror in the cold-load arm.
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