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I. DERIVATION OF CANTILEVER FREQUENCY SHIFT

The energy of our NW-on-cantilever system can be described by the sum of a mechanical

energy term, related to the cantilever (approximated here as a simple harmonic oscillator),

and a magnetic energy term, related to the attached NW:

E =
1

2
k0(le sin θ)2 + Em, (S1)

where k0 is the spring constant, le is the effective length of the cantilever, θ is the angle of

the cantilever free-end with respect to the applied field H, and Em is the magnetic energy.

Given that the Si cantilever and the epoxy used to attach the sample have no magnetic

response, the magnetic energy depends uniquely on the properties of the attached NW. The

torque acting on the cantilever is given by:

τ = −∂E
∂θ

= −k0l
2
e sin θ cos θ − ∂Em

∂θ
. (S2)

Since θ << 1 during the measurement, we can expand Em as a function of θ around θ = 0:

Em(θ) = Em|θ=0 +

(
∂Em
∂θ

∣∣∣∣
θ=0

)
θ +

1

2

(
∂2Em
∂θ2

∣∣∣∣
θ=0

)
θ2 + ... (S3)

Therefore, writing an expression for τ and keeping only terms up to first order in θ, we have:

τ = −k0l
2
eθ −

(
∂Em
∂θ

∣∣∣∣
θ=0

)
−
(
∂2Em
∂θ2

∣∣∣∣
θ=0

)
θ, (S4)

τ = −
(
∂Em
∂θ

∣∣∣∣
θ=0

)
−
[
k0l

2
e +

(
∂2Em
∂θ2

∣∣∣∣
θ=0

)]
θ. (S5)

The first term in (S5) produces a constant deflection of the cantilever, while the term

proportional to θ determines the cantilever’s spring constant. Approximating the cantilever

as a simple harmonic oscillator, we have:

meẍ+ Γẋ =
τ

le
, (S6)

where me is the effective mass of the cantilever, Γ is the cantilever’s dissipation, and the

position of the cantilever free-end x = le sin θ. For θ << 1, x = leθ. Therefore,

meẍ+ Γẋ+

[
k0 +

1

l2e

(
∂2Em
∂θ2

∣∣∣∣
θ=0

)]
x = − 1

le

(
∂Em
∂θ

∣∣∣∣
θ=0

)
. (S7)

Solving this equation of motion we find the angular resonance frequency of the cantilever:

ω =

√
k0

me

+
1

mel2e

(
∂2Em
∂θ2

∣∣∣∣
θ=0

)
− Γ2

4m2
e

. (S8)
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We define ω0 =
√

k0
me

and solve for the angular frequency shift ∆ω = ω − ω0:

∆ω = ω0

(√
1 +

1

meω2
0l

2
e

(
∂2Em
∂θ2

∣∣∣∣
θ=0

)
− Γ2

4m2
eω

2
0

− 1

)
. (S9)

Since the last two terms in the square-root are small compared to 1, we expand (S9) to first

order in these small parameters:

∆ω =
ω0

2ko

[
1

l2e

(
∂2Em
∂θ2

∣∣∣∣
θ=0

)
− Γ2

4me

]
. (S10)

In practice, the cantilevers used in these experiments show a small enough dissipation that

the last term in eq: (S10) is negligible, resulting in:

∆ω =
ω0

2kol2e

(
∂2Em
∂θ2

∣∣∣∣
θ=0

)
. (S11)

Since f0 = ω0

2π
and ∆f = ∆ω

2π
,

∆f =
f0

2kol2e

(
∂2Em
∂θ2

∣∣∣∣
θ=0

)
. (S12)

II. INFERRING MAGNETIZATION FROM FREQUENCY SHIFT FOR

M‖H

We now consider a specific case of our NW-on-cantilever experiment in which H is parallel

to the long-axis of the NW. Since our measurements respond to the samples’s average mag-

netization M, we can – for the moment – ignore the spatial modulation of the magnetization

within the sample and write an effective magnetic energy as if the NW were a single-domain

particle. This treatment allows us to infer the behavior of the average magnetization as

a function of the measured frequency shift ∆f . Given the NW’s high aspect ratio, this

effective energy is dominated by a uniaxial shape-induced anisotropy. The magnetic energy

of the system can then be expressed as,

Em = −µ0H ·MV +
µ0V

2

[
(M · n̂)2D‖ + (M× n̂)2D⊥

]
, (S13)

where µ0 is the permeability of free space, n̂ is the unit vector along the cantilevers long axis

(in this experiment n̂‖H), and D‖ (D⊥) is the demagnetization factor along (perpendicular

to) n̂. Since the long-axis of the NW is aligned along n̂, we have D⊥ > D‖. Given these

circumstances and a magnetization M whose characteristic dynamics occur on time-scales
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much faster than 1
f0

= 500µs, H will set the polarization axis for the average magnetization

M, and |M| will tend to increase with increasing |H|. Therefore, rewriting (S13) in terms

of θ with M‖H, we have:

Em = −µ0HMV +
µ0M

2V

2

[
D‖ cos2 θ +D⊥ sin2 θ

]
. (S14)

Taking the second derivative of this equation with respect to θ we find:

∂2Em
∂θ2

= µ0M
2V (D⊥ −D‖)[cos2 θ − sin2 θ]. (S15)

giving,
∂2Em
∂θ2

∣∣∣∣
θ=0

= µ0M
2V (D⊥ −D‖). (S16)

Applying (S12), we can then write,

∆f =
µ0M

2V f0

2k0l2e
(D⊥ −D‖). (S17)

