
Nanomechanics and scanning
probe microscopy with nanowires

Inauguraldissertation

zur
Erlangung der Würde eines Doktors der Philosophie

vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Davide Cadeddu

aus Mailand, Italien

Basel, 2018

Original document stored on the publication server of the University of Basel http://edoc.unibas.ch

http://edoc.unibas.ch


Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät
auf Antrag von

Prof. Dr. Martino Poggio

Prof. Dr. Christian Degen

Basel, den 27/2/2018 Prof. Dr. Martin Spiess
Dekan



We do what we must
because we can.





Contents

Introduction v

1 Nanomechanics 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Euler-Bernoulli Beam equation . . . . . . . . . . . . . . . . . 3

1.2.1 Lagrangian of motion . . . . . . . . . . . . . . . . . . . 3
1.3 Planar motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Strain-curvature relation . . . . . . . . . . . . . . . . . 5
1.3.2 Free vibration . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Third order terms . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.1 Inextensional beam . . . . . . . . . . . . . . . . . . . . 10
1.4.2 Nonlinear equation of motion . . . . . . . . . . . . . . 11
1.4.3 Frequency response . . . . . . . . . . . . . . . . . . . . 14

1.5 Orthogonal flexural modes . . . . . . . . . . . . . . . . . . . . 15
1.5.1 System rotation . . . . . . . . . . . . . . . . . . . . . . 15
1.5.2 Lagrangian of motion . . . . . . . . . . . . . . . . . . . 17
1.5.3 Nonlinear equations of motion . . . . . . . . . . . . . . 18
1.5.4 Adimensional equations . . . . . . . . . . . . . . . . . 21

2 Nanowires Nanomechanics 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 GaAs Nanowires . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Displacement detection . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Optical fiber interferometer . . . . . . . . . . . . . . . 27

2.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Linear and nonlinear response . . . . . . . . . . . . . . 30
2.4.3 Mechanical Mixing . . . . . . . . . . . . . . . . . . . . 32
2.4.4 Mode Coupling . . . . . . . . . . . . . . . . . . . . . . 34
2.4.5 Mode coupling in the time domain . . . . . . . . . . . 36
2.4.6 Frequency swept Pump-probe measurements . . . . . . 37



ii Contents

2.4.7 Amplitude swept Pump-probe measurements . . . . . . 39
2.5 Mechanical Logic . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6 Vectorial scanning with GaAs nanowires . . . . . . . . . . . . 41

2.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6.2 Two-mode scanning probe microscopy . . . . . . . . . 43

2.7 Coherent dynamics in a NW . . . . . . . . . . . . . . . . . . . 44

3 Optomechanics with photonic wires 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Photonic Trumpet . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Resonant spectroscopy of a QD coupled to a mechani-
cal resonator . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Resonance Fluorescence noise spectrum . . . . . . . . . 53
3.3.3 FEM simulations . . . . . . . . . . . . . . . . . . . . . 55
3.3.4 Auto-correlation function . . . . . . . . . . . . . . . . . 56
3.3.5 Quantum dot position determination . . . . . . . . . . 57
3.3.6 Measurement on a second QD . . . . . . . . . . . . . . 59

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Fiber-coupled QD 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.2 Potential applications . . . . . . . . . . . . . . . . . . . 71

4.4 Electric Field sensing with QDs . . . . . . . . . . . . . . . . . 72
4.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.2 FEM Simulations . . . . . . . . . . . . . . . . . . . . . 74
4.4.3 2D mapping of local Electric Field . . . . . . . . . . . 76
4.4.4 Optimal wire geometry for sensing . . . . . . . . . . . 80
4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Conclusion and Outlook 85

A Appendix A 91
A.1 Dielectric wire in uniform field . . . . . . . . . . . . . . . . . . 91

A.1.1 E0 ⊥ z . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.1.2 E0 ‖ z . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2 General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B Appendix B 95
B.1 6 axis scanning NWs Microscope . . . . . . . . . . . . . . . . 95



Contents iii

References 95

Curriculum Vitae 115

Acknowledgments 117





Introduction

In the last few years, nanowires (NWs) gathered more and more interest
in an incredible variety of scientific and technologic applications. Due to
their versatility and unique characteristics NWs are considered key in new
generation electronic and energy harvesting devices, study of quantum effects,
and sensing.

In particular, self-assembled NW crystals have emerged as particularly
promising mechanical transducers. They can be grown into nearly defect-
free nanomechanical resonators with exceptional properties, including small
motional mass and low dissipation. Near structural perfection results in low
mechanical dissipation and therefore high thermally limited force sensitiv-
ity. Additionally, their small motional mass both enables the detection of
atomic-scale adsorbates and results in relatively high mechanical resonance
frequencies, decoupling the resonators from common sources of noise, and
should permit improved sensitivity in mass-sensing and scanning probe ap-
plications [1–4]. When brought close to a surface, NWs experience extremely
low non-contact friction [5] making near-surface (< 100nm) force sensitivities
around 1 aN /

√
Hz. As a result, NWs have been used as force transducers

in nuclear magnetic resonance force microscopy [2] and may be amenable to
other ultrasensitive microscopies such as Kelvin probe force microscopy [6]
or for the spectroscopy of small friction forces [7].

Moreover, advances in the control of growth and lithography processes
allow NWs to be grown as heterostructures, which makes them a very prac-
tical monolithic platform for studies of nanoscale hybrid systems. Different
materials and/or diverse crystalline structures can be used in radial and axial
heterostructures giving total control of the properties and functionalities of
the NWs. Under particular growth conditions, for example, self assembled
quantum dots (QDs) can be embedded in semiconductor NWs creating an
optimal system candidates for quantum photonics applications such as single
photon sources and nano-sensing.

Semiconductor QDs are of particular interest due to their excellent qual-
ities as single photon emitters such as high brightness, narrow emission lines
and high fidelity anti-bunching. These properties combine well with the
unique one dimensional structure and high refractive index of semiconductor
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NWs that naturally facilitates low loss optical waveguiding, resulting in a
single system very attractive as single photon source.

Additionally, it has been recently demonstrated how the optical transi-
tions of an embedded QD is intrisically coupled to the motion of the hosting
NW through strain [8, 9]. Coupling a nano-scale quantum system to a mi-
croscopic mechanical resonator offers a new degree of freedom with potential
applications in precision sensing and quantum information [10]. On the one
hand, the mechanical resonator can be controlled via the quantum system,
enabling “phonon lasing” [11, 12] or cooling towards the mechanical ground
state [11,13]. On the other hand, the quantum system can be controlled via
the mechanical system, offering the perspective of non-demolition read-out
via a precise measurement of the oscillator’s position [12] and applications
in precision sensing.

With this thesis, we aim to study and exploit some of the features that
make NWs extremely interesting for scanning probe experiments. We begin
studying the dynamics of as-grown GaAs NWs, observing that for already
moderate driving amplitudes their motion stops to be linear and follows the
dynamics of a Duffing oscillator instead. Conventionally, in scanning probe
experiments oscillatory motion of the cantilever is driven with amplitudes
small enough to remain in the linear dynamical regime. However this lin-
ear dynamic range is often quite limited in nanoscale oscillators [14–16] due
to a number of reasons [17, 18], including the resonator geometry, nonlinear
damping [19,20], the presence of external potentials, and nonlinear boundary
conditions [21,22]. While the nonlinear dynamics occurring when this range
is exceeded complicate the analysis of sensing experiments and are therefore
generally avoided or compensated for [23], nonlinearities can also give rise
to a host of useful effects, such as signal amplification [24, 25], noise squeez-
ing [26], and frequency mixing [27]. We proceed to prove how the nonlinear
dynamics of NW cantilevers can enable some of these effects at the nanoscale
in mechanical form and have the potential to enhance the performance of
cantilever-based sensors.

Thereafter, we observe how a small asymmetry in the cross section of
these NWs splits the flexural modes into orthogonal doublets nearly degen-
erate in frequency. When the NW is scanned over a sample in the pendulum
geometry, these modes can be used for the simultaneous detection of in-
plane forces and spatial force derivatives along two orthogonal directions [28]
enabling the investigation of inherently 2D effects, such as the anisotropy
or non-conservative character of specific interaction forces. We then pro-
vide evidence of the coupling of these modes when driven in the nonlinear
regime showing how the frequency of one mode becomes dependent on the
amplitude of the other following a quadratic behaviour. The coupling of
mechanical modes has various applications including in frequency and am-
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plitude modulation [29], improving mechanical quality factors [30], in several
parametric amplifications schemes, and in the implementation of mechanical
logic [31,32]. Mode coupling may also be used in the enhancement of mechan-
ically detected mass, charge and force sensitivity [28, 33]. For these reasons,
such coupling has been studied in numerous top-down fabricated nanome-
chanical systems, including single [34,35] and double beam structures [29,36]
and membranes [37,38]. In one example, grown carbon nanotubes have been
observed to exhibit coupling between flexural modes of different orders [39].
But these modes are not perpendicular to each other, nor are such nanotubes
usable as singly-clamped cantilever force transducers. Although orthogonal
modes have been observed in grown NWs, [1, 28], coupling has not been
demonstrated or put to use before.

Next, we the study the strain mediated coupling in a nanowire hybrid
system. The hybrid system studied here consist of a GaAs photonic wire and
a semiconductor QD embedded close to its clamping point. We demonstrate
the resonant optical driving of the QD transition in such a structure. The
noise spectrum of the resonance fluorescence signal, recorded in the single-
photon counting regime, reveals a coupling to mechanical modes of different
types. We measure a sensitivity to displacement of 65 fm/

√
Hz limited by

charge noise in the device. Finally, we use thermal excitation of the different
modes to determine the location of the QD within the wire.

This coupling, however, also provides an extra channel of dephasing for
the QD emission, effectively reducing the appeal of this system as a reliable
single photon source. Our idea has been to develop a new device, capable
of limiting the dephasing and at the same time taking advantage of the
design of the photonic wire, eliminating completely the need of complex
optical setups for the photon collection. By means of micromanipulators
we proceed to directly connect the facet of a photonic wire to the core of
a single mode optical fiber essentially producing a QD fiber-pigtail. We
demonstrate a photon collection efficiency at the output of the fiber of 5.8%
and suggest realistic improvements for the implementation of a useful device
in the context of quantum information.

The photonic wire provides another crucial feature to this configuration:
positioning a sensitive element such as a QD at the end of a sharp tip,
combined with a direct coupling to the optical fiber, opens the gates for
applications in scanning probe experiments. We will then proceed to demon-
strate how this device can be directly translated into a sensor for local elec-
tric fields. Many techinques have already established themselves as sensitive
electric field detectors capable of reaching sub-elementary charge sensitivity
and sub-nanometer spatial resolution such as electrostatic force microscopy
(EFM) [40, 41], scanning Kelvin probe force microscopy (KPFM) [42], sens-
ing based on nitrogen-vacancy centers in diamond [43], and scanning single
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electron transistors (SETs) [44,45]. More recently a new technique has been
developed which uses a noncontact atomic force and scanning tunneling mi-
croscope (STM) functionalized with a single molecule to image the dipole
field of an adatom on a surface [46] that is, effectively, the first demonstra-
tion of scanning QD microscopy (SQDM). With this technique it is possible
to produce three-dimensional images of the local electrostatic potential with
subnanometer resolution by recording single-electron charging events of a
molecular QD. However this techinque remains fragile due to its reliance on
a single moluecule and, in addition, is limited to STM conditions of ultra-
high vacuum. An electric field sensor based on an optically addressable QD,
on the other hand, has not been realized before. In this thesis we provide the
proof-of-principle of such a device. Our first results encourage future exper-
iments in this direction, suggesting direct improvements to our device that
could eventually lead to reach a sensitivity comparable with scanning SETs,
that still reamain the most sensitive devices available yet. However, scanning
SETs typically operates below 1 kHz due to the high intrinsic resistance of
the SET and the capacitive load of the leads. This slow operation speed also
exposes the sensor to 1/f charge noise which limits its sensitivity to 10−4

e/
√

Hz within 100 nm of the probe [47]. Our device, instead, would grant a
much wider bandwidth, up to 1 GHz, only limited by the emission rate of
the QD.

Thesis Outline

Chapter 1 introduces general nanomechanics background necessary to un-
derstand the motion of a cantilevered beam. Starting from the most simple
case and moving to the more complex situation where the equations of motion
become nonlinear and the flexural modes cannot be considered independent
anymore.

Chapter 2 shows experimental evidence of the theory developed in the first
chapter and shows possible applications of the implications for GaAs NWs.
Starting from inducing and detecting duffing nonlinearities in the motion of
the NWs to see evidence of mode coupling in time dependent ringdown ex-
periments. Last, we present an application for the NWs as vectorial scanning
force sensors.

Chapter 3 moves the focus to the strain-mediated coupling between the
thermal motion of tapered NWs and the emission of embedded quantum
dots. With the help of finite element simulations, we are able the locate the
position of each dot within the cross-section of the wire.

Chapter 4 describes the implementation of a compact and robust fiber-
coupled single photon source and the proof of principle of an application as a
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scanning probe for electric field sensing. Last, we suggest possible optimiza-
tion of the geometry of the wire based on the screening effect of the field at
the dot position as a consequence of the shape and composition of our probe.
Chapter 5 provides the conclusion of the thesis reporting the main results
and giving an outlook for improvements of the future experiments inspired
by this work.
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1 Nanomechanics

1.1 Introduction

In this chapter we derive the equations of motion and the frequency response
of a single driven damped cantilever beam. We start from the Euler-Bernoulli
free vibration equation describing the mode shape and time evolution of
the oscillation of the beam and arrive at the end to describe the nonlinear
flexural-flexural vibrations of the beam following the apprach used by Crespo
da Silva and Glynn [48,49].

1.2 Euler-Bernoulli Beam equation

We start considering a cantilever beam undergoing small displacement. In
this case we can refer to the Euler-Bernoulli beam theory to describe its
motion. The theory, put together around 1750 by Leonhard Euler and Daniel
Bernoulli, treats the case of a beam undergoing small defection subjected
to small lateral loads, allowing us to neglect effects of warping and shear
deformation.

We consider a straight and uniform beam with length L and mass per
unit length m with a cross sectional area A = hdbd. A schematic of the beam
is shown in Fig.1.1. Additionally to the inertial (x, y, z) coordinate system,
we can define a new local coordinate system (ξ, η, ζ) at arclength s where
the axis ξ and η are always along the main directions of the cross section as
shown in the inset in Fig.1.1. Here z and ζ are representing the neutral axis
of the beam before and after the displacement, respectively. In general, each
cross section of the beam undergoes an elastic displacement and a rotation.

1.2.1 Lagrangian of motion

Hamilton’s principle [50] states that, of all the varied paths satisfying the
prescribed initial and final configurations, the true evolution of the system
extremizes the action functional I =

∫ t2
t1
L dt where t1 and t2 denote the initial

and final time instants. By also including the work done by non-conservative
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Figure 1.1 A single clamped beam of length L and cross-sectional area A aligned along the
z axis.

forces within the integrand, we get the extended Hamilton principle. Using
the variation of the functional I and the fact that the variation and integral
operators commute, we can write for the actual path:

δI =

∫ t2

t1

(δL+ δWnc) dt = 0, (1.1)

where L is the Lagrangian of the system and Wnc denotes the work done by
non-conservative forces, such as damping, external forces and moments. The
Lagrangian L is defined as:

L ≡ Tk − Vp =

∫ L

0

` ds, (1.2)

where Tk is the total kinetic energy, Vp is the potential energy, and we define
` as the specific Lagrangian. The total kinetic energy is composed of the sum
of a translational and a rotational part. If we consider beam whose torsional
rigidity is relatively higher than the flexural rigidity (true for long beams
with near square or near circular cross sections like the nanowires used in
our experiments), then the rotational contribution is negligible.
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Figure 1.2 Cantilever beam flexural vibration in the xz plane.

1.3 Planar motion

If we first consider the simple case where the cantilever is free to oscillate
only in the xz plane and/or when the applied load is only in the x direction,
then the motion is descibed by the one dimensional displacement function
u(s, t) along the x axis where s indicates the coordinate along the neutral
axis of the beam. We can write the translational kinetic part as:

Tk =
1

2
m

∫ L

0

u̇2 ds, (1.3)

where the dot stands for the time derivative ∂/∂t.

