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EXPERIMENTAL DETAILS

Sample, microwire and resonance fluorescence

The sample consists of low density self-assembled InGaAs/GaAs quantum dots (QDs) grown by molec-

ular beam epitaxy embedded in the intrinsic region of an n-type GaAs Schottky diode. The tunnel barrier

is 25 nm of intrinsic GaAs. The sample is the same as used in our previous experiments [1]; in fact, the

QD studied is exactly the same one as in the adiabatic passage experiments [1]. The details of the on-chip

microwire and the electrical pulsing are likewise provided in Ref. [1]. All the experiments were carried out

at 4.2 K; the nuclear magnetic resonance (NMR) experiments at an external magnetic field of Bz = 6.6 T

(Faraday geometry).

Initialization and read-out of the nuclear spin polarization is performed optically. We use resonant

excitation of the neutral exciton X0 transition detecting the resonance fluorescence with a confocal dark-

field microscope [2]. At Bz = 0, the ultra-high quality of the sample is revealed by the small measured

linewidth of 1.5 µeV [1], close to the ideal transform limit of ∼ 0.9 µeV. At Bz above about 0.5 T, sweeping

the laser frequency across the blue Zeeman transition of the X0 leads to dynamical nuclear polarization

(DNP) via the so called “dragging effect” [3, 4]. The result is a characteristic flat-top spectrum. In practice,

the detuning is achieved at constant laser frequency by sweeping the voltage applied to the gate, Vg. For

the X0, the Stark shift amounts to 0.447 ± 0.002 µeV/mV. Following initialization and manipulation, the

nuclear spin polarization is read-out by sweeping the optical detuning from a large and negative value. The

change in “width” of the dragging plateau (RF pulse compared to no RF pulse) represents the NMR signal.

This read-out process is explained in detail in Ref. [1].

Gate switching bandwidth

In principle the characteristic time constant for the charge tunable device is given by RC, where R is

the resistance of the back contact and C is the capacitance between top gate and back contact; in practice,
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FIG. S1. Switching speed of the charge tunable device. Resonance fluorescence spectra of the neutral exciton X0

on modulating Vg with a square wave (Vpp = 200 mV) for different frequencies. The maximum bandwidth of the

device is ∼ 100 kHz.

the device does not behave exactly as an RC-circuit. To measure the bandwidth of the device without

making any assumptions on the equivalent circuit, we use the QD itself as a sensor. The gate voltage Vg is

modulated with a square wave (Vpp = 200mV) and the resonant excitation frequency is fixed. If we now

scan the DC component Vg across the X0 resonance we observe two lines in the resonance fluorescence

spectra separated by 200 mV, Fig. S1, provided the modulation frequency is not too high. On increasing

the modulation frequency above the bandwidth of the device, the resonance fluorescence peaks become

blurred, Fig. S1. In this way we find that the bandwidth of the device is around 100 kHz, i.e. the switching

time ∼ 10 µs. In the experiment, we change the bias following nuclear spin preparation and before nuclear

spin manipulation. At the new bias, we introduce a delay of 100 µs before applying the RF pulse. This delay

is one order of magnitude larger than the switching time of the device. This delay therefore ensures that the

bias at the sample is constant and at the correct value when the RF pulse is applied.

Measurement of the central NMR transition frequency

Since the amplitude and frequency of Rabi oscillations depend sensitively to the RF detuning, it is

crucial to determine the resonance frequency of a particular isotope’s central frequency with high accuracy.

© 2016 Macmillan Publishers Limited. All rights reserved. 
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FIG. S2. Determining the resonance of the central transition. (a) Sketch of a chirped pulse with a Gaussian

amplitude modulation. (b) NMR signal vs centre frequency νcentre of the Gaussian amplitude modulation for indium

where ν1 = 49MHz, ν2 = 74MHz, α = 10GHz/s, FWHM of Gaussian = 0.3 MHz. The solid line is a Gaussian fit.

The error on the spectral position is less than 4 kHz.

Our method is to apply a frequency-swept pulse across all the transition frequencies of a particular isotope

with a Gaussian amplitude dip where the centre frequency νcentre of the Gaussian can be varied, Fig. S2(a).