Solving for M in terms of ∆f , we arrive at:

M = le

√
2∆fk0

f0µ0V (D⊥ −D‖)
. (S18)

III. PROPERTIES OF CANTILEVERS AND NWS

NW1NW3

2 m

FIB milling

200 nm

Figure S1. NW1 and NW3 are segments of the same MnSi NW (top right). This NW was cut with

a focused ion beam (FIB) (bottom right) and then, under an optical microscope with precision

micromanipulators, each segment was attached to a cantilever tip. The front view of the same wire

(left).
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Nanowires

NW1 NW2 NW3

Configuration with respect to

the field

Parallel Parallel Perpendicular

MnSi Nanowires

Length [µm] 7.1 26.7 7.8

Volume [µm3] 1.06 4.11 1.16

Demagnetization field [T] 0.0049 ± 0.0002 0.0014 ± 0.0001 0.0976 ± 0.0117

Si Cantilever

Length l [µm] 180.0 180.0 180.0

Effective Length le [µm] 125.9 125.9 125.9

Resonant Frequency f0 [Hz] 2062.8 2025.9 2106.3

Spring Constant k0 [µN/m] 37 ± 5 50 ± 10 44 ± 10

Q-Factor Q0 at T =4 K 4.1x104 4.0x104 4.2x104

Table S1. Properties of the MnSi wires and Si cantilevers for each measured configuration.

1 µm2 µm

Figure S2. Scanning electron micrographs of NW1 attached to the tip of the cantilever, from the

top (left) and the front (right).
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IV. DETERMINATION OF PHASE TRANSITIONS

In order to determine the magnetic phase transitions from our measurements of MnSi

NWs parallel to the applied magnetic field, ∆f(H) is first converted into M(H). We next take

note of the region in H and T showing sharp discontinuous dips in M(H). We hypothesize

that this behavior may be the signature of a mixture of skyrmion and conical or helical

states. We therefore label this region in the phase diagrams shown in Figure S6 as the

skyrmion mixed phase. Then we follow procedures similar to those described by Bauer and

Pfleiderer for the determination of the transitions to the skyrmion lattice phase and to the

FM phase1. We first remove the sharp dips associated with the mixed phase and fit the

remaining M(H) curve to a piecewise cubic spline. From this fit we calculate ∂M/∂H. The

removal of the sharp dips and the spline fit yield a ∂M/∂H which reveals the overall behavior

of the magnetization. Next, moving from high field to low field, we identify the transition

from FM to conical phase as the first point of inflection in ∂M/∂H, e.g. around H = 0.57 T

in Figure S3. Below this transition, the width of the dip in ∂M/∂H delineates the size of

the skyrmion lattice phase. To quantify this width, we take the full-width at half-maximum

(FWHM) as shown by the dotted lines in Figure S3.
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Figure S3. An example of M(H) (blue) and the corresponding ∂M/∂H (red) used for determining

magnetic phase transitions, here shown for NW1 at T = 0.6K (red).
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In order to assign a transition between the conical and helical phases, we compare the

ZFC and the FC data. Specifically, we compare ∆f(H) and assign the transition to the

field where the slope (∂∆f/∂H) of the ZFC is equal to the slope of the FC, as shown in

Figure S4.
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Figure S4. The frequency shift as a function of the applied magnetic field for a zero-field-cooled

(ZFC) (blue) and a field-cooled (FC) (red) measurement of NW1 (long axis parallel to the field)

at T = 1.5 K.

For measurements of MnSi NWs perpendicular to the applied magnetic field it is not

possible to convert ∆f (H) into M(H). Therefore in order to determine the extent of the

various phases we start by taking note of the region in H and T showing sharp discontinuous

dips in ∆f (H) and label this region shown in Figure S7 the skyrmion mixed phase. Next,

moving from high field to low field, we identify the transition from FM to conical phase as

the discontinuous change in the slope of ∆f(H), e.g. around H = 0.42 T in Figure S5. Below

this transition, we identify the skyrmion lattice phase as a plateau bounded by the sharp

discontinuities in ∆f (H), which are characteristic of a first order phase transition. Once

again, in order to assign a transition between the conical and helical phases, we compare

the ZFC and the FC data. Specifically, we compare ∆f and assign the transition to the

field where the slope (∂∆f/∂H) of the ZFC is equal to the slope of the FC, as shown in

Figure S5.
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Figure S5. ∆f (H) of NW3 (long axis perpendicular to the field) at T = 27.5 K. The skyrmion

lattice phase is bounded by clear discontinuities in ∆f (H) as expected for a first order phase

transition. By comparing the zero-field-cooled (ZFC) (blue) and the field-cooled (FC) (red) data

we assign the transition between the helical and the conical phase as described for the measurement

of NW1, Figure S4.

V. PHASE DIAGRAMS WITH HELICAL-TO-CONICAL TRANSITION
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Figure S6. Extended skyrmion lattice phase for a MnSi NW parallel to the field (NW1). This

phase diagram is identical to that shown in Figure 4 in the main text, with the addition of the

boundary between the helical and conical phase. This boundary is determined through comparison

of FC and ZFC measurements as discussed in section IV.
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Figure S7. Skyrmion lattice phase for a MnSi NW perpendicular to the field (NW3). This phase

diagam is identical to that shown in Figure 6 in the main text, with the addition of the boundary

between the helical and conical phase. This boundary is determined through comparison of the

FC and ZPC measurements as discussed in section IV.
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