1.3.1 Strain-curvature relation

The potential energy of our system is given by the strain energy U . Deforma-
tions of the material due to relative displacements will produce strain inside
our beam while rigid-body translations and rotations will not produce any
strain. Next, we will derive an expression for the strain energy in our system
in terms of the displacement. Strain is defined as a second-rank tensor of the
form [51]:
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εij =
1

2

(
∂ui
∂rj

+
∂uj
∂ri

)
, (1.4)

where ri i = 1, 2, 3 are the components of the position vector r and u =
{u, v, w}. Note that strain is symmetric when the indices are reversed such
as εij = εji. The diagonal elements (i = j) are called normal strains and they
represent deformation for displacements along the same directions while the
off-diagonal elements (i 6= j) are so called shear strain and they are mainly
due to torsion. When external forces are applied, a deformation is produced
and it will give rise to forces internal the material. These internal forces lead
to the definition of stress tensor σij which elements represent the forces per
unit area acting locally on the surface of a volume element of the material in
different directions. Note that the elements σij can be negative or positive
corresponding to compressive or tensile stress, respectively. For homogeneous
and isotropic materials (like the ones treated in this thesis are assumed to
be) the stress is related to the strain through the Young’s modulus EY and
the Poisson’s ratio νP . Under our assuption that the deflection is small and
only along x, the stress results almost eniterly uniaxial along the z and the
only non zero element of the tensor is σ33. In this case the strain tensor
assumes the diagonal form:

εij =

−νPσ33/EY 0 0
0 −νPσ33/EY 0
0 0 σ33/EY

 (1.5)

For the moment we are going to neglect the smaller Possion effect in order
to maintain a simple description of the strain so that, in first approximation,
the strain energy can then be written as:

U =
1

2

∫ L

0

(∫∫
A

σ33ε33 dξdη

)
ds. (1.6)

Next, we note that the bending of the beam along the x direction can
be described by just the displacement u(s, t) and by a rotation around the
η axis (in this case parallel to y) of an angle ψ, that, in the case of small
angles accounted in the Euler-Bernoulli theory, can be expressed as ψ = u′,
were the prime stands for the spatial derivative ∂/∂s. We can relate the
uniaxial strain with the curvature vector κ(s, t) of the beam and with the
distance from the neutral axis and write an expression that in this simple
case is ε33 = −ξκη, where κη = ψ′ is the component along η of the curvature.
By consequence, we can also express the uniaxial strain as a function of the
displacement as:

ε33 = −ξ ∂
2u

∂s2
. (1.7)
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Given that σ33 ≈ EY ε33 and substituting the expression obtained for the
strain into Equation 1.6 we can write:

U =
1

2

∫ L

0

(∫∫
A

EY κ
2
ηξ

2 dξdη

)
ds, (1.8)

and by using the fact that the curvature is not a function of ξ or η, we can
reduce the Equation 1.8 to:

Vp = U =
1

2

∫ L

0

Dηκ
2
η ds, (1.9)

where we defined the bending stiffness Dη = EY Iη, where Iη =
∫∫

A
ξ2 dξdη

is the the area moment of inertia relative to the η direction. In conclusion,
we can write an expression for the specific Langrangian, which is given by:

` =
1

2
mu̇2 − 1

2
Dηκ

2
η. (1.10)

1.3.2 Free vibration

We now have an explicit expression for the specific Lagrangian function that
describes our system in the most simple configuration. Let’s, for the mo-
ment, not take into account non-conservative forces, meaning that there is
no forcing of the system and we neglect the damping (granted that our res-
onator has a high quality factor Q). If we express the curvature in terms
of the displacement u, then ` results to be function of u̇ and u′′, and the
Euler-Lagrange equation is then given by:

− ∂

∂t

∂`

∂u̇
+

∂2

∂s2

(
∂`

∂u′′

)
= 0. (1.11)

By substituting the expression of `, we obtain then the following differ-
ential equation:

mü+Dηu
′′′′ = 0, (1.12)

with the following boundary conditions for the fixed and free end of the beam:

u(0, t) = 0;u′(0, t) = 0;u′′(L, t) = 0;u′′′(L, t) = 0. (1.13)

The general solution for the displacement u(s, t) can then be expressed as a
sum of harmonic vibrations of the form:

u(s, t) =
∑
n

un(s)e−iωnt, (1.14)
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Mode n βn ωn/ω0

0 1.875 1.000
1 4.694 6.267
2 7.855 17.547

n ≥ 3 (n+ 1/2)π ((n+ 1/2)π/β0)2

Table 1.1 Values of βn for the first few flexural modes with the corresponding eigenfre-
quencies normalized to ω0.

where each value of n corresponds to a different mode with a different os-
cillation frequency and different displacement profile un. The latter can be
obtained by solving the equation:

Dηu
′′′′
n −mωn2un = 0, (1.15)

which solutions are in the form:

un(s) = A1 cos

(
βn
L
s

)
+ A2 sin

(
βn
L
s

)
+ A3 cosh

(
βn
L
s

)
+ A4 sinh

(
βn
L
s

)
,

(1.16)

where we define βn := L(mω2
n/Dη)

1/4.
With the boundary conditions found before, the frequencies are obtained

solving

cos βn cosh βn + 1 = 0. (1.17)

The first few roots with the respective relative frequencies are shown in the
Table 1.1.
The mode shape for the n-th mode, which describe the spatial displacement
of the neutral axis as a function of the arclength s, is given by:

un(s) = A1

[(
cosh

(
βn
L
s

)
− cos

(
βn
L
s

))

+
cos βn + cosh βn
sin βn + sinh βn

(
sin

(
βn
L
s

)
− sinh

(
βn
L
s

))]
.

(1.18)

The profile of the oscillation amplitude for the first 3 modes is plotted in
Fig. 1.3.

Last, it is important to note that the exact same derivation can be made
for the displacement v when the oscillation is happening only along the y
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Figure 1.3 Amplitude of oscillation un as a function of the normalized arclength for the
first three flexural modes of a cantilever.

direction. In this case, the bending will be described by an angle θ around
the x axis (that would be parallel with ξ in this case) with the only difference
that a positive counterclockwise angle will produce a negative displacement
(along the negative y axis). When the cross section is not symmetric, the
mode shape will anyway be the same in both direction, while the frequency
will be different, as it depends on the bending stiffness which depends itself
on the geometry of the cross section. As an example, for the case of a
rectangular cross section, we obtain Iη = bdh

3
d/12 and Iξ = b3

dhd/12 for
the motion along the x and y respectively. We can then calculate the the
corresponding frequencies that are given by:

ωn,x = β2
n

√
EYA

12m

hd
L2
, (1.19)

ωn,y = β2
n

√
EYA

12m

bd
L2
. (1.20)

From 1.20 results clear that if hd < bd then ωn,x < ωn,y. Instead, in the case
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of any symmetric cross-section around the center, the moments of area Iξ
and Iη are equal and, by consequence, the frequencies are doubly degenerate.
Also, the direction of oscillation will result completely arbitrary. That is true
also for a circular cross-section and for the specific case of a regular hexagonal
cross-section, as the one of the nanowires investigated in Chapter 2. In this
case Iξ = Iη = 5

√
3/16h4

d and the frequencies result:

ωn = β2
n

√
5EYA

24m

hd
L2
. (1.21)

In reality, however, it is impossible to have a true symmetric cross-section,
as small asymmetries are inevitable. Even a very small asymmetry will lift
the degeneracy and the modes in the two orthogonal directions will have a
different spectral signature.

1.4 Third order terms

In this section we will start considering what happens when the amplitude
of displacement cannot be considered small anymore. We will relax some of
our assumptions and see how the motion of the beam can be described with
a third order equation. If we would proceed in the same way as the previous
section, we would obtain differential equations valid for an aribrarily large
displacement as long as the strain remains small. However, the boundary-
value problem does not grant a closed-form solution as the equations become
trascendental. We will instead expand the nonlinear terms in polynomials of
third order.

For simplicity, we will now still consider the motion only along the direc-
tion x and only consider the most general case in the next section.

1.4.1 Inextensional beam

When the displacement of the beam becomes moderate, then angle of bend-
ing cannot be considered small anymore and our approximation ψ ≈ u′ is
no longer valid. We have to write the full expression considering that the
bending will also produce a displacement w in the z direction. From the
geometry of the problem (see also Fig.1.4 as a reference) we can write:

tanψ =
u′

1 + w′
. (1.22)

Since we assume that our beam is inextensible (assumption that would
not be valid of course for a doubly clamped beam), the displacements on
the plane are related. To find this relation we look at the deformation of an
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Figure 1.4 A segment of the neutral axis CD moves to C∗D∗ upon deformation. By
imposing no strain on the neutral axis we can find a relation between the displacements in
order to satisfy the assumption of inextesibility of the beam.

element CD of the neutral axis of length ds and located at a distance s from
the origin O of the (x, y, z) system. Upon deformation, CD moves to C∗D∗

with displacement components (u, v, w) and (u + du, v + dv, w + dw) for C
and D respectively. The strain at point C can then be calculated as:

εs =
ds∗ − ds

ds
=
√
u′ + v′ + (1 + w′)− 1. (1.23)

The requirement of the neutral axis to be inexstensible implies that there
is no strain so we can set εs = 0. Since, for the moment, we are not consid-
ering deformation in the y direction, the inexstensibility constraint equation
reduces to:

u′2 + (1 + w′)2 = 1. (1.24)

To include the inextensiblity constraint in the Lagrangian of motion, we
utilize a Lagrangian multiplier λL(s, t). This multiplier can be interpreted
as an axial force necessary to keep the neutral axis inexstensible.

1.4.2 Nonlinear equation of motion

While the expression for the potential energy stays unvaried from the previ-
ous case, we need to include also the contribution of the displacement w in
the kinetic part, resulting in:
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Tk =
1

2
m

∫ L

0

(u̇2 + ẇ2) ds. (1.25)

The specific Lagrangian can be written then in the explicit form:

` =
1

2
m(u̇2 + ẇ2)− 1

2
Dηκ

2
η +

1

2
λL[1− u′2 − (1 + w′2)]. (1.26)

Note that the specific Lagrangian is a function of xi where x = {u̇, ẇ, ψ, ψ′, λL}
and can be expressed like:

δ` =
∑
i

∂`

∂xi
δxi. (1.27)

We note that ψ is not an independent variable and its variation can be ex-
pressed in terms of u and w using Eq. 1.22. Last, before rewriting the Euler-
Lagrange equations, we also introduce the work done by non-conservative
forces that we can express like:

δWnc =

∫ L

0

(
(Qu − cuu̇)δu+ (Qw − cwẇ)δw

)
ds, (1.28)

where Qu and Qw are general external forces applied on the beam along the x
and z directions, respectively, and cu and cw are the corresponding damping
coefficients. By substituting Eq.1.27 and 1.28 into Eq.1.1 and integrating by
parts we obtain the following equation for the variation of the functional I:

δI =

∫ t2

t1

{∫ L

0

(
− ∂

∂t

∂`

∂u̇
+

∂

∂s
Gu +Qu − cuu̇

)
δu ds

+

∫ L

0

(
− ∂

∂t

∂`

∂ẇ
+

∂

∂s
Gw +Qw − cwẇ

)
δw ds

+
[
−Guδu−Gwδw +Huδu

′ +Hwδw
′
]L
s=0

}
dt = 0,

(1.29)

where

Gu =

(
∂2`

∂s∂ψ′
− ∂`

∂ψ

)
∂ψ

∂u′
+ λLu

′, (1.30)

Gw =

(
∂2`

∂s∂ψ′
− ∂`

∂ψ

)
∂ψ

∂w′
+ λL(1 + w′), (1.31)

and

Hq =
∂`

∂ψ′
∂ψ

∂q′
, (q = u,w). (1.32)
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Eq. 1.29 is valid for any arbitrary δu, δw imlpying that the individual inte-
grands must be zero. We need now to solve the equations:

mü+ cuu̇−Qu = G′u, (1.33)

mẅ + cwẇ −Qw = G′w, (1.34)

and the two point boundary condition equation:[
−Guδu−Gwδw +Huδu

′ +Hwδw
′
]L
s=0

= 0. (1.35)

As stated before, to solve the equations and obtain the boundary condi-
tions, we need to expand nonlinear terms into polynomials. Remembering
that tan−1 x = x− 1

3
x3 + ..., we can write:

w′ = (1− u′2)1/2 − 1 = −1

2
u′

2
+ ... (1.36)

ψ = tan−1 u′

1 + w′
= tan−1

[
u′(1− u′2)−1/2

]
= u′

(
1 +

1

6
u′

2

)
+ ... (1.37)

Substituting these expressions into Eq. 1.33 and 1.34 and retaining only the
terms up to order three, we obtain:

mü+ cuu̇−Qu =
[
−Dη

(
u′′′ + u′u′′

2
)

+ λLu
′
]′
, (1.38)

mẅ + cwẇ −Qw = [Dη (u′′′u′) + λL(1 + w′)]
′
. (1.39)

However, for a weakly damped system like our beam, the damping cw
turns out to be very small and will be thus neglected. By using the relevant
conditions at the border w(0, t) and Gw(L, t) = 0 (from Eq. 1.35), we obtain,
from Eq. 1.36 and 1.39:

w = −1

2

∫ s

0

u′2 ds, (1.40)

λL = −Dηu
′′′u′ − 1

2
m

∫ s

L

∂2

∂t2

(∫ s

0

u′2 ds

)
ds−

∫ s

L

Qw ds. (1.41)

If we now assume that the acting forces are directed only along x so that
Qw = 0 and substitute 1.40 and 1.41 in Eq. 1.38 and keep terms up to the
third order we find:
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mü+ cuu̇+Dηu
′′′′ +Dη [u′(u′u′′)′]

′

+
1

2
m

[
u′
∫ s

L

∂2

∂t2

(∫ s

0

u′2 ds

)
ds

]′
= Qu,

(1.42)

where the last two terms on the left side of the equation represent the ge-
ometric nonlinearity and the nonlinear inertia, respectively. It is important
to note that while both geometric and inertia nonlinearity are considered,
their relative contribution changes with the mode number. As a result, the
geometric nonlinearity, which is of the hardening type, is dominant for the
first flexural mode while the intertia nonlinearity, which is of the softening
type, is dominant for the second and higher order flexural modes. In Chap-
ter 2, we focus entirely on the first flexural mode of our resonator and by
consequence we will now not consider the nonlinear intertia term.

1.4.3 Frequency response

We now focus on the dependence of the amplitude of oscillation on the fre-
quency of excitation. To do that, we look at the time dependent part of Eq.
1.42 neglecting the nonlinear interial term. We use the fact that we can write
the displacement in the form u(s, t) = un(s)a(t) and for a given arclentgh s
we can divide both sides of the equation by un(s). In this case we can rewrite
equation 1.42 as the so called Duffing equation:

ä+ γȧ+ ω2
ξa+ αa3 = Q∗u(t), (1.43)

where we introduced γ = cu/m, α is the nonlinear Duffing coefficient and
Q∗u is the normalized external excitation. By treating the cubic term as a
perturbation of a single harmonic oscillator and assuming a general solution
in the form of:

a(t) = Z cos(ωt+ φp), (1.44)

we can substitute Eq.1.44 into equation 1.43, keeping only terms at frequency
ω and squaring both sides of the equation, we can extract the amplitude
of oscillation Z as a function of the forcing frequency ω from the implicit
equation:

Z2

(
ω2 − ω2

ξ −
3

4
αZ2

)2

+ (γZω)2 = Q∗2u . (1.45)

The values of Z/Q∗u as a function of ω/ωξ are plotted in Fig.1.5(a) for
different values of the cubic coefficient α. Note that for α = 0 the equa-
tion is equivalent to the one describing a simple harmonic oscillator and the
frequency response can be approximated with a lorentzian centered at ωξ.
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Figure 1.5 (a) Amplitude of oscillation Z/Q∗
u as a function of normalized frequency ωξ/ω

plotted for different values of the duffing coefficient α. (b) Frequency hysteresis due to insta-
bility of the solution indicated by the dotted line.