When νcentre comes close to the central transition, population exchange between the +1
2 and −1

2 states is

interrupted and hence a dip in the NMR signal is observed, Fig. S2(b). From this dip, we determine the

central transition frequency with an accuracy of ±3 kHz for In (±8 kHz for As), considerably smaller than

the Rabi frequency νeff = 250 kHz for In (νeff = 65 kHz for As) and the 40 kHz linewidth of the In central

transition (30 kHz for As) measured at a similar magnetic field [5, 6].

Nuclear spin decay as a function of charging

The DNP decays over time, and this decay time is a strong function of Vg on account of nuclear spin

exchange with the Fermi sea in the back contact. To minimize these depolarization effects in the coherent

manipulation of the nuclear spins, we keep the total manipulation time short (≤ 50ms). Even for Vg in

between the empty (0) and singly-charged state (1e), the so-called “co-tunneling regime”, where the DNP

decay rate is fastest, DNP relaxation is negligible for times shorter than 50 ms, Fig. S3. DNP relaxation

therefore plays no significant role in the experiment.

© 2016 Macmillan Publishers Limited. All rights reserved. 
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FIG. S3. Decay of the nuclear spin polarization for different gate voltages. For an uncharged and a doubly

charged QD the nuclear spin polarization decays extremely slowly (order of days). The decay for a singly-charged

QD in the region of maximum co-tunneling is much faster, but still slow compared to the time scale of the Hahn echo

measurement (50 ms). Solid lines are double exponential fits: NMR signal = C0+C1exp(−t/τ1)+C2exp(−t/τ2).

For 1e state close to the plateau centre (1e state with with maximum co-tunneling), the fit yields C0 = 12.9 µeV,

C1 = 18.0 µeV, t1 = 9.7 s, C2 = 8.5 µeV, t2 = 101 s (C0 = 9.6 µeV, C1 = 14.3 µeV, t1 = 0.6 s, C2 = 16.0 µeV,

t2 = 5.6 s).

g-factors and co-tunneling rate

In the co-tunneling regime in a magnetic field, photoluminescence spectra on the singly-charged exciton

X1− show two main peaks with two weak peaks in between. The strong peaks arise from the allowed

“vertical” transitions of the X1−, the weak peaks from the “diagonal” transitions. The diagonal transitions

are forbidden for ideal selection rules but are weakly allowed in the co-tunneling regime as the co-tunneling

interaction weakly hybridizes the electron spin states. The energy separations enable us to determine the

electron and hole g-factors, ge and gh, respectively. Assuming that ge < 0, for this particular quantum

dot, ge = −0.67 ± 0.06 and gh = +1.59 ± 0.06. The corresponding gyromagnetic ratios are γe =

−38.9± 3.4 µeV/T and γh = 92.3± 3.2 µeV/T.

We can estimate the co-tunneling rate at the 1e plateau edges from the increase in optical linewidth

[7]. At both low-bias and high-bias edges, the rate is a few hundred 100 MHz. It is however much more

important to determine the co-tunneling rate in the plateau centre. From the standard model of co-tunneling

for these structures [8], we can expect that the co-tunneling rate decreases by about 4 orders of magnitude

in the plateau centre with respect to the plateau edge. Experimentally, it is challenging to measure sub-MHz

rates. However, we estimate the plateau centre co-tunneling rate from the X1− branching ratio (the relative

© 2016 Macmillan Publishers Limited. All rights reserved. 
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“forbidden” to “allowed” decay rates), the degree of spin pumping we observe with resonant excitation and

from the radiative lifetime. The branching ratio is typically ∼ 0.2% in our sample, a little higher than the

values in the literature, 0.05% [9] and 0.08% [10]; the degree of spin pumping is 80% at high magnetic field

on the quantum dot in ref. [11]; and the X1− lifetime is ∼ 900 ps [11]. This implies a plateau centre co-

tunneling rate of ∼ 0.2MHz. There are clearly differences from quantum dot to quantum dot: this analysis

establishes an upper limit of 1 MHz on the plateau centre co-tunneling rate.