When α reaches high values, for some values of ω there are three solutions
for the amplitude Z one of which, however, is unstable. The history of the
resonator sets what solution is the valid one, resulting in an hysteresis loop
when the forcing frequency is swept, as highlighted in Fig. 1.5(b).

1.5 Orthogonal flexural modes

In the last section of this Chapter we consider the more general case where
the beam is free to oscillate in any direction. While the the description of
the system becomes more complex, the procedure to find the expression for
the components of the displacement of interest, namely u(s, t) and v(s, t),
remains similar to the one in section 1.4.

1.5.1 System rotation

Since the neutral axis does not bend anymore only by an angle ψ(s, t), the
reference system (ξ, η, ζ) with origin in the centroid of the cross-section is now
obtained by applying three consequent rotations of counterclockwise angles
ψ, θ and φ to the inertial system (x, y, z) so that

{eξ, eη, eζ}T = [Tφ][Tθ][Tψ]{ex, ey, ez}T , (1.46)

where:
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Figure 1.6 Cantilever beam undergoing flexural-flexural-torsional vibrations

[Tψ] =

cosψ 0 − sinψ
0 1 0

sinψ 0 cosψ

 , (1.47)

[Tθ] =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 , (1.48)

[Tφ] =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 . (1.49)

By consequence, the curvature of the beam can be written as:

κ(s, t) = κξeξ + κηeη + κζeζ , (1.50)

where each component is now given by:
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κξ ≡
∂eζ
∂s
· eη = ψ′ cos θ sinφ+ θ′ cosφ, (1.51)

κη ≡
∂eζ
∂s
· eξ = ψ′ cos θ cosφ− θ′ sinφ, (1.52)

κζ ≡
∂eξ
∂s
· eη = φ′ − ψ′ sin θ. (1.53)

Note that in the simple case that θ = φ = 0, we find back the simple case of
the planar motion along x and κη = ψ′. In the same way, if ψ = φ = 0 then
the only non zero component is κξ = θ′ and the beam bends only along the
y axis.

1.5.2 Lagrangian of motion

Also in this case we aim to find the full expression of the specific Lagrangian
before finding the stationary point of the functional I. The kinetic energy of
the system is simply given by:

Tk =
1

2
m

∫ L

0

(
u̇2 + v̇2 + ẇ2

)
ds. (1.54)

The bending in x and y still produces uniaxial strain along z:

ε33 = ηκξ − ξκη, (1.55)

where the opposite sign is due to the fact that positive values of θ produce
negative displacement v that results in tensile strain. The torsion of the
beam instead produces shear strain γij that now we need to consider and is
given by:

ε13 =
1

2
γ13 = ξκζ (1.56)

ε23 =
1

2
γ23 = −ηκζ (1.57)

while the other components of the strain tensor remain zero or negligible.
The strain energy is now given by:

U =
1

2

∫ L

0

{∫∫
A

(σ33ε33 + σ23γ23 + σ13γ13) dξdη

}
ds. (1.58)

By assuming σ13 ≈ Gγ13 and σ23 ≈ Gγ23 where G is the shear modulus, and
using again the fact that σ33 ≈ EY ε33, we can rewrite the potential energy
of our beam as:
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U =
1

2

∫ L

0

(
Dξκ

2
ξ +Dηκ

2
η +Dζκ

2
ζ

)
ds, (1.59)

where:

Dξ = EY

∫∫
A

η2 dξdη,

Dη = EY

∫∫
A

ξ2 dξdη,

Dζ = G

∫∫
A

(
ξ2 + η2

)
dξdη.

(1.60)

Here, the first two terms are representing the bending stiffness, and the third
one the torsional one. The last term we need to include in the Lagrangian is
the the inextensionality constraint that can be extracted from Eq. 1.23 and
becomes:

(1 + w′)2 + v′2 + u′2 = 1. (1.61)

Finally, we can write the overall specific lagrangian as:

` =
1

2
m(u̇2 + v̇2 + ẇ2)− 1

2
(Dξκ

2
ξ +Dηκ

2
η +Dζκ

2
ζ)

+
1

2
λL
[
1− u′2 − v′2 − (1 + w′)2

]
.

(1.62)

1.5.3 Nonlinear equations of motion

The only independent vairables in this case are u, v, w, and φ while all the
variation of other variables can be expressed as a function of those. From
Fig.1.4 we can extract an explicit expression for the angle θ:

tan θ = − v′√
u′2 + (1 + w′)2

. (1.63)

By introducing the last non-conservative forces Qv − cvv̇ and Qφ − cφφ̇,
and following the same procedure as explained in section 1.4.2, we can write
the expression for the variation of the functional I, integrate by parts and
set to zero the individual integrands, obtaining the following equations:

mü+ cuu̇−Qu = G′u, (1.64)

mv̈ + cvv̇ −Qv = G′v, (1.65)

mẅ + cwẇ −Qw = G′w, (1.66)

Qφ − cφφ̇ = J ′φ, (1.67)



1.5 Orthogonal flexural modes 19

[
−Guδu−Guδu−Guδu+Huδu

′ +Hvδv
′ +Hwδw

′ +
∂`

∂φ′
δφ

]L
s=0

= 0,

(1.68)
where we used the compact form:

Gu = Jψ
∂ψ

∂u′
+ Jθ

∂θ

∂u′
+ λLu

′,

Gv = Jθ
∂θ

∂v′
+ λLv

′,

Gw = Jψ
∂ψ

∂w′
+ Jθ

∂θ

∂w′
+ λL(1 + w′),

(1.69)

and

Jk =
∂2`

∂t∂k̇
+

∂2`

∂s∂k′
− ∂`

∂k
(k = ψ, θ, φ),

Hq =
∂`

∂ψ′
∂ψ

∂q′
+
∂`

∂θ′
∂θ

∂q′
(q = u, v, w).

(1.70)

Now we can again expand the expressions of the displacement w and of the
angles ψ and θ into polynomials up to order three:

w′ = (1− u′2 − v′2)1/2 − 1 = −1

2
(u′

2
+ v′

2
) + ... (1.71)

ψ = tan−1 u′

1 + w′
= tan−1

[
u′(1− u′2 − v′2)−1/2

]
= u′

(
1 +

1

6
u′

2
+

1

2
v′

2

)
+ ... (1.72)

θ = tan−1 −v′[
(1 + w′)2 + u′2

]
)

= tan−1
[
−v′(1− v′2)−1/2

]
= v′

(
1 +

1

6
v′

2

)
+ ... (1.73)

By substituting eq.1.72 and 1.73 into 1.53 we find κζ = φ′ + u′′v′. We note
that in our case φ does not represent the twist angle of the beam with respect
to the neutral axis, also indicating that a non-zero angle φ does not guarantee
the presence of torsion along the beam [52]. We can define the twist angle
γt as:

γt ≡ φ+

∫ s

0

u′′v′ ds, (1.74)

so that κζ = γ′t. By substituting Eq. 1.71 - 1.74 into Eq. 1.66 - 1.35 with
the relevant boundary conditions w(0, t) = 0, Gw(L, t) = 0, γt(0, t) = 0, and
γ′t(L, t) = 0 we can write:
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w = −1

2

∫ s

0

(
u′2 + v′2

)
ds, (1.75)

λL = −Dηu
′′′u′ −Dξv

′′′v′

− 1

2
m

∫ s

L

[∫ s

0

∂2

∂t2
(
u′2 + v′2

)
ds

]
ds−

∫ s

L

Qw ds, (1.76)

γt = −Dξ −Dη

Dζ

∫ s

0

∫ s

L

u′′v′′ ds ds. (1.77)

We can now use Eq. 1.75 - 1.77, Eq.1.64 and 1.65 and the boundary condition
equations, keeping terms up to the third order and obtain:

mü+ cuu̇+Dηu
′′′′ = Qu +

{
(Dξ −Dη)

[
v′′
∫ s

L

u′′v′′ ds− v′′′
∫ s

0

u′′v′ ds

]

− (Dξ −Dη)
2

Dζ

(
v′′
∫ s

0

∫ s

L

u′′v′′ ds ds

)′}′
−Dη

{
u′(u′u′′ + v′v′′)′

}′
− 1

2
m

{
u′
∫ s

L

∂2

∂t2

[∫ s

0

(u′2 + v′2) ds

]
ds

}′
−
(
u′
∫ s

L

Qw ds

)′
,

(1.78)

mv̈ + cvv̇ +Dξv
′′′′ = Qv −

{
(Dξ −Dη)

[
u′′
∫ s

L

u′′v′′ ds− u′′′
∫ s

0

v′′u′ ds

]

+
(Dξ −Dη)

2

Dζ

(
u′′
∫ s

0

∫ s

L

u′′v′′ ds ds

)′}′
−Dη

{
v′(u′u′′ + v′v′′)′

}′
− 1

2
m

{
v′
∫ s

L

∂2

∂t2

[∫ s

0

(u′2 + v′2) ds

]
ds

}′
−
(
v′
∫ s

L

Qw ds

)′
,

(1.79)
with the following boundary conditions:

u(0, t) = 0, v(0, t) = 0, u′(0, t) = 0, v′(0, t) = 0, (1.80)

u′′(L, t) = 0, v′′(L, t) = 0, u′′′(L, t) = 0, v′′′(L, t) = 0. (1.81)

While only cubic nonliear terms are cosidered, we can distinguish the terms
with the second time derivatives in Eq. 1.78 and 1.79 that represent nonlinear
inertia. All the other nonlinear terms are of the geometric nonlinearity type
and originate from the potential energy stored in bending. There is one last
remark that we can make from this equation of motion: if Dξ = Dη then
there’s no coupling between the flexural and torsional modes in the beam.
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1.5.4 Adimensional equations

It is possible to rewrite the equations 1.78 and 1.79 in a dimensionless form
by substituting s̃ = s/L, ũn = un/hd, ṽn = vn/hd, c̃u = cuL

4/(Dητs) and
scaling time with τs = L2

√
m/Dη. By using the fact that un(s) = vm(s)

when n = m we can apply the Galerking procedure for the first flexural
mode in both directions ũ(s̃, t̃) = ũ1(s̃)a(t̃), ṽ(s̃, t̃) = ṽ1(s̃)b(t̃) giving us the
simplified form:

ä+ c̃uȧ+ ω2
ξa+ C1

(
hd
L

)2

a3

+

(
C1 +

(
1− Dη

Dξ

)
C2 −

Dξ

Dζ

(
1− Dη

Dξ

)2

C3

)(
hd
L

)2

ab2

+C4

(
hd
L

)2

a(ȧ2 + aä+ ḃ2 + bb̈) = C5Qu,

(1.82)

b̈+ c̃v ḃ+ ω2
ηb+ C1

(
hd
L

)2

b3

−

(
C1 +

(
1− Dη

Dξ

)
C2 −

Dξ

Dζ

(
1− Dη

Dξ

)2

C3

)(
hd
L

)2

a2b

+C4

(
hd
L

)2

b(ȧ2 + aä+ ḃ2 + bb̈) = C5Qv,

(1.83)

where we defined the coefficients (remebering that ũ1 = ṽ1):

C1 =

∫ 1

0

ũ1

(
ũ′1
(
ũ1ũ

′′
1

)′)′
ds̃ = 40.41, (1.84)

C2 =

∫ 1

0

ũ1

(
ũ′1

∫ s̃

0

∫ s̃1

1

(
ũ′1
)2
ds̃2 ds̃1

)′
ds̃ = 4.60, (1.85)

C3 =

[∫ 1

0

ũ1

(
ũ′′1

∫ s1

1

ũ′′1ũ
′′
1 ds1

)′
ds

]
−
[∫ 1

0

ũ1

(
ũ′′′1

∫ s1

0

ũ′′nũ
′
1 ds1

)′
ds

]
= −20.11, (1.86)

C4 =

∫ 1

0

ũ1

((
ũ′′1

∫ s

0

∫ s1

1

ũ′′1ũ
′′
1 ds2 ds1

)′)′
ds = 16.60, (1.87)

C5 =

∫ 1

0

ũ1 ds̃ = 0.78. (1.88)
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A few interesting notes can be made on this pair of equations. The
geometrical coupling between the two modes arises from the terms in ab2

and a2b for the first and second equation, respectively. This produces a shift
of the resonance of one mode proportional to the square of the amplitude of
the other mode. In the limiting case when the two modes are degenerate (i.e.
Dξ = Dη) the coupling is set only by the positive coefficient C1. However,
the ratio Dη/Dξ can be adjusted by changing the cross section of the beam.
By doing this it is possible to change the sign of the nonlinear coupling
coefficient.
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2 Nanowires Nanomechanics

2.1 Introduction

In this chapter we present the results of the study of the motion of several
as-grown GaAs nanowires still attached to their GaAs growth substrate. We
observe that, upon driving the periodic bending motion of a nanowire with
sufficiently large amplitudes, it can no longer be described by a linear equa-
tion of motion. Instead, the nanowire follows the, qualitatively different,
nonlinear dynamics of a Duffing oscillator [53] as described in the previous
chapter. A Duffing nonlinearity can give rise to complex motion of an oscilla-
tor, such as hysteresis, cascades of period-doubling, and chaotic motion [54].
In the quantum regime, Duffing nonlinearities have recently been studied in
the context of mechanical squeezing [55]. Furthermore, we find that when ap-
plying two driving frequencies, the nanowire motion in the nonlinear regime
contains components at frequencies other than the two driving frequencies,
as a result of mechanical mixing.

Furthermore, a small asymmetry in the cross-section of a nanowire leads
to the formation of two non-degenerate orthogonal modes. By driving one
mode in its nonlinear regime of motion, the other mode is observed to shift in
frequency. We then proceed to investigate nonlinear coupling of orthogonal
flexural modes of these GaAs nanowires. In a ringdown-type experiment, this
leads to a distinct beating pattern in the time domain, where the beating
period decreases with time. We will proceed to show that the mode cou-
pling and nonlinearity can be exploited for the implementation of frequency
modulation, amplitude to frequency conversion and logical operations.

2.2 GaAs Nanowires

The nanowires under investigation here were grown perpendicularly to their
GaAs growth substrate and are still attached to this substrate (see Fig. 2.1).
Using the nanowires as they are grown minimizes the introduction of defects
and maintains good clamping of the nanowires to the substrate. Both fac-
tors should decrease damping of the mechanical resonance of the nanowires.
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100 nm

Figure 2.1 Scanning electron micrographs (SEM) of a substrate containing multiple GaAs
nanowires, taken at a different section of the same wafer that was used in the experiments.
Inset: close-up of a single nanowire, showing a faceted structure due to its hexagonal cross-
section.

The nanowires were grown on a 4 nm SiOx coated (111)B GaAs substrate by
the catalyst-free Gallium-assisted method [56] in a DCA P600 solid source
molecular beam epitaxy system. Growth has been done under a rotation of
7 rpm, with a growth rate of 0.5 Å/s and a substrate temperature of 630◦C.
The nanowires mostly exhibit zinc-blende crystal structure, and therefore
have hexagonal cross-sections, with typical diameters of 100 nm and lengths
up to 25 µm. The diameter of individual nanowires is constant, except for
the tip where a Gallium droplet is formed during growth and the base, where
small anomalous structures can be present. Keeping the nanowires pristine
is important, as further processing can significantly degrade their structural
and mechanical properties. Avoiding post-processing of the nanowires min-
imizes the introduction of surface defects and ensures the rigid clamping of
the nanowires to their substrate. Indeed, mechanical dissipation rates in
grown nanowires have been reported to be much lower than for similar can-
tilevers produced in a top-down manner [1]. These GaAs nanowires are of
particular interest, since the same structures are straightforwardly coated by
subsequent growth steps with a AlGaAs/GaAs shell hosting self-assembled
optical quantum dots [57].

2.3 Displacement detection

2.3.1 Introduction

To detect the motion of nanoresonators various techinques with different ad-
vantages are available. The displacement of a mechanical element can be
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detected by the means of an optical lever, where the light is deflected by an
angle proportional to the angular displacement of the resonator. It is also
possible to detect (and drive) the displacement electrostatically by using the
mechanical element as one plate of a capacitor. In optical interferometry,
instead, the mechanical element is used as one end of a Fabry-Perot inter-
ferometer and this technique is sensitive primarily to the translation of the
element [58]. The latter is our choice, as this technique has been proven to
reach high sensitivity and its compactness makes the implementation possible
in systems operating in extreme conditions such as UHV and low tempera-
tures.

2.3.2 Optical fiber interferometer

In our setup, the light emitted by a fiber coupled laser diode is directed into
an arm of an asymmetrical 95−5 2x2 fiber coupler where the light is split and
95% of it is diverted on one of the two outputs of the coupler and is collected
by a photodetector that we use as a power monitor. The remaining 5% goes
into the sensing fiber that is terminated with a perpendicular cleave. Part of
the light is then reflected at the vacuum-fiber interface while the rest of the
light is then focused on a single nanowire by the means of an aspherical lens.
The nanowire reflects part of the incident light which is then refocused into
the fiber creating interference (see Fig.2.2). This light is guided back to the
coupler and 95% of it is collected by another photodetector that produces a
voltage proportional to the signal power. The displacement of the nanowire
modulates the interference and can be obtained from the collected signal.

If we assume that the light gets reflected only once inside the cavity
formed between the fiber and the nanowire (assumption that is valid consid-
ering that the beam spot is larger than the diameter of the nanowire), then
we can express the intensity of the light coming back in the fiber as:

I(x) = I0 + I1 cos(4πx/λ), (2.1)

where x is the position of the cantilever with respect to the optical fiber, λ is
the wavelength of the incident light, and I0 is a constant arising from the fact
that more light is returned from the fiber glass/air interface than from the
resonator. I1 is the amplitude of the modulation of the oscillation fringes.
The oscillation of the cantilever can be described as:

x(t) = x0 + x1 sin(ωt), (2.2)

where x0 is the equilibrium distance of the resonator from the end of the
fiber, x1 is the amplitude of the oscillations, and ω/2π = ν is the frequency
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Figure 2.2 Scheme of the interferometer setup. In the inset the reflections leading to the
interference are highlighted.

of oscillation of the cantilever motion. By substituting Eq. 2.2 into Eq. 2.1
we obtain:

I(t) = I0 + I1 cos(4π(x0 + x1 sin(ωt))/λ). (2.3)

Eq.2.3 can be Fourier expanded in:

I(t) = I0

∑
n=odd

cos

(
4πx0

λ

)
Jn

(
4πx1

λ

)
cos(nωt)

− I0

∑
n=even

sin

(
4πx0

λ

)
Jn

(
4πx1

λ

)
sin(nωt),

(2.4)

where Jn(z) is the nth regular Bessel function of z. An oscillation at frequency
ν produces a modulation at all harmonics of ν with the amplitude of the nth

harmonic proportional to the nth Bessel function of the amplitude of the
motion of the resonator. The odd harmonics are stronger when the lever is
near to an odd multiple of λ/4, and the even harmonics are stronger when it is
near to an even multiple of λ/4. One consequence of this nonlinear behaviour
of the interferometer is that the signal cannot be increased arbitrarily by just
increasing the amplitude of oscillation of the resonator. In fact, the maximum
signal that can be reached is 0.5819I1, which occurs when x1 = 1.842λ/4π
(when the first Bessel function J1 is at its maximum). On the positive side we
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Figure 2.3 Schematic diagram of the measurement setup.

find that by looking at the peak of the Bessel function is possible to calibrate
the amplitude of the oscillation of the resonator.

2.4 Experimental results

2.4.1 Setup

Fig. 2.3 shows a scheme of the setup used to study the motion of the nanowires.
A cleaved portion of a wafer with NWs described in Section 2.2 is mounted
on a stack of positioning stages for three-axis translation control, allowing a
single nanowire of choice to be positioned in the focal plane of an objective
placed in front of the single-mode fiber. A voltage-controlled piezoelectric
transducer (PZT) attached to the sample holder is used to drive oscillatory
bending motion of the nanowires along the optical axis of the interferome-
ter. A fiber coupler is used to inject light from a laser with a wavelength of
1550 nm into the interferometer. This wavelength is chosen in order to avoid
spurious heating of the GaAs nanowires through absorption. The coupler
diverts 5% of the laser power towards the nanowire, resulting in a maximum
power incident on the nanowire of ∼5µW. Varying the laser power slightly
did not qualitatively change the measurements, ensuring that no significant
heating of the nanowire is taking place. The light reflected by the interfer-
ometer is collected by a photodiode with a dynamic range of 5 MHz. The
oscillator of a lock-in amplifier actuates the PZT and the same lock-in ampli-
fier demodulates the response of the photodiode. Sample and microscope are
placed inside a vacuum can, which in turn is mounted inside a liquid helium
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Figure 2.4 Amplitude (top) and phase (bottom) of a driven nanowire in the linear regime.
Black dots represent experimental data while the red solid line is a Lorentzian fit.

bath cryostat.

2.4.2 Linear and nonlinear response

The nanowires investigated here have their fundamental mechanical reso-
nances at frequencies of f0 = 1.2 − 1.35 MHz (some nanowires show two
closely spaced resonances, which we attribute to two transverse flexural
modes that are non-degenerate due to a slight asymmetry of the nanowire
cross-section). Numerical calculations following the same method as used in
Ref. [8] confirm that these resonances indeed correspond to the fundamental
flexural modes of the singly-clamped nanowires.

Furthermore, these resonances exhibit quality factors of up to 37, 000
(at a temperature of 4.2 K and pressure below 10−6 mbar), as determined
from the width of the resonance as well as from ringdown measurements.
Many factors contribute to limiting the quality factor of nanomechanical
resonators, including lattice defects, which would at this scale likely be dom-
inated by surface defects, surface oxides, clamping losses, and coupling to
other mechanical modes [59, 60]. The quality factors observed for the as-
grown nanowires studied here are up to an order of magnitude larger than
for similar GaAs-based nanowires [9], which is a possible indication of the
degrading effect of post-processing on the mechanical quality factor. Fig-
ure 2.4 shows the measured displacement and relative phase of a nanowire
for a small driving amplitude. The relative small driving amplitude assures
that the nanowire is maintained in its linear regime as the amplitude in the
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Figure 2.5 Response amplitude as a function of driving frequency, for various driving am-
plitudes. Note that the slight depression around the maximum response for the highest driving
amplitude is caused by the limited linear range of the interferometer.

frequency domain can be fitted with a lorentzian curve.
As the driving amplitude is increased, the resonance becomes broader as-

sumes a characteristic shark-fin shape when entering the nonlinear regime as
shown in Fig. 2.5, where the frequency associated with maximum displace-
ment increases and moves away from the resonator eigenfrequency ω0 = 2πf0.
Such behavior is typical for a Duffing oscillator and can be described by the
Duffing equation of motion as described in Section 1.4.3 (including nonlinear
damping):

ä(t) + γȧ(t) + ω0
2a(t) + αa3(t) + γNa(t)

(
ȧ2(t) + a(t)ä(t)

)
= Q(t). (2.5)

Here a is the displacement, γ and γN the linear and nonlinear damping
constants, and Q(t) the time-dependent driving force, here taken to be si-
nusoidal. The coefficient α parametrizes the strength of the cubic Duffing
nonlinearity. When α is positive, as it is in our case, the Duffing nonlinear-
ity increases the effective spring constant with increasing driving amplitude,
thus stiffening the motion. The observed lineshape at higher driving am-
plitudes is a consequence of Eq. 2.5 having two stable solutions within a
certain frequency range. This bistability leads to the switching phenomena
seen at the right flank of the response peak (Fig. 2.5). Which of the two
solutions is realized, is determined by the initial conditions, and mechanical
hysteresis can be observed when adiabatically sweeping the driving frequency
or driving amplitude up and down (Figures 2.6(a) and (b)). The strength
of the nonlinearity α can be estimated from the shift of the frequency fmax
at which the maximum response amplitude occurs, using the relation [53]:
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Figure 2.6 (a) Response amplitude as a function of driving frequency (at a driving amplitude
of 17 mV), for two sweep directions (as indicated by arrows). (b) Response amplitude as a
function of driving amplitude (at a driving frequency of 1326770 Hz), for two sweep directions.

α = 32
3
π2f0(fmax − f0)/a2. Our interferometer becomes nonlinear for larger

driving amplitudes (see Fig. 2.5), since then the displacement becomes com-
parable to the width of the interferometer fringes. We use this to infer [61] a
value for the displacement a of ∼250 nm, for a driving amplitude of 19 mV
(Fig. 2.5). We can then estimate α to be of order 1023 m−2s−2 for this
nanowire. Nonlinear damping could arise in the presence of a Duffing non-
linearity and linear damping [19]. We briefly discuss this and show that in our
case nonlinear damping does not play a significant role. The nonlinear damp-
ing term has the effect of decreasing the shift of the frequency of maximum
response amplitude due to the Duffing nonlinearity, as well as decreasing the
size of the hysteresis loop. The coefficient for nonlinear damping γN can be
estimated from the critical frequency, which is the frequency at which the sys-
tem, with sufficient driving strength, turns from being monostable to being
bistable. This critical frequency has a minimum when nonlinear damping is
absent, which corresponds to

√
3f0/2Q [24]. This yields ∼52 Hz in our case,

agreeing very well to the value of 49 Hz determined from the measurements,
indicating that here γN is negligible.

2.4.3 Mechanical Mixing

Next, we show that the nonlinearity can be used to turn a nanowire into
a mechanical mixer [26, 27]. Upon excitation with two driving frequencies,
Q(t) = Q1 cos(2πf1t+φ1)+Q2 cos(2πf2t+φ2), the response shows sidebands
additional to the motion at the driving frequencies, as shown in Figure 2.7(a).
We observe up to twelve such sidebands, spaced around the driving frequen-
cies with splittings equal to the detuning between the two driving frequencies,
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Figure 2.7 (a) Spectral response amplitudes of the nanowire motion upon application of two
driving frequencies, for various values of the detuning of the signal frequency from the pump
frequency. The curves have been offset for clarity. The spectral reponse is given as a function of
the detuning from the pump frequency, which is 1287890 Hz. The pump and signal amplitudes
are 250 mV and 50 mV, respectively. The first mechanical mode of this nanowire has a resonant
frequency of 1287780 Hz. (b) Spectral response with pump excitation (1287913 Hz, 250 mV)
off (lower curve) and on (upper curve) for a signal detuned from the pump frequency by 7 Hz
and with amplitude 35 mV. The curves have been offset for clarity.

∆f = f2−f1. Note that the results shown in Fig. 2.7 were obtained by mea-
suring on a second nanowire. Measurements on both nanowires were very
similar, but the signal to noise ratio varied.

This response can be understood from Eq. 2.5 by taking the cubic term
to be a perturbation to the driving force and solving the equation itera-
tively [53, 62]. One then obtains new terms in the response at the inter-
modulation frequencies f1 − n∆f and f2 + n∆f (where n is an integer) for
each iteration. The amplitudes of these new intermodulation terms have
coefficients proportional to

∑
n

(f 2
0 − f 2

1 )−k(f 2
0 − f 2

2 )−l, with k and l positive

integers and k+ l = n. Hence, intermodulation terms are smaller for driving
frequencies that are more detuned from resonance. Since the mixing occurs
due to the cubic term in Eq. 2.5, for the intermodulation terms to be present,
at least one of the driving amplitudes needs to be large enough to have an
appreciable nonlinear response.

It is evident from Fig. 2.7 that the energy that is injected into the
nanowire oscillator by the driving is distributed among the various intermod-
ulation terms. This redistribution also occurs when one drive (signal) is much
smaller than the other (pump), in which case amplification of the signal can
take place [24]. The signal here is formed by a driving voltage supplied to the
PZT, but it could be any force driving the nanowire with a frequency close
to the resonance. Fig. 2.7(b) shows the spectral response of the nanowire
motion with the signal drive always on, but with the pump excitation off in
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one case and on in the other. It is clear that amplification of the signal takes
place when the pump excitation is switched on in the form of an increase
in amplitude of the response at the signal frequency. Additionally, the ap-
pearance of the intermodulation terms, which is conditional on the presence
of a signal, provides extra amplification. The total gain can be defined to
be the ratio between the summed response amplitudes of all peaks present
with pump drive, excluding the peak at the pump frequency itself, and the
response amplitude with no pump drive. We observe a maximum gain of
26 dB. Although higher gain might be expected [24] in the limit of vanishing
detuning between pump and signal frequencies, detection of the signal then
becomes impractical. The observation of mechanical frequency mixing is fur-
thermore limited by the onset of nonlinearity of the detection interferometer
for high displacement amplitudes. If the interferometer response becomes
significantly nonlinear, multiple frequencies in the mechanical response can
also lead to new frequency components in the detected signal. However, we
already observe intermodulation frequency components for small excitation
amplitudes, large enough to reach the mechanical nonlinear regime, but small
enough to generate mechanical displacements of up to only 10 nm. For these
displacements, the second- and third-order terms in the optical response are
smaller than 2 % and 0.02 % of the first-order term, respectively. The ampli-
tude of any optically generated sidebands is therefore very small, indicating
the mechanical origin of the observed sidebands.

2.4.4 Mode Coupling

As hinted in Section 1.3.2, a small asymmetry can be present in the cross-
section of a grown nanowire, as shown also schematically in Figure 2.8(a).
Such an asymmetry leads to the formation of two non-degenerate flexural
modes along the indicated directions (purple and orange arrows). As shown
in Figure 2.8(b), the two modes of a third nanowire have resonant frequencies
at f1 = ω1/2π = 1.194 MHz and f2 = ω2/2π = 1.200 MHz, which are repro-
duced numerically for a wire with a similar geometry, requiring an asymmetry
in the cross-section of only 0.5%. From ringdown measurements, as discussed
later, we determine quality factors of 4300 and 5500, respectively, for the two
modes at room temperature.

The flexural motion of small structures like nanowires and carbon nan-
otubes enters the nonlinear Duffing regime already for modest driving ampli-
tudes [39, 63] and consequently also strong coupling between flexural modes
can be easily reached. To describe the nonlinear motion of the nanowire in
this case, we refer to the adimensional equations describing the amplitude
a of steady-state motion of one of the two perpendicular modes for a small
driving force at frequency ω, with resonance frequency in the linear regime
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Figure 2.8 (a) Scheme of the direction of the two modes in a nanowire with a small asymme-
try in the cross-section (for reference the blue dashed line indicates a symmetric hexagon). (b)
Frequency sweep at low driving amplitude showing the two mode resonances. The difference
in the amplitude of the modes is related to the detection direction.

ω1 and damping rate γ1 derived in Section 1.5.4:

(ω2
1 − ω2 + iγ1ω + α̃a2 + α̃b2)a = Q1. (2.6)

A symmetric equation can be written for the time varying displacement of
the second mode b(t) with linear resonant frequency ω2 and damping rate

γ2. Here, α̃ ≡
(
d1
L

)2 ∫ 1

0
ũ1

(
ũ′1(ũ′1ũ

′′
1)′
)′
ds̃ is the dimensionless version of the

coupling coefficient α as defined in the previous chapter, L is the length, and
d1 the diameter of the nanowire, respectively. The first flexural mode shape
is denoted by ũ1(s̃), where s̃ is the normalized spatial coordinate along the

nanowire axis. The driving term Q1 is scaled by C5 ≡
∫ 1

0
ũ1(s̃) ds̃. Note that

in this equation we can neglect the other nonlinear terms proportional to b2

with coefficient C2 and C3 present in Eq. 1.82 due to the fact that the cross
section of our wire is almost symmetrical and thus the two bending stiffnesses
in the two direction are nearly equal.