SIMULATION OF THE RABI OSCILLATIONS

The coherent time evolution for a single spin-12 system is given by the solutions to the Bloch equations

ρ11 =
1

T1
ρ22 + i

νeff
2

(ρ12 − ρ21) (S1)

ρ22 = − 1

T1
ρ22 + i

νeff
2

(ρ21 − ρ12) (S2)

ρ12 = i
νeff
2

(ρ11 − ρ22)− (
1

T2
− iδν)ρ12 (S3)

ρ21 = i
νeff
2

(ρ22 − ρ11)− (
1

T2
+ iδν)ρ21 (S4)

where ρij are elements of the density matrix, T1 and T2 correspond to the relaxation time and decoherence

time, νeff is the effective Rabi coupling and δν corresponds to the detuning between the RF drive and νz .

In particular, ρ22 gives the population of the upper state and corresponds to the measured data. To account

for the spread in centre frequency arising from second order quadrupole shifts, we introduce a Gaussian

distribution �(δν). For a fixed drive frequency, the evolution of the ensemble, ρE(t), is given by

ρE22(t) =

∫
�(δν)ρ22(t, δν)dδν. (S5)

Our procedure starts by fitting the data for the 0 state (the empty quantum dot) taking T1 → ∞ and T2

from the Hahn echo measurement (ms range). From this analysis we derive the width of the frequency

distribution as well as the Rabi frequency of the drive. The fit is extremely good. These two parameters are

then used as input parameters to describe the 1e and 2e Rabi oscillations. For the 1e and 2e states, T2 is

taken from the corresponding Hahn echo experiment.

The procedure works extremely well for 115In (TRabi
2 � THahn

2 ), see Fig. 2b from the main article. For
75As, a slightly different value for T2 is required to describe the Rabi oscillations (TRabi

2 > THahn
2 ), Fig. 2a.

We note that an additional broadening of the distribution, arising for instance from the nucleus-dependent

Knight field, would amplify the difference.

There is a small difference in the value of the in-plane magnetic field between the experiments on 75As

and 115In (BRF = 4.4mT and 5.2 mT, respectively). This originates from an imperfect description of the

© 2016 Macmillan Publishers Limited. All rights reserved. 
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effective strength of the Rabi coupling for high spin number [12]. Indeed, the analytical solutions we use

here are only valid in the regime νQ � νeff , which is, strictly speaking, not true for all spins. That said,

the difference between these two values of BRF is small, and the values agree well with the BRF derived in

Ref. [1] with a different technique.

THEORETICAL CALCULATION OF DECOHERENCE OF THE NUCLEAR SPIN ENSEMBLE

Decoherence rate of a single nuclear spin

We describe the dynamics of the transverse spin component of a single nuclear spin interacting with a

narrowed nuclear spin bath in a quantum dot. The interaction between the nuclei is mediated by a single

electron due to hyperfine interactions and we neglect effects due to the dipolar and quadrupole interactions

of the nuclear spins. We consider a self-assembled quantum dot loaded with a single electron in a strong

magnetic field pointing perpendicular to the substrate, i.e. along z. The Hamiltonian used in this work,

H � H0 + V , is only valid in large magnetic fields and corresponds to the effective Hamiltonian derived in

Ref. [13] where diagonal terms in V were omitted. The single terms read

H0 = εzSz + ηz
∑
j

Izj + Szhz, (S6)

V =
1

8ω

∑
j �=l

AjAl

[(
1

2
+ Sz

)
(I−j I+l + I−l I+j )

−
(
1

2
− Sz

)
(I+j I−l + I+l I−j )

]
. (S7)

Here, Sz is the z component of the electron spin operator, Iz,±j (I±j = Ixj ± iIyj ) are the components

of the nuclear spin operator of the jth nuclear spin, and εz and ηz are the electron spin and nuclear spin

Zeeman splitting, respectively. The Overhauser field in the z direction is denoted by hz =
∑

j AjI
z
j with

Aj = Aν0|ψ(rj)|2, where A is the total hyperfine coupling constant, ν0 is the volume of a single nucleus

unit cell and ψ(rj) = ψ(0)e−(rj/aB)2/2 is the electron envelope function. Here, the effective Bohr radius

aB defines the total number of nuclear spins interacting with the electron spin, N . The effective Zeeman

splitting of the electron is given by ω ≈ εz + 〈hz〉 = geµBBz + pIA, where ge is the electron g factor, µB

is the Bohr magneton, Bz is the magnetic field along z, p is the nuclear spin polarization and I denotes the

nuclear spin. The key assumptions in the theory are that the hyperfine coupling A is smaller than the Zeeman

splitting of the electron, A < ω (perturbation expansion), and that the total nuclear spin decoherence rate is

less than the nuclear spin bandwidth Γ̂N < A/h̄N (Markov approximation).

Following Refs. [13, 14], we describe the transverse nuclear spin dynamics of a single nuclear spin in

© 2016 Macmillan Publishers Limited. All rights reserved. 
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the quantum dot. For factorized initial conditions, i.e. Pkρ(0) = ρ(0), we are able to derive the exact

Nakajima-Zwanzig general master equation [15],

Pkρ̇(t) = −iPkLPkρ(t)− i

∫ t

0
dt′Σ(t− t′)ρ(t′) (S8)

with the memory kernel Σ(t) = −iPkLe
−iQkLtQkLPk. Here, we introduced a superoperator Pk that

projects onto the subspace of a single nuclear spin k and is defined as PkO = ρeI′(0)TreI′O, with its

complement Qk = 1 − Pk. We have ρ(0) = ρe(0) ⊗ ρI(0) and the density matrix ρeI′ = ρe ⊗j �=k ρij .

Furthermore, L = L0 + LV denotes the complete Liouvillian, where L0O = [H0,O] and LV O = [V,O],

respectively. Taking I = 1
2 , we find in the Born approximation,

〈İ+k 〉t = −iωn〈I+k 〉t − i

∫ t

0
dt′Σ

(2)
++(t− t′)〈I+k 〉t′ (S9)

where ωn = ηz+Ak[Sz]
mm−A2

k/2ω, with [Sz]
mm |m〉 = Sz |m〉, and where Σ(2)

++(t) is the matrix element

of the memory kernel describing the transverse nuclear spin dynamics to second order in LV . In Laplace

space, the memory kernel is given by

Σ
(2)
++(s) =

−i

16ω2

∑
j �=k

(c+ + c−)A
2
kA

2
j

s− i[ηz +Aj [Sz]mm −A2
j/2ω]

, (S10)

with the coefficients c± defined in Ref. [14]. To remove fast oscillations in Eq. (S9), we transform to a

rotating frame with frequency shift ∆ω = −Re[Σ(2)
++(s = i(ωn+∆ω)+0+)] determined self-consistently,

where 0+ denotes a positive infinitesimal. In the Born-Markov approximation, the decoherence rate of a

single nucleus k is given by Γk = −Im[Σ
(2)
++(s = i(ωn +∆ω) + 0+)], see Ref. [16], Appendix C. We find

Γk =
A3ν20

4π5/2h̄ω2a6B
e−3(rk/aB)2 rk

aB
. (S11)

In Fig. S4, we plot Γk for a realistic set of parameters as a function of rk. Through energy conservation, the

nuclei with the same rk coordinate interact with each other: this causes the increase in Γk at small rk as the

“shells” become progressively larger. At large rk the interaction becomes weaker and weaker on account of

the exponentially decaying electron envelope function.

Decoherence rate of a nuclear spin ensemble

In the NMR experiment, the combined signal of an ensemble of N nuclear spins is measured. We

approximate the measured quantity, 〈I+N (t)〉, by

〈I+N (t)〉 ∼
∑
k

〈I+k (t)〉 =
∑
k

e−Γkt〈I+k (0)〉 ∝
∑
k

e−Γkt, (S12)

© 2016 Macmillan Publishers Limited. All rights reserved. 
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FIG. S4. The decoherence rate Γk of a single nuclear spin k as a function of its position rk in the quantum dot. Here,

we assumed an g = −0.7, B = 6 T, p = 0.5, A = 87 µeV, ν0 = 23.5 Å3 and Ne = 105, equivalently aB = 8.25 nm.

where the sum
∑

k runs over all nuclear spins contributing to the signal. In the last step, we assumed

that 〈I+k (0)〉 is constant over the dot. Note that the brackets describing the averaging, 〈. . .〉, correspond to

different traces for I+N and I+k . For small times t with Γkt � 1, we find that

〈I+N (t)〉 ∝ N − 1 + e−Γ̂N t (S13)

with

Γ̂N =
∑
k

Γk =
A3ν0

18π3/2h̄ω2a3B
. (S14)