The expression between parentheses on the left-hand side of Eq. 2.6
forms a frequency-dependent response factor to the driving, where the last
two terms are due to the geometrical nonlinearity and shift the resonance
frequency of mode 1. The a2 term results in a frequency shift ∆fd which is
a quadratic function of the displacement of the same mode 1. This is the
same frequency shift one observes for a single-mode Duffing oscillator [63].
The b2 term describes the mode coupling and result in a frequency shift ∆fc
of mode 1, which varies quadratically with the displacement of the other
mode 2 [65]. A symmetric description applies to mode 2. For this wire, we
calculate α = 6.4 · 104 nm−2 s−2. A similar value of coupling coefficient was
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Figure 2.9 (a) Top: excitation scheme of the ringdown measurement. Bottom: ringdown
with excitation at f2 of 100 mV. An exponential fit to the decay is given by the orange curve.
(b) Ringdown measurement with excitation at frequency f2 and amplitude 2400 mV. Blue
arrows highlight the varying beating period. The top panel shows a closeup of the displacement
oscillations. (c) and (d) Short time Fourier transforms of the low and high amplitude ringdown
measurements of (a) and (b), respectively. In (d), as the excitation is stopped, mode 2 is in its
nonlinear regime as evidenced by the broadening of the peak and a slight shift towards higher
frequencies. (e) Semi-log plot of the normalized amplitude of mode 2 and the normalized
frequency shift of mode 1.

found for other GaAs nanowires [63] and a slightly lower one can be found in
literature for silicon nanowires [23]. This value gives a coupling strength of
2.5 kHz for an amplitude in mode 2 of just 10 nm. By comparing this value
with the 250 Hz linewidth of mode 1 we can state that we are in a regime of
strong coupling.

2.4.5 Mode coupling in the time domain

The frequency shift ∆fc can be clearly observed in a ringdown experiment
(See top panel Figure 2.9(a)). In these measurements, a pump excitation
is first applied at fixed amplitude and fixed frequency for 95 ms and then
switched off, after which the decay of the excitation is observed for 5 ms.
The measurement is then repeated and the results are averaged. Ringdown
measurements with low driving amplitude show simple exponential decay
and confirm the quality factors for both modes that were discussed before
(Fig. 2.9(a)). Next, we perform ringdown measurements at a higher driv-
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ing amplitude at frequency f2. Now a clear beating pattern is visible in the
averaged time trace (See Fig. 2.9(b)). The frequency of the beating is not
constant in time, but tends towards f2 − f1 at the end of the decay. Quali-
tatively, this beating can be understood as follows: for high enough driving
amplitudes, mode 1 is shifted enough in frequency through the coupling to
overlap the pump frequency. Hence this mode is also excited at the pump fre-
quency. During the second part of the ringdown measurement, both modes
decay at their own, time-dependent characteristic frequencies, resulting in
beating. At the beginning of the decay, mode 2 oscillates at a high ampli-
tude, causing mode 1 to be pulled to a higher frequency, i.e. closer to f2,
thus reducing the beating frequency. As the amplitude of mode 2 decays,
mode 1 moves back towards f1 and the beating frequency therefore increases
towards f2 − f1.

In Figs. 2.9(c) and (d) short-time Fourier transforms of the ringdown
measurements are plotted. For low driving amplitude only a frequency com-
ponent at f2 is present, during both the excitation and decay parts of the
measurement. For high driving amplitude, an additional frequency com-
ponent develops at the time the excitation is stopped. This component is
spectrally broad in the beginning, but over time narrows and shifts towards
f1, making it clear that it corresponds to an excitation of mode 1. As de-
scribed by Eq. 2.6, ∆fc is a quadratic function of the amplitude of mode 2,
which decays exponentially with time constant τ2 = 1/γ2. In Figure 2.9(e)
the frequency shift of mode 1, as well as the amplitude of mode 2, is plotted
as a function of time. Indeed, we find that ∆fc decays as e−2t/τ2 , i.e. twice
as fast as the amplitude of mode 2, confirming the nonlinear nature of the
observed mode coupling.

When the pump excitation is applied on resonance with mode 1, no beat-
ing pattern is observed, regardless of driving amplitude. This is consistent
with the previous explanation, since in this case the pump drive pushes mode
2 away from f1, leading to no overlap of that mode with the excitation.

2.4.6 Frequency swept Pump-probe measurements

To investigate the dependence of ∆fc on the displacement of the pumped
mode in more detail, we perform pump-probe measurements. In the leftmost
panel of Figure 2.10, the response of mode 1 is probed by sweeping with a
weak excitation, while mode 2 is driven with a pump excitation, which is
high enough to reach the nonlinear regime. Stepping the pump frequency
changes the displacement of the pumped mode according to its frequency re-
sponse function and, through the mode coupling, maps this response function
onto the frequency shift of the other mode. In the right panel of Fig. 2.10
the squared and normalized frequency response of mode 2 is plotted (black
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Figure 2.10 Left Panel: Frequency response of mode 1 for different pump frequencies around
f2, with driving amplitude 600 mV. Right Panel: Squared and normalized frequency response
of mode 2, at driving amplitude 600 mV (black curve). Plotted on top are frequency shifts for
maximum displacements of the mode 1 extracted from the left panel (blue triangles).

curve), for the same driving amplitude as used in the left panel. Plotted on
top of this (blue triangles) are the frequency shifts of the maximum response
of mode 1, as shown in the left panel. The agreement between the curves
confirms the quadratic dependence of the frequency pulling effect.

The shape of the resonance of the probed mode changes as the pump
frequency is stepped. This provides a way to tune the effective nonlinearity
of one mode by precisely controlling the motion in the other, orthogonal
mode. Using perturbation theory, one can write the effective nonlinearity
constant of a mode in terms of the derivative of the squared displacement in
the other mode with respect to the driving frequency:

α̃eff = α̃

(
1− α̃∂|b|

2

∂ω

)
(2.7)

Mode 2 shows a jump in its response around the frequency indicated in
Fig. 2.10 by the red dashed line. Due to this effect, the last term in Eq. 2.7
changes sign at this frequency, resulting in a negative effective nonlinearity
(sharkfin-shape with jump on lower flank) of the probed mode for lower pump
frequencies and a positive effective nonlinearity (sharkfin-shape with jump
on higher flank) for higher pump frequencies.
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Figure 2.11 (a) Pump-probe measurement scheme with the pump drive at two different
fixed frequencies: at the resonance frequency of mode 2 in the linear regime (blue line) and at
a frequency higher than the critical frequency of mode 2 in the nonlinear regime (green line).
(b) Frequency response sweeps of the probed mode with the pump amplitude increasing from
bottom to top. The solid and dashed black lines correpond to pumping with PZT2 and PZT1
(see Fig.2.3), respectively. (c) Frequency sweeps of the probed mode with the pump drive
frequency as indicated by the dashed green line in (a)

2.4.7 Amplitude swept Pump-probe measurements

Similarly, the amplitude response function of the pumped mode can be
mapped onto the frequency shift of the other mode by stepping the pump
amplitude at fixed frequency. Figure 2.11(a) displays the frequency response
functions of mode 2 in the linear and nonlinear regime. Fixing the pump
frequency at f2 and varying the pump amplitude, results in frequency shifts
of mode 1 as shown in Fig. 2.11(b). In Fig. 2.11(c), the pump frequency is
set to a value higher than f2. Varying the pump amplitude initially results
in a small, quadratic frequency shift of mode 1. As the pump amplitude is
increased, mode 2 enters its nonlinear regime and becomes bistable, showing
a jump in its response at a frequency that increases with increasing pump
amplitude. For high enough amplitude, this frequency reaches the pump fre-
quency, allowing mode 2 to jump to its high-amplitude branch. This jump
is observed as a corresponding jump in frequency shift of mode 1.

For relatively low displacements of mode 2, the frequency shift in both
cases shows a quadratic dependence (see Fig. 2.12). The deviations from
this behavior at higher pump amplitudes are most likely related to optical
compression in the interferometric detector, as well as mechanical mixing due
to the presence of both pump and probe drives, and possibly due to the wire
entering a strong bending regime of motion [66]. We confirm the orthogonal
nature of the two modes by using two perpendicularly mounted PZTs to
drive the pump excitation (as shown in Fig. 2.3). From the magnitude of
the frequency shifts (solid and dashed data sets in Fig. 2.11(b), for PZT2
and PZT1, respectively) we infer that PZT2 drives mode 2 more than PZT1.
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Figure 2.12 Frequency of maximum response of probed mode plotted as function of pump
amplitude, for relatively low pump amplitudes. The two solid lines are a fits to a quadratic
function.

Similarly, by probing the response of mode 1 with each PZT, we determine
that PZT1 drives mode 1 harder than PZT2.

2.5 Mechanical Logic

The ability to map the displacements and oscillation frequencies of one mode
onto the frequency of another mode can be used to implement amplitude to
frequency conversion, frequency modulation, and frequency tuning. This
type of mode coupling and nonlinearity can also be used to perform mechan-
ical logic. As a proof-of-principle, we demonstrate mechanical OR and NOR
gates. The hysteresis due to the nonlinearity of the modes also provides a
straightforward way to store these logical output states [31, 32].

Due to the Duffing nonlinearity, when sweeping the driving amplitude at
fixed frequency f2, we observe a high jump between two levels in the response
amplitude of mode 2, at a critical driving amplitude. These two levels in
the response are used to encode logical 0 and 1 output states. The two
inputs correspond to two signal voltages which are summed and subsequently
applied to the driving PZT. Logical 0 and 1 input states are defined by
low and high driving voltages, respectively (See Fig. 2.13(a)). As shown
in Fig. 2.13(b) (upper panel), we obtain a high response when one or both
inputs are high (01, 10, or 11) and a low response when both input signals are
low (00). This is therefore a realization of a logical OR gate. This OR gate
is converted into a NOR gate by taking as output the response amplitude of
mode 1 at f1 (lower panel Fig. 2.13(b)). When mode 2 is at the low level
(for input 00) there is almost no interaction between the two modes and we
have the maximum response (logical 1) of mode 1 at the readout frequency.
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Figure 2.13 (a) Simulated amplitude response curve of a Duffing oscillator, displaying its
bistable regime of motion. Dashed black lines highlight the driving amplitudes needed to
created OR and NOR gates. (b) Top panel: response amplitude of mode 2 as a function
of time, for the four combinations of two logical inputs, as indicated by the numbers on top.
Bottom panel: response amplitude of mode 1 as a function of time, for the same logical inputs.

When instead the amplitude of mode 2 is high (for 01, 10, and 11), mode 1
shifts to a higher frequency and the logical output is 0.

2.6 Vectorial scanning with GaAs nanowires

2.6.1 Introduction

The duality of the fundamental flexural modes of a single nanowire can also be
exploited in the linear regime leading to interesting applications in scanning
probe microscopy. In the pendulum geometry, when the long axis of the
nanowire is perpendicular to the scan surface (see Fig.2.14), these modes can
be used for the simultaneous detection of in-plane forces and spatial force
derivatives along two orthogonal directions [28]. Although one-dimensional
(1D) dynamic lateral force microscopy can be realized using the torsional
mode of conventional AFM cantilevers [67–71], the ability to simultaneously
image all vectorial components of nanoscale force fields is of great interest.
Not only would it provide more information on tip-sample interactions, but
it would also enable the investigation of inherently 2D effects, such as the
anisotropy or non-conservative character of specific interaction forces.

In the case of high-Q resonators such as our nanowires, the splitting between
the modes, is likely to be many times their linewidths, a property observed
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Figure 2.14 Sketch of the setup used for the vectorial scanning with NWs.

in several measured NWs. We can resolve the two first-order flexural modes
with different signal-to-noise ratio as already seen in Fig. 2.8(b), given that
the principal axes of the displacements u(s, t) and v(s, t) of the modes are
rotated by some angle θ0 with respect to the optical detection axis xd [1].
Although we only measure NW displacement projected along xd, displace-
ment along other directions in the xy-plane are also accessible by aligning
the interferometer beam slightly off-center with respect to the NW’s central
axis [28, 72]. Experimentally we find that when the optical detection axis is
aligned with the NW’s central axis, thermal motion in a direction perpen-
dicular to the detection axis falls below our detection sensitivity. Hence, the
total measured displacement is x(t) = a(t) sin θ0 + b(t) cos θ0, where a and
b represent the displacement of each flexural mode. The mean square dis-
placement generated by uncorrelated thermal noise is then 〈x2〉 = P1 + P2,
where P1 = 〈a2〉 sin2 θ0 and P2 = 〈b2〉 cos2 θ0 represent the integrated power
of each measured resonance in the spectral density. Given that the motional
mass of the two orthogonal flexural modes is the same, using the equiparti-
tion theorem, we find the ratio of their mean-square thermal displacements
〈a2〉/〈b2〉 = f 2

2 /f
2
1 . Therefore, from the measured thermal peaks in the spec-

tral density, we calculate the angle θ0 = arctan
(
f1
f2

√
P1

P2

)
between a and

xd. Furthermore, since k1 = kBT/〈a2〉 and k2 = kBT/〈b2〉, we obtain the
spring constants of each flexural mode, which are typically on the order of
10 mN/m. These parameters yield mechanical dissipations Γi = ki/(2πfiQi)

with i = 1, 2 and thermally limited force sensitivities S
1/2
Fi

=
√

4kBTΓi around

100 pg/s and 5 aN/
√

Hz, respectively.
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(a)

(b)

(c)

Figure 2.15 (a) SEM image of the sample used for scanning. Gold fingers are patterned
radially on a semicircle on a Si substrate. (b) and (c) frequency shift of Mode 1 and 2 respec-
tively. It appears clear how topographic features perpendicular to the direction of oscillation
of each mode are better resolved. The scale bar is 5µm.

2.6.2 Two-mode scanning probe microscopy

In order to use the NW as a scanning probe, we approach the sample and scan
it in a plane perpendicular to the axis and in proximity of the NW tip. By
monitoring the NW’s mechanical properties, i.e. the frequency, dissipation,
and orientation of its doublet modes, we image the sample topography via
the tip-sample interaction. Such microscopy can be accomplished by mea-
suring the NW thermal displacement spectral density as the sample surface
is scanned below it. Although such a measurement provides a full mechan-
ical characterization of the modes, it is time-consuming due to the small
displacement. A technique more amenable to fast spatial scans uses the res-
onant excitation of the doublet modes through two independent phase-locked
loops (PLLs) to track both frequencies simultaneously. Fig. 2.15 shows the
frequency shifts ∆f1(x, y) and ∆f2(x, y) of the doublet modes as a sample
is scanned below the tip of NW1. The sample consists of nine 5-µm long
and 200-nm thick finger gates of Au on a Si substrate, radially disposed and
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equally spaced along a semicircle. The finger gates and their tapered shape
are intended to provide edges at a variety of different angles, highlighting
the directional sensitivity of the orthogonal modes. The measurement in
Fig. 2.15 is performed using the PLLs with an oscillation amplitude of 6 nm.
The spatial scan is performed at a distance of 70 nm from the Au surfaces
without feedback to maintain a constant tip-sample separation, i.e. in ”open-
loop”. The Au gates are grounded during the measurement. The frequency
shift images clearly delineate the topography of the patterned sample, with
each mode showing stronger contrast for features aligned along orthogonal
directions. Edges, i.e. large topographical gradients, pointing perpendicular
(parallel) to the mode oscillation direction appear to produce the strongest
(weakest) contrast. Tip-sample interactions producing the frequency shifts
in non-contact Atomic Force Microscopy (AFM) can include electrostatic,
van der Waals, or chemical bonding forces depending on the distance. In
our case, because of the large spacing, they are dominated by electrostatic
forces [73].