In Fig. S5, we plot both the exact and approximated decay of 〈I+N (t)〉, again for the parameters given in

Fig. S4. We see that approximation captures the onset of the decay quite well. However, at t ∼ 10−4 s,

the approximation starts to deviate from the exact result. Interestingly, the exact result then evolves into a

linear decay. The final result for the decoherence rate depends on A3. This can be understood as arising

from the nuclear spin bandwidth (∼ A/h̄N ), where N is a measure of the total number of nuclear spins

(N ∝ a3B/ν0), multiplied by the electron spin–nuclear spin flip-flop Hamiltonian in second order (∝ A2)

[16].

Link of theory to the experiment

The assumptions made in the theory are fulfilled in the experiment: A � 100 µeV; ω � 250 µeV such

that A < ω as required; also, T2 � 20 µs, h̄N/A ∼ 1 µs such that Γ̂N < A/h̄N as required. The total

number of nuclear spins for these quantum dots is known [17]. Specifically, Kloeffel et al. replace the

© 2016 Macmillan Publishers Limited. All rights reserved. 
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FIG. S5. The NMR signal 〈I+N (t)〉 as a function of t, where we compare the exact (red) and the approximated (black)

decay. Here we used the same parameters as given in Fig. S4.

Gaussian envelope function with a top-hat function when defining the number of nuclear spins. Following

the same procedure, there are N nuclear spins with

Γ̂N =

√
2A3

9h̄ω2N
. (S15)

where N = 8.5 × 104 for these quantum dots. (We mention that the simulations in Kloeffel et al. are

sensitive to the exact value of N .) Of course, the Kloeffel et al. quantum dot is not the same one as used

here in the NMR experiments. However, the key parameters (emission wavelength, Stark shift, diamagnetic

shift, electron g-factor) are very similar. In particular, the diamagnetic shift of the optical transition, which

is sensitive to the lateral extent of the electron and hole wave functions, changes little from quantum dot to

quantum dot for quantum dots of this type [18]. It is therefore appropriate to take the same value of N with

an error on this parameter of ∼ 10%.

The Zeeman energy ω is measured on this particular quantum dot by optical spectroscopy. Under the

conditions of the NMR experiment, ω = 246± 30 µeV.

So far, the assumption is that all the nuclear spins are coupled together by the electron-mediated nuclear

spin–nuclear spin interaction. However, for 75As at high magnetic field and slow electron spin relaxation

(i.e. small co-tunneling rate in these experiments), the electron-mediated interaction couples the 75As nuclei

but energy conservation suppresses the coupling to the other isotopes. The theory assumes that there is one

nuclear spin in a volume of ν0. To describe 75As where every other nuclear spin contributes (every group V

atom is 75As), the effective volume per 75As nucleus has to be doubled, resulting in

Γ̂As =
2
√
2A3

As

9h̄ω2N
, (S16)

© 2016 Macmillan Publishers Limited. All rights reserved. 
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where N still refers to the total number of nuclear spins in the quantum dot and A is replaced with AAs,

the hyperfine constant for 75As in GaAs. It is not possible to determine this hyperfine constant in this

experiment as we have no independent measure of the exact nuclear polarization created by the optical

technique, a standard state of affairs. We therefore take the established value, AAs = 86 µeV, listed along

with the In and Ga electron hyperfine constants in Ref. [19]. The As value comes originally from Ref. [20],

the analysis there relying on a scaling of the result for InSb [21]. Based on the results in these papers, we

estimate that the random error in AAs is 10 µeV (∼ 12%).

For 115In, the hyperfine constant is larger, 110 µeV [22], such that A3 roughly doubles with respect to
75As. However, the situation is more involved. Although the group III concentration ratio In:Ga is 20:80

[1] such that 10% of the total number of atoms are In, it is an exaggeration to expect a factor of ten increase

in the effective nuclear volume: the In atoms are likely to be clustered in the centre of the quantum dot.

The nuclear spin coherence time is possibly a means to characterize this clustering; here, the uncertainty in

T2 is too large to make a definitive statement. Also, the experimental signal:noise in the Hahn echo at long

delays is insufficient to observe any departure from an exponential decay, a prediction of the theory.
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