2.7 Coherent dynamics in a NW

In coupled two-level systems, energy can be coherently exchanged between
the two states. While coherent dynamics of coupled systems has been studied
mainly in the regime of quantum physics, many concepts have counterparts
and can be translated in the classical regime. When coupled, the two fun-
damental modes of our NW make a perfect example of a classical system
where coherent dynamics can take place. When an electric field is applied
in proximity of the NW, additional forces due to charges on the NW and its
polarizability are acting on the NW. The gradient of these force fields mod-
ify the dynamics of the wire, effectively producing a controllable coupling
between the mode doublet. For certain conditions of the field it is possible
to observe hybridization of the modes and avoided crossing. Avoided cross-
ing with a splitting larger than the sum of the linewidths of the individual
resonances is a signature of strong coupling. By achieveing strong coupling
between the two modes of our NWs, it is then possible to exchange energy be-
tween the modes through the quantum analogue of driven Rabi oscillations.
Rabi oscillations in a coupled two-level system, can be achieved through peri-
odic modulation of the frequency detuning [74]. By applying a time-varying
voltage with frequency close to the frequency difference between the two
modes it is possible to achieve a coherent oscillation in the mode population
by applying definite pulse sequences. Coherent pulse sequences analogue to
quantum control techniques can be applied offering advantages in different
applications, inculding sensing. For example, coherent pulse sequences offer
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the potential to increase the stability of mechanical resonators, increasing
their sensitivity. In recent reviews, in fact, it has been observed that fre-
quency fluctuations in silicon nanoresonators remain much higher than the
thermal limit [75]. Dynamical decoupling pulse sequences could offer a way
to reduce these frequency fluctuations, potentially reaching the thermal limit.
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3 Optomechanics with photonic
wires

3.1 Introduction

Coupling a microscopic mechanical resonator to a nanoscale quantum system
enables control of the mechanical resonator via the quantum system and
vice-versa. The coupling is usually achieved through functionalization of
the mechanical resonator, but this results in additional mass and dissipation
channels. An alternative is an intrinsic coupling based on strain. In this
Chapter we are going to study the intrinsic coupling within a monolithic
semiconductor system: the nanoscale quantum system is a semiconductor
QD located inside a nanowire.

Position read-out of the mechanical resonator is usually carried out by
incorporating the mechanical resonator in an optical cavity [76] as we have
seen also in the previous Chapter. We pursue an alternative here, position
read-out by embedding a single photon emitter into the mechanical resonator
itself.

A coupling between a QD exciton (an electron-hole pair) and a mechanical
oscillator was observed in two recent experiments [8, 9]. There, the read-out
signal resulted from the non-resonant excitation of the QD. This is not an
ideal situation since the quality of the emitted photons is low (as inferred
from a large spectral linewidth and low indistinguishability). The mechanical
resonator was driven externally and shifts in the QD’s luminescence spectrum
were demonstrated. While this non-resonant excitation scheme is sufficient
for a first characterization of the coupling strength, it severely limits the
potential of the device in sensing applications, and cannot be exploited to
manipulate the mechanical oscillator.

3.2 Photonic Trumpet

GaAs is a natural choice of material also for this endeavour. First, GaAs
mechanical resonators are easy to make and have good mechanical proper-
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Figure 3.1 Sketch of the hybrid system: a mechanical oscillator is coupled to a two-level
quantum system. The coupling rate λc competes with the dissipation rates of both compo-
nents: the intrinsic phonon relaxation rate γm and the spontaneous emission rate of a photon
γsp.

ties [77, 78]. Second, a self-assembled QD in GaAs represents an excellent
single photon emitter. At low temperature with resonant excitation, a quan-
tum dot is a fast, bright and pure source of single photons [79–84], outper-
forming any other solid-state emitter. A crucial feature is that the quantum
dot transition frequency is sensitive to the strain induced by a deformation
of the host material: there is an inherent coupling between the mechanics
and the optical properties of the single photon emitter [13]. Our quantum
emitter consists of a self-assembled InAs QD grown by molecular beam epi-
taxy. It is embedded 110 nm away from the sharp end of a 12µm long conical
photonic wire (PW) standing on a gold substrate [85], see Fig. 3.2. At the
QD position, the small diameter enhances the coupling of the emitter to the
guided modes while screening its coupling to lateral free-space modes [86].
As the top facet is approached, the progressive increase in diameter allows
for an adiabatic expansion of the guided modes allowing good matching to
a Gaussian mode in free-space [87] leading to large coupling with optical
fiber, resulting in very large photon extraction efficiencies. While is it possi-
ble to obtain guassian profiles in free space also with a tip-like wire (where
the tapering reduces the diameter of the wire approaching the top end), the
photonic trumpet’s performance is more robust to variations of fabrication
paramenters. Importantly, we note that the large and flat top facet, which
neither clips nor depolarizes the excitation beam, allows for excellent sup-
pression of the back-scattered light from the resonant laser. This solves an
important challenge associated with the resonant spectroscopy of nano-sized
(sub-wavelength) structures as will be also discussed later in Section 3.3. The
mechanical system, a semiconductor nanowire with a conical taper, a “pho-
tonic trumpet” [85], has been carefully selected to optimize both mechanical
and optical properties simultaneously. The extra mass located at the end
facet of the nanowire produces large strains in the “stem” of the nanowire
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2µm

QD

Figure 3.2 SEM images of the photonic trumpets. A QD is embedded close to the bottom of
a micrometer-sized mechanical resonator. The coupling originates from strain as the nanowire
oscillates.

where the QD is located, resulting in large couplings between the QD and
the mechanical resonator. These conical wires, in contrast to the NWs stud-
ied in Chapter 2, are obtained through a top-down approach. Using e-beam
lithography, a Ni hard mask consisting of arrays of disks with variable di-
ameters is defined. This is followed by a deep plasma etch conducted in a
reactive ion-etching chamber. Finally, the remaining Ni mask is removed in
a diluted nitric acid solution. A Si3N4 anti-reflection coating maximizes the
transmission through the top facet. The wire is then clamped to a bottom
gold-silica mirror via a flip-chip procedure [85].

3.3 Experimental Results

3.3.1 Resonant spectroscopy of a QD coupled to a me-
chanical resonator

The QD–mechanical coupling manifests itself as a time-dependent frequency
shift of the QD transition as the resonator oscillates. The frequency shift is
determined by the strain coupling λc [8, 9] (Fig. 3.1). This is described by
the interaction Hamiltonian

Ĥint =
~λc
uzpf

û σ̂z, (3.1)
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Figure 3.3 (a) Effect of the coupling: a displacement u of the nanowire produces a shift
δ∆ in the QD frequency, modifying the detuning between the QD and the laser. Γinh is
the linewidth of the QD, inhomogeneously broadened by spectral fluctuations. (b) Resonance
fluorescence signal from the charged exciton (CX) as a function of laser detuning (fluorescence
wavelength: 945.6 nm ). ΩR ' γsp = 1.1 GHz. The fit uses a Voigt profile with a contribution
to the linewidth of 0.45 GHz from the Lorentzian part, and 0.70 GHz from the Gaussian one.

where the Pauli operator σ̂z = 1
2
(|e〉 〈e| − |g〉 〈g|) acts on the QD two-level

system, û is the operator representing the nanowire’s displacement, uzpf cor-
responds to the quantum zero-point fluctuations and λc = ∂∆

∂u
uzpf . To read

out the displacement of the mechanical resonator, we drive the optical tran-
sition of an embedded QD with a linearly polarized narrow band laser and
collect the scattered light in the orthogonal polarization [88]. By doing so we
detect the resonance fluorescence (RF) from the QD and limit the amount
of back-scattered laser light. The challenge with resonant spectroscopy is
to distinguish between the fluorescence signal and the back-scattered laser
light. For this we use a dark-field microscope based on cross-polarized exci-
tation and detection. This technique ensures extinction ratios as high as 107

upon reflection on a flat surface [88]. The situation is however more complex
when the QD environment is processed below the micro-meter scale: a small
object in the focus of the incident laser causes depolarization of the reflected
beam and prevents efficient rejection. The photonic trumpet here assumes a
crucial role, as it assures the need for a flat facet with the nano-scale envi-
ronment of the QD. For the specific photonic trumpet studied here (bottom
diameter 300 nm, top diameter 1.62µm, see Fig. 3.2(b)), we achieve a laser
suppression > 40 dB over a 29 GHz frequency span with fixed settings of the
polarizers. This results in a signal to noise ratio S : N = 125 at a driving
amplitude Ω = γsp.

A displacement u of the mechanical oscillator results in a detuning ∆ of
the QD with respect to the constant frequency laser and translates into a
change δṄd in the detected RF count rate (Fig. 3.3(a)). Assuming small
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optical detunings due to the mechanical oscillation,

δṄd =
αc ~λc
uzpf

u, (3.2)

where αc = ∂Ṅd/∂∆ depends on the spectral profile of the emitter.
The typical spectrum from a QD inside our wire is shown in Fig. 3.3(b).

It is obtained from an excitation with two lasers: a very weak non-resonant
laser is used to stabilize the QD’s charge environment [89] while a second
laser scans the QD transition. We observe a maximum in the resonance
fluorescence as the second laser hits the QD resonance (∆ = 0), on top of a
photoluminescence background associated with the non-resonant pump. In
order to reach the best sensitivity of the QD to the mechanical motion, we
have to maximize the count rate while maintaining a small linewidth. For
this we operate at the onset of power broadening (Rabi coupling ΩR ' γsp,
with γsp = 1.1 GHz, the spontaneous emission rate of the QD). This results
in a linewidth Γinh/2π = 1.0 GHz (Fig. 3.3(d)) corresponding to an “optical
quality factor” Q = 2× 105.

3.3.2 Resonance Fluorescence noise spectrum

One measurement technique to detect the mechanical motion is to record a
time-trace Ṅd(t) of the QD RF at a fixed laser detuning ∆, Fig. 3.3(a), and
perform a Fourier analysis on the data [90]:

S̄NN (f) = 2 FT

[
Ṅd(t)

〈Ṅd(t)〉

]2
t2bin

T
, (3.3)

where tbin is a post-selected binning time, T is the total integration time and
〈Ṅd(t)〉 is the average number of counts per bin. Fig. 3.4(a) shows S̄NdNd

, the
normalized noise power spectral density (NPSD), computed from a 20 minute
time-trace recorded at ∆ = Γinh. The spectrum reveals two sharp resonances,
labeled F1y and F1x, at ωm,F1y/2π = 512.8 kHz and ωm,F1x/2π = 607.9 kHz,
respectively. These resonances, which are absent in the bulk sample, cor-
respond to the thermally-driven mechanical resonances, i.e. the Brownian
motion at 4 K. Specifically, we observe the two first order flexural modes,
whose degeneracy is lifted by a slightly anisotropic cross section.

From the assumption that the oscillator is fully thermalized with the
surrounding He bath we determine the strength of the strain coupling. Using
the equipartition theorem,

〈u2〉 =
kBT

meffω2
m

= u2
th. (3.4)
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Figure 3.4 (a) Photon noise power spectral density (NPSD) recorded at detuning ∆ = Γinh
(integration time 20 min). The resonances correspond to Brownian motion of the first order
flexural modes. The background corresponds to the shot noise level. (b) Photon noise power
A as a function of laser detuning for F1x (orange circles) and F1y (purple diamonds). The
solid lines are fits to the experimental data with λc as the only free parameter.

In addition, we have from Eq. 3.2

〈u2〉 =
u2

zpf

α2
c λ

2
c

〈δṄ2
d〉, (3.5)

with αc the derivative of the QD spectrum. We introduce the normalized
photon noise spectrum S̄NN ,

〈δṄ2
d〉 = 〈Ṅd〉2

∫
S̄NN (f) df, (3.6)

where
∫
S̄NN (f) df = A is the photon noise power. We obtain A for

each mode from the area below the corresponding peak in the power noise
spectrum (Fig. 3.4(a)). This yields the equation to describe the experimental
data in Fig. 3.4(b):

A(∆) =

(
λc

uth

uzpf

αc(∆)

〈Ṅd(∆)〉

)2

, (3.7)

which only depends on λc. We point out that the approximation is not
only realistic (our sample is located in He exchange gas) but also verified
using the QD itself, which represents a sensitive thermometer. In particular,
we observe no shift of the resonance as we increase the power of resonant
and non-resonant lasers up to saturation. We note that uth and uzpf , cor-
responding to the thermal and zero-point fluctuations respectively, depend
in particular on the characteristics of the mechanical resonator, namely its
mode frequency and motional mass. The former is obtained from our mea-
surement while the latter is determined through a finite element simulation of



3.3 Experimental Results 55

F1 F2 Bv F3T

Increasing frequency
Figure 3.5 The mechanical modes: F1, F2 and F3 correspond to the first, second and
third order flexural modes; T to a torsional mode and Bv to a vertical breathing mode. The
colour map represents the strain along the vertical axis within the trumpet (red: tensile, blue:
compressive). The black arrows represent the displacement of the nanowire’s top facet.

the resonator. uth depends on the mode temperature, taken as 4 K assuming
thermalization of the oscillator to the He bath (see also section 3.3.5). For
the first flexural mode we find uzpf = 2.3 ×10−14 m and uth = 1.2 ×10−11 m.
The detuning dependence of 〈Ṅd(∆)〉 and αc(∆) are obtained from a fit of
the RF spectrum in Fig. 3.4(a) so that Eq. 3.7 eventually only depends on
the strain coupling λc. Using λc,F1x/2π = 280 kHz and λc,F1y/2π = 55 kHz,
we find good agreement with the experimental data. The bandwidth of this
measurement protocol is limited by the detector’s dead-time. In our case,
this means a cut-off at a frequency of 10 MHz.

3.3.3 FEM simulations

To confirm the origin of the resonances in our noise spectrum, we calculate
the mechanical eigen-frequencies of the resonator using a commercial finite-
element analysis software (Comsol). We simulate a 12µm long GaAs wire,
with a bottom diameter of approximately 300 nm and a tapering angle of
θ = 3◦. In order to adjust the mechanical frequencies to the experimental
values, we allow a 5% variation in the length of the wire (arising from flux
inhomogeneities over the wafer surface in the molecular beam epitaxy cham-
ber). To account for the observed splitting of the first flexural mode, we also
introduce a small asymmetry in the QD plane. In practice, the nanowire
has a round top diameter but an elliptic base, the consequence of a slightly
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Figure 3.6 (a) Auto-correlation function recorded at ∆ ' Γinh (the entire data extends
over 8µs). The oscillation in the right inset results from the mechanically induced modulation
in count rate (the fit is a sine with a period of 27 ns). The fit in the left inset (red solid line
corresponds to a perfect single photon emitter subject to blinking (ΩR = γsp) and includes
the timing jitter of the detectors (500 ps). (b) In black, the noise power spectral density
obtained from the Fourier transform of the auto-correlation measurement. The black dotted
lines correspond to the resonance frequencies obtained from a simulation.

anisotropic etching process (∆θ = θx − θy). Fig. 3.5 shows the results for
a 11.4µm long wire, with a top diameter of 1.62µm and a bottom section
with minor axis bd,y = 260 nm and major axis bd,x = 320 nm (∆θ = 0.15◦,
corresponding to the estimation of the anisotropy in the etching process [9]).

3.3.4 Auto-correlation function

To probe the strain coupling in the MHz range, we record the auto-correlation

function g(2)(τ) = 〈Ṅd(t)Ṅd(t+τ)〉
Ṅd(t)2

of the RF signal with two detectors in a

Hanbury Brown-Twiss configuration [91]. Fig. 3.6(a) shows the result from
a 70 min measurement recorded at ∆ = Γinh. The dip at zero delay is
the signature of single photon emission from the QD. Its moderate depth
is a consequence of the timing jitter of the detectors (note that the dip is
narrowed by the unresolved Rabi oscillations induced by the amplitude of
the drive, ΩR ∼ γsp). The bunching peak at short delays (τ < 100 ns) is
related to a blinking in the QD emission [92]. The peak value increases
as the on:off ratio in the QD emission diminishes; the decay time of the
bunching is a measurement of the correlation time of charge fluctuations in
the QD environment [93]. In addition to these features, we observe a small
oscillation, with a period of about 25 ns, which runs over the entire 8 µs
time-span of the experiment. This oscillation corresponds to the signature
of the strain coupling in the photon counting regime.
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Mode ωm (MHz) uth (pm) εzz εyy εxx
F1x 0.61 12 4.5× 10−8 −1.3× 10−8 −1.5× 10−8

T 8.2 1.2 1.4× 10−11 −1.1× 10−11 −7.5× 10−12

F2x 13.4 0.45 3.0× 10−8 −8.1× 10−9 −9.7× 10−9

Bv 40.0 0.14 7.0× 10−8 −2.1× 10−8 −1.9× 10−8

F3x 55.0 0.10 2.3× 10−8 −6.3× 10−9 −7.6× 10−9

Table 3.1 The QD is located 35 nm away from the centre (black star in Fig. 3.7(a)).
The strain values are given for a displacement of the top facet equal to the time-averaged
displacement uth at T = 4.2 K.

A Fourier analysis of the intensity correlation data at τ > 0.25µs is shown
in Fig. 3.6. The spectrum reveals a whole series of resonances corresponding
to different modes of the mechanical resonator. In particular, the lower
frequency mode corresponds to the first order flexural mode (F1) already
evidenced in Fig. 3.4, and the pronounced peak at 37 MHz corresponds to
the vertical breathing mode (Bv) immediately visible in the time-dependent
data. Complete mode assignment is obtained from the numerical simulation
already described in Section 3.3.3. With fine adjustment of the trumpet’s
dimensions we are able to reproduce the spectrum within a maximum error
of 7.5% in the exact frequency (vertical dotted lines in Fig. 3.6(b)). In
particular, we find that an ellipticity in the base diameter of 20% accounts
for the splitting observed in Fig. 3.4(b), in good agreement with earlier work
[9]. Quite remarkably, we observe a pronounced amplitude for Bv despite
the smaller phonon population associated with this high frequency mode
(uth = 1.4 × 10−13 m). This is the consequence of the large strain field
associated with this specific mode. Quantitatively, this translates into a
coupling λc,Bv/2π = 3.6 MHz, much larger than the values obtained for the
mode F1. The dissipation rate of Bv also significantly increases, reaching
γm,Bv/2π = 0.14 MHz.

The measured noise spectrum may be translated into an equivalent dis-
placement noise spectrum. For F1, this results in a sensitivity to the dis-
placement of the top facet of 2.6 × 10−13 m·Hz−1/2 (

√
Suu = 6.5 × 10−14

m·Hz−1/2 for Bv). At present, this value is limited by charge noise in the
device. For our system, this nevertheless represents reading displacement
amplitudes equal to the zero-point fluctuations in just 70 s.

3.3.5 Quantum dot position determination

As a first application of the sensing capabilities of our device, we use the
QD’s sensitivity to the local strain to determine the exact location of the
QD inside the photonic wire. This is a non-trivial task, important for the
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Figure 3.7 (a) One quadrant of the QD plane (x and y correspond to the long and short
axis of the ellipse, respectively). Coloured symbols correspond to various QD positions which
result in the spectral signatures in (b) and (c). The black star corresponds to the position
of QD1. (b) Gray bars, left axis: experimental data obtained in 3.3.2. Symbols, right axis:
simulated strain along the z-axis for four different angles (in degrees) and a fixed distance
(r = 35 nm) to the centre (a different distance results in a linear scaling of the right axis). (c)
Comparison between results from 3.3.4 and simulated strain along the z-axis for various QD
distances to the centre (φ = 20◦).

coupling of two emitters via optical modes [94]. To do so, we use the thermal
excitation of a series of modes. The idea is that each mode is driven equally
by the thermal noise and produces a specific strain at a given location in the
wire. By comparing the relative amplitude of the measured resonances, it is
possible to extract the position of the QD inside the wire. We simulate the
strain corresponding to a unit displacement of the top facet for a QD at a
fixed distance of 110 nm from the base. In our case, the situation is simpli-
fied by the fact that we already know the precise location of the QD layer in
the z-direction from the growth. We then compute the exact displacement
associated with each mode, which corresponds here to the average displace-
ment resulting from the Brownian motion at 4 K. From this proportionality
factor, we obtain the strain corresponding to the Brownian motion. Table
3.1 shows the results for a QD located on the x-axis, at a 35 nm distance
from the centre (black star in Fig. 3.7(a)). We observe that for all modes
except T, the strain εzz in the vertical direction dominates over the other
components. In fact we find that εxx ≈ εyy ≈ −νP εzz, where νP = 0.31 is
the Poisson ratio: to a good approximation, the QD experiences a uniaxial
stress along the z-direction [87,94]. This results in S̄NN ∝ ε2zz. To determine
the QD’s position, we first vary the in-plane angle φ for a fixed distance of
the QD to the centre, and calculate the relative amplitude of the first order
flexural modes(F1x and F1y) This is shown in Fig. 3.7(b) where we plot the
results for four different values of φ and scale it to the experimental result.
In a second step, we vary the radial position until we get good agreement
with the amplitudes of the entire series of higher order modes, Fig. 3.7(c).
This technique allows for an accurate positioning of the QD, modulo a sym-
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Figure 3.8 QD noise spectrum for two different QDs. The shot noise has been subtracted:
S̄∗
NN = S̄NN − S̄shot

NN . QD1 corresponds to the QD studied in details. QD2 belongs to the
same nanowire and its noise spectrum is recorded under similar conditions: ΩR ' γsp, ∆ = Γ,
integration time of 20 mins.

metry versus the x and y axes (this experiment does not resolve positive and
negative coordinates). We find that QD1 is located 35 nm away from the
axis of the trumpet, with an angle φ = 20◦ (black star in Fig. 3.7).

Some comments are in order. First, the assumption that the system is
at bath temperature is tested in-situ: the quantum dot is an excellent ther-
mometer and we observe, in particular, no laser-induced heating. Second,
a related idea was introduced recently in Ref. [94]. In this work, the au-
thors measure a shift in the QD energy as they drive the motion of the wire
(addressing F1x and F1y successively). From the calibration of the induced
displacement, and previous knowledge of QD response to strain, it is possible
to determine the position of the QD. In the present situation, the use of a
series of modes , all driven by thermal noise, allows for a more direct analysis
with no need for an external calibration of the QD sensitivity to strain. (Note
that Bv, in particular, produces a constant strain for all QDs in a given cross
section plane of the wire and is very conveniently used as a reference point.)
Furthermore, our technique requires in principle no previous knowledge of
the location of the QD within the z-axis and could thus be used for a full
3D-mapping of the QD position.

3.3.6 Measurement on a second QD

In Fig. 3.8 we present results from the noise spectroscopy on a second QD
in the same nanowire (QD2). Here we have removed the contribution from
shot noise [88]. The different spectral signature is attributed to a different
location of QD2 in the nanowire. In particular, the absence of a resonance
at 607 kHz means that QD2 is located on the neutral (zero-strain) axis of
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F1x. We point out that amplitude of the peak is not a direct measurement
of the relative coupling strength, since the QD linewidths may be different.
In the present case, QD2 has a larger FWHM (not shown) which lowers its
sensitivity. The reduced noise floor is associated to this lower sensitivity,
possibly combined with a less noisy charge environment around QD2.

3.4 Discussion

A quantum emitter in a nanowire has potential for various quantum applica-
tions. On the one hand, dielectric nanowires are used as waveguides to realize
high fidelity single photon sources in quantum optics [79, 80, 95, 96]. In this
context, the strain coupling represents an additional dephasing channel with
potential impact on the photon indistinguishability. Indeed, the coupling to
mechanical modes introduces noise which leads to a broadening of the QD
transitions for integration times longer than the mechanical oscillation pe-
riod, i.e the coupling reduces the indistinguishability for photons separated
by times larger than the oscillation period. The amplitude of the energy shift
induced by the Brownian fluctuations of the nanowire is given by

δ∆th = λc
uth

uzpf

. (3.8)

In the present situation, we find δ∆th,F1x/2π = 0.15 GHz and δ∆th,Bv/2π =
0.24 GHz for F1x and Bv respectively. For our device, this represents a slow
(ωm � γsp) and negligible dephasing (δ∆th � Γinh). The values however
compare with the minimum dephasing rate achievable (0.17 GHz), set by the
spontaneous decay rate. We can also evaluate the expected QD frequency
shift from the calculated strain. Neglecting confinement effects, this reads
~δ = gaεh + gb

2
εsh, where εh = εxx + εyy + εzz and εsh = 2εzz − εxx − εyy cor-

respond to the hydrostatic and shear strains respectively, and ga and gb are
material dependent deformation potentials [87]. Including the effect of both
tensile and compressive strain, this results in a mechanically induced dephas-
ing ∆th = 2δ. (Note that in Eq. 3.8 this factor 2 is included in the definition
of λc.) Assuming the QD is mainly composed of GaAs [97], ga = −8.33 eV
and gb = −2.0 eV [87], we find ∆F1x

th /2π = 0.16 GHz and ∆B2
th /2π = 0.20

GHz, in excellent agreement with our results. More generally, we stress that
such a coupling cannot be turned off and is present in the large majority
of QD devices involving micro-fabrication, unless a specific engineering is
used [98,99] as we will demonstrate in Chapter 4. Recent results have shown
that QDs in micropillars could be used for the generation of close to indis-
tinguishable single photons with high collection efficiency [83, 84, 100]. Our
simulations indicate that while the QD-mechanical coupling is strongly sup-
pressed for flexural modes, the vertical breathing mode still leads to sizable
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dephasing (few tens of MHz for a 2µm high pillar with 1.5µm diameter) on
very short time scales (in this example the resonance frequency for Bv is
0.5 GHz). These results reveal the importance of considering the mechanical
properties of any device designed for perfect single photon emission.

On the other hand, the large strain couplings suggest further applica-
tions using the nanowire as a quantum resonator. To this end, Bv stands
out as a very interesting mode, with a cooperativity C = λ2

c/γspγm = 0.6.
In the present experiment, the number of phonons in the mode is still high
(nth,BV

' 2200). Cooling the system down to 20 mK would result in nth ' 11,
corresponding to a quantum cooperativity CQ = C/nth = 0.06. While this
does not yet allow for coherent exchange between the QD and the mechanical
resonator, the resonant excitation demonstrated here also opens the possibil-
ity of using the embedded QD to further cool the mechanical oscillator [13].
To that end, smaller structures with larger mechanical frequencies leading
to the resolved side-band regime will facilitate operation. This does not rep-
resent a technological obstacle, meaning that such experiments are within
reach. We emphasize that the present device could already be used to gen-
erate coherent mechanical vibrations from the QD excitation, as suggested
by Auffèves and Richard in a recent proposal [12]. In this case, only the
mechanical damping is important: the number of coherent phonons created
through the optical driving of the two-level system depends on (λc/γm)2. For
both F1 and Bv, λc � γm. For F1, applying this scheme to the present de-
vice, we predict a QD induced rms displacement as large as 80 pm while the
thermal motion at 4 K represents an rms displacement of 12 pm.

Finally, we speculate that the Heisenberg limit in displacement sensitiv-
ity is achieved for an emitter driven close to, but below, saturation provided
that the emitter has a transform limited linewidth and that the photons are
collected and detected with perfect efficiency. Given the recent progress in
QD micropillars [83], this limit is within experimental reach.
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4 Fiber-coupled QD

4.1 Introduction

As explored in Chapter 3, semiconductor QDs are attractive single photon
sources: they are robust, compact and provide on-demand single photons at
rates in the GHz range [101–103]. Their potential in the context of quantum
optics however relies on the fulfillment of several demanding criteria [104]:
high efficiency, high photon purity and simple operation. Recent progress has
nevertheless brought QDs close to such applications. Single-photon operation
has been obtained in a compact, table-top Stirling machine [105], offering a
low-cost and user-friendly solution. Thanks to the increasing quality of the
epitaxial material, spectrally pure emission has been demonstrated [90]. The
last challenge that needs to be addressed is to efficiently couple the emitted
light into a single mode fiber. Large progress in this direction has been made
with the integration of QDs into micro and nano-scale photonic structures,
such as cavities and waveguides, which allow the control of spontaneous emis-
sion [86,106,107]. In the last few years, important efforts to position the QD
in an optimal way [80, 108] and to minimize the diffraction of light at the
output of photonic nanowires [109] have pushed the collection efficiencies
to values 75% while maintaining a Gaussian spatial profile [85, 110]. These
impressive results require however the use of objective lenses with large nu-
merical apertures. In parallel, different strategies to couple the emitted light
directly into a single mode fiber have emerged [111–113]. In this Chapter,
we report the direct coupling of QD single photons to an optical fiber with
a new approach. Our device, the quantum fiber-pigtail, consists of a QD
embedded in a PW, that is directly attached to the cleaved end of a single
mode fiber. Thanks to the adiabatic expansion of the guided mode confined
in the PW, we achieve an external collection efficiency of 5.8% at the output
of the fiber-pigtail. The result represents a proof-of-principle for an easy-to-
operate single photon source. We discuss realistic improvements and show
that an efficiency exceeding 70% is within reach with current technology. Fur-
thermore, easily addressable QDs at the end of a nanometer-scale tip have
obvious potential as scanning probes. Possible applications include single
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Figure 4.1 (a) SEM picture of the photonic trumpet after etching and removal of the Ni
mask. (b) Removing a single PW from its original substrate with glass micro-manipulator
(right side). (c) Orientation of the PW for subsequent gluing onto the fiber. (d) Top view of
the bare fiber with a drop of UV glue (bright spot) deposited at its center. (e) SEM picture
of the fiber-wire connection. The drop of glue can be seen at the base of the PW. (f) Side
view of the final device (optical microscope image). The white scale bars represent 10µm.

photon near-field microscopy [114], deterministic quantum plasmonics [115]
or electric field sensing [116]. We then proceed to show the proof-of-principle
application of such an optical fiber-coupled semiconductor QD as a scanning
electric field sensor. By tracking the induced energy shift on the peak of a
single transition of a QD, we are able to map the vertical component of an
external applied field. With the help of numerical simulations, we also inves-
tigate the unavoidable perturbation of the external field due to the dielectric
nature of the probe, pointing toward geometric improvements to reduce this
effect and increase the sensitivity of the device.
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4.2 Fabrication

In order to realize a direct coupling between the photonic trumpet and a
single mode fiber, we pick up an individual wire (described in Section 3.2)
and glue it to the core of a standard fiber (dcore = 4.4 µm, ncore = 1.4563 and
ncladding = 1.4513), as illustrated in Fig. 4.1(a). Initially, we fabricate micro-
manipulators by tapering a glass needle down to a few micron thickness.
The micro-manipulator is then used to pick up one wire at a time thanks
to a combination of electrostatic and Van der Waals forces (see Fig. 4.1(b)).
Observations with a SEM indicate that the cleaving point lies at the interface
between the PW and the substrate, within an estimated error of ±10 nm (the
instrument’s resolution). With a second micromanipulator we re-orient the
PW into the appropriate direction (top facet facing downwards), Fig. 4.1(c).
We then approach the cleaved facet of a fiber-pigtail, and deposit a drop of
low fluorescence UV glue onto its core, Fig. 4.1(d). Finally, we bring the
wire and the fiber into contact with an alignment precision on the order of 1
µm and illuminate with UV light to harden the glue. The resulting structure
is shown in Figs. 4.1(e) and 4.1(f). It is robust and resistant to cycling to
cryogenic temperatures (we performed up to 3 cycles with the same device
without loss of signal), two important points for future applications. A link
to a video of the process is available in Ref. [117].

4.3 Characterization

The device is tested at cryogenic temperature by plunging it directly into
liquid He. The QDs are excited non-resonantly with a CW laser diode and
the photoluminescence (PL) is analyzed with a spectrometer and a high
efficiency Si-based CCD camera (ηdet = 27% at λ = 950 nm), see Fig. 4.2.
A typical spectrum is shown in Fig. 4.3(a) for an excitation in the bulk
(λlaser = 780 nm). We identify a peak associated to the GaAs nanowire and
a series of sharp lines corresponding to several QDs. Importantly, we observe
significant heating as we increase the non-resonant power. This is evidenced
as a quadratic shift of the QD energies in Fig. 4.3(b), and indicates a poor
heat dissipation in the device, despite the surrounding liquid He. A simple
way to avoid this problem is to create electron-hole pairs directly in the
InGaAs wetting layer connecting the QDs (λlaser = 830 nm). In this case,
we minimize the amount of absorbed light and observe no heating effect over
the range of useful excitation powers (see Fig. 4.3(b)). This second scenario
was used for all the following measurements.

We focus on a PW featuring a diameter of 440 nm at the QD’s position
and 1.8µm at the top facet. The wire sustains the guided modes associated
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Figure 4.2 The quantum fiber-pigtail is cooled down to 4 K in liquid He. The QDs are
excited with a CW laser diode (λ = 830 nm / optionally 780 nm). The photoluminescence
(PL) is analyzed with a spectrometer and a CCD camera (not shown).

with the first six orders and contains approximately 50 QDs distributed over
a spectral bandwith of about 50 nm. In the low energy tail, we identify
in particular a bright complex labeled QD1, which consists of an excitonic
transition X (possibly a charged exciton) and a red-shifted biexciton XX at
high power (see Fig. 4.4(a)).

To confirm the quantum nature of the emitted signal, we perform an auto-
correlation measurement on the exciton using a standard Hanbury-Brown
Twiss experiment with a set of two avalanche photo-diodes. The result,
shown in Fig. 4.4(b), reveals a pronounced dip at zero delay, characteristic
of anti-bunched emission. The data are very well reproduced by the auto-
correlation function of a perfect 2-level emitter with a lifetime of 1/γX = 1.2
ns convoluted with the detector’s response (Gaussian with full-width-half-
maximum of ∼ 400 ps).

To evaluate the extraction efficiency εe of our quantum fiber-pigtail, we
record the PL intensity as we increase the excitation power. As we saturate
the X transition, we observe a maximum count rate of ∼ 40 kcts/s, Fig.
4.4(c). The data is fitted using a simple three-level model that takes the
biexciton into account. Denoting γX and γXX the decay rates for the exciton
and the biexciton, the detected PL intensity is given by [118]

IX,det(P ) =
Isat

1 + αpP

γX
+ γXX

αpP

, (4.1)
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Figure 4.3 (a)Typical PL spectrum for excitation in the GaAs bulk. (b) Power-induced
heating of the PW for excitation in the GaAs bulk (red circles). Excitation in the wetting
layer (blue diamonds) results in negligible heating. The abscissa has been normalized to the
saturation power Psat. The solid line is a quadratic fit to the data.

with Isat the intensity at saturation, and αp a coefficient which translates the
measured excitation power into an effective pumping rate. Using γX = 0.84
GHz from the auto-correlation measurement and γXX ∼ 2γX, we obtain very
good agreement with our experimental data for Isat = 149 kcts/s and
αp = 2.5 × 10−3 GHz/µW. The relationship between the detected flux and
the emission rate simply reads

Isat = εe ηt ηdet γX, (4.2)

where ηt corresponds to the overall transmission between the fiber-pigtail
and the detector. Using a reference tunable laser diode set at 970 nm, we
find ηt = 6% ± 3.5%, which yields a collection efficiency εe = 5.8% ± 3.3%.
The given value includes all losses, for instance the finite coupling of the QD
to the waveguide-modes propagating in the upward direction, the imperfect
wire-to-fiber mode matching and the transmission losses. This result can
still be improved, but we stress that it is already more than one order of
magnitude superior to the value one would obtain from QDs in the bulk. It
therefore constitutes a proof-of-principle for our approach of integrating a
quantum light source to a standard optical fiber.

We estimate the quality of the fabrication by evaluating the expected
maximum efficiency at the output of the fiber-pigtail with numerical simu-
lations. For this we evaluate the fraction of power radiated through the top
facet for a dipole point source embedded in a PW using Lumerical FDTD
Solutions. The result is multiplied by the overlap between the mode of the
fiber and the profile of the electromagnetic field at the output of the PW.
For a PW with the above-mentioned dimensions and a QD on axis, we find
εe = 9.2± 2.1%, where the error bar comes from the ±10 nm uncertainty on
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Figure 4.4 (a) QD1 spectra at low (P = 125 µW, in red) and high (P = 1.2 mW, in black)
powers. X and XX correspond to the exciton and the biexciton. (b) Auto-correlation signal
of X (P = 64µW). The data are normalized to the average coincidence counts per time bin.
The dip at zero delay is the signature of a single quantum emitter. The red solid line is a fit
to the 2-level atom result including the detector time-jitter (∼ 400 ps). (c) Power dependence
of the exciton PL intensity. The dashed line is a fit using Eq. 4.1.

the distance between the QD and the cleaved facet. Our experimental result
is in qualitative agreement with the theoretical prediction. This calculation
shows that we have met the main challenges, namely positioning the QD
close to the axis and aligning the center of the PW with the core of the fiber.

4.3.1 Discussion

We believe that the proposed device has the potential to relax some of the
constraints associated with the use of single QDs in quantum optics exper-
iment. Integrating it into a compact closed cycle cryostat would result in
a quantum light source taking the form of a ”black-box”, with single pho-
tons directly available at the output of a standard single mode fiber. To be
useful in a quantum optics context, a single photon source should be spec-
trally pure (usually a challenge for solid-state emitters) and present high
collection efficiencies, typically higher than ' 70% for a quantum repeater
protocol based on single photons [104]. Such a quantum pigtail is not out of
reach. Recent experiments indicate that the coherence of photons emitted
by QDs embedded in such photonic wires does not suffer from the presence
of nearby etched surfaces. Though these experiments were not carried out
on the highest quality material (bulk QD linewidth ∼ 7 times the Fourier
transform limit), the results are very encouraging. We shall now show that
high efficiencies are reachable with realistic improvements.

To optimize εe, a natural strategy is to operate the tapered PW in the sin-
gle mode regime. This choice simultaneously ensures high emission probabil-
ities into the fundamental guided mode (HE11) and optimum mode matching
between the PW and the fiber. In a PW with a diameter 0.22 < D/λ < 0.31,
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more than 95% of the QD spontaneous emission is funneled into HE11 [86].
For such a symmetric waveguide, the emission is evenly distributed between
the upward and downward directions. The fraction of photons emitted in the
guided mode propagating towards the fiber can be increased up to βup ∼ 72%
by exploiting the reflectivity associated with a simple cleaved facet [119]. This
value can be further enhanced to βup ∼ 92% by depositing a metallic post
mirror on the facet [119]. In both cases, the QD should be located at an
anti-node of the electric field to benefit from constructive interference [119].
To optimize the mode matching between the PW and the fiber, the diameter
of the PW’s top-facet should be adjusted. We find a mode overlap O > 86%
when the top-facet diameter exceeds 7µm. Importantly adiabatic conditions
have to be maintained along the taper to minimize coupling to higher order
modes propagating in the PW. As an example, we consider a 78 µm long
single mode PW with a tapering angle of 5◦ ensuring a transmission of the
fundamental mode THE11 = 90%. The top facet has a diameter of 7 µm, and
the cleaved apex is covered with a silver mirror [119]. With the active layer
located 110 nm above the mirror, we obtain a total efficiency εth > 71%. Re-
markably, the simple cleaved facet with no additional mirror already results
in an efficiency of εth > 54%. To conclude, we stress that one may also tailor
the properties of the fiber and relieve some constraints on the PW geometry.

4.3.2 Potential applications

The very nature of our device, with a ultra-sensitive element, such as a semi-
condutor QD, placed right at the tip of a nanowire, suggests applications in
the field of scanning probe microscopy. Different applications are possible
in this configuration: one possibility concerns quantum plasmonics. Surface
plasmon polaritons (SPPs) represent a possible way of building integrated
quantum optics circuits at the nanoscale. Our device could be used to transfer
quantum information from the QD to propagative SPPs simply by bringing
the sharp tip of our photonic wire into close proximity with a metallic nanos-
tructure (d < λ/2). Compared to previous work, this solution presents more
flexibility and would allow scanning of the sample surface or bringing the
quantum emitter to a specific location, while controlling its exact distance
to a given metallic antenna. The possibility of positioning our probe at will
presents a significant advantage to explore the effect of the near-field environ-
ment on the emission properties of a QD. In particular, recent experiments
have shown that control over the distance (as well as over the QD orientation)
could lead to launching plasmons with probabilities approaching 50%. As we
believe however that the present device is thus likely to find applications in
the field of quantum plasmonics, in particular when more complex plasmonic
circuits come to the fore. Another of the most straightforward applications
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that comes to mind for our device is electric field sensing. In the next section,
we will explore the potential of our device as a sensor for electric fields.

4.4 Electric Field sensing with QDs

Recently, there have been developments in electric field sensing with QDs
as in 2015, Wagner et al. used a noncontact atomic force / scanning tun-
neling microscope (NC-AFM/STM) functionalized with a single molecule to
image the dipole field of an ad-atom on a surface [46]. This first demonstra-
tion of scanning quantum dot microscopy (SQDM) registered single electron
charging events of a molecular QD to produce three-dimensional images of
the local electrostatic potential with sub-nanometer resolution. In transport
experiments, gate-defined QDs have been employed as single charge detec-
tors [120,121] and self-assembled QDs have been employed as all-optical elec-
trometers, demonstrating a sensitivity of 5 (V/m)/

√
Hz [116]. These kind of

QDs were also used to determine the position of single defect charges within
100 nm of a QD with a precision of 5 nm [122]. Electric fields in QDs produce
large Stark shifts, which, due to a built-in electric dipole, are nearly linear
around zero field. Nevertheless, a scanning electric field sensor based on an
optically active semiconductor QD has not yet been realized. Such SQDM
has the potential for a very large bandwidth, which unlike electronic and me-
chanically addressable sensors, is limited only by the spontaneous emission
rate of the QD and could therefore approach the GHz range.

4.4.1 Setup

In order to investigate the performance of our probe as a sensor of electric
field, we mount it in a low-temperature scanning probe microscope. The
QDs at the end of the photonic wire are excited non-resonantly with a CW
laser diode at 830 nm, which excites carriers directly in the wetting layer and
avoids heating of the GaAs wire [98] as seen in Section 4.3. The PL from
the QDs is guided into the fiber by the photonic wire and analyzed with a
spectrometer equipped with a CCD camera. The fiber-coupled photonic tip
is then positioned over one of two parallel Au electrodes, to which we apply
the voltage V while the other is fixed to ground, as shown in Fig. 4.5(c). The
tip-sample distance d is set to 10 nm from the gate surface with zero defined
by the quenching of PL from the QD, most likely due to strain induced by
contact. This distance as well as the lateral position of the tip are controlled
by piezoelectic scanners without feedback to stabilize the position. The elec-
trodes, shown schematically in Fig. 4.5(b) and (c), are deposited on a Si/SiO2

substrate and are 80-nm-thick, 2-µm-wide, and 2-µm-apart from each other.
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Figure 4.5 (a) SEM of the fiber-coupled photonic wire. (b) Render of the tip with the
simulated field produced by the electrodes in a planecut passing through the middle of the wire.
(c) Schematic of the measurement setup. Inset: cross section of the xz-plane highlighting the
relevant geometrical parameters: tip-sample distance d, bottom tip diameter bd, distance of
QD from the tip base zdot, and sample tilt angle θt.

The resulting electric field tilts the energy bands of the semiconductor and,
due to the quantum-confined Stark effect [123, 124], the transition energies
of each QD are shifted to lower energy. Here we focus on a bright peak
centered at 956.4 nm with a line-width of 100 µeV, which we attribute to an
excitonic transition in a single QD. By sweeping the applied voltage V from
−40 to +40 V we observe a shift in the energy of the emitted PL that is
well-described by a quadratic function of the applied voltage, and therefore
of the applied electric field, as shown in Fig. 4.6:

ξE = ξ0 − p‖E‖ + β‖E
2
‖ + β⊥E

2
⊥, (4.3)

where ξ0 is the unperturbed energy and p‖ is the static electric dipole of
the QD exciton parallel to the wire axis. This axis coincides with the QD
growth direction. Due to the in-plane symmetry of the QDs, there is no
dipole term perpendicular to the axis [125, 126]. β‖ (β⊥) and E‖ (E⊥) are
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Figure 4.6 Lorentzian fits of the investigated part of the PL spectrum showing excitonic
lines associated with one QD for different values of V and d = 10 nm. The graphs are offset
for clarity.

the polarizability of the QD exciton and the applied electric field, parallel
(perpendicular) to the wire axis, respectively.

4.4.2 FEM Simulations

It is important to note that the presence of the photonic wire, due to its di-
electric nature, reduces the field at the QD position and significantly perturbs
the external applied field. In the simplest approximation, a thin dielectric
cylinder with a uniform and unidirectional polarization strongly suppresses
electric fields applied perpendicular to its long axis, while leaving parallel
fields largely unchanged.

To better understand this effect we can consider the more simple case of
a cylindrical dielectric wire in a uniform electric field. This will produce a
depolarization field inside the wire. This effect is shown in Figure 4.7. Un-
der the hypothesis of a uniform polarization of the dielectric parallel to the
external field, the electric field at a point s along the long axis of the wire is
reduced by a depolarization field anti-parallel to the external field. This re-
duction is substantially different for external fields parallel and perpendicular
to the wire axis.

In order to calculate this effect, we define the angles ψ1,2(s) as shown in
Fig 4.8 (a):

cos(ψ1) =
s√

(bd/2)2 + s2
, cos(ψ2) =

L− s√
(D/2)2 + (L− s)2

(4.4)
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Figure 4.7 Simulated values of Ez for a 11 µm long GaAs wire between two planar electrodes
20 µm apart. Plots show the xz-plane, which cuts through the center of the wire. A cylindrical
wire with its axis (a) parallel and (b) perpendicular to the external field and a tapered wire
with its axis (c) parallel and (d) perpendicular to the field.

where bd and D are the diameter of the bottom and top facets, respectively.
By integrating over the entire surface of the wire, we obtain a compact for-
mula for the reduced electric field E along the axis of the wire as a function
of the position s along the axis (for more details see Appendix A):

E(ψ1,2) =
1

χ(ψ1, ψ2)(εr − 1) + 1
E0 (4.5)

where εr = 12.9 is the dielectric constant of the wire, χ(ψ1, ψ2) = 1
4

(
cos(ψ1)+

cos(ψ2)
)
≡ χ⊥ for the external field perpendicular to the axis of the cylinder

and χ(ψ1, ψ2) = sin2
(
ψ1

2

)
+ sin2

(
ψ2

2

)
≡ χ‖ for the field parallel to the axis.

In a real system, however, the hypothesis of the uniform and unidirec-
tional polarization does not hold. As a result, the solution deviates from the
analytical description of Equation 4.5. A finite element simulation (Com-
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Figure 4.8 (a) geometry of the wire and definition of the angles ψ1,2. (b),(c) Normalized
values of the electric field inside a cylindrical wire (b) with L = 11 µm and D = 1.5 µm, and
tapered wire (c) with bd = 250 nm, as a function of position along the axis of the wire. The
solid lines correspond to exact simulations, while dashed lines are values given by Equation 4.5.
Red and orange curves correspond to the perpendicular configuration and blue lines correspond
to the parallel one.

sol) can produce a more realistic result without this simplifying assumption
(Figure 4.8 (b) and (c)). The simulated (solid lines) and theoretical (dashed
lines) values of the electric field inside a cylindrical and tapered wire are
plotted as a function of s in the case of the external field parallel (blue) and
perpendicular (orange and red) to the wire axis.

In the case of our experimental setup, however, the field is also not uni-
form along z. In a first approximation, the electric field inside the wire
is obtained by just replacing the uniform field E0 in Eq. 4.5 with a space
decaying form. A situation more similar to the one of our experimental
configuration, with the field produced by two parallel electrodes, has been
simulated and is shown in Fig. 4.9. Also in this scenario, it appears clear
that the wire’s narrow radial cross-section results in an efficient screening of
E⊥, while E‖ is less affected. At the QD position zdot = 110 nm above the
bottom facet, this directional screening effectively projects the unperturbed
electric field along z. As we have seen, the magnitude of the effect depends
on the diameter of the facets, the length of the wire, the position of the QD,
and the direction of the field with respect to the long axis of the wire. In our
experiment, the field at the dot position reaches values of 60% and 20% of
the applied external field in the z and x direction, respectively.

4.4.3 2D mapping of local Electric Field

We then proceed to map the spatial dependence of the electric field produced
by the gates by scanning the photonic wire tip and sweeping the applied
voltage at every position. At this point, it is important to note that the
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Figure 4.9 Simulated maps of E(r) - The components (a) Ex and (c) Ez generated by the
pair of electrodes. The left electrode is grounded and the right one is held at V = 40 V. (b)
and (d) show the same electric field components in the presence of the dielectric tip. Note the
pronounced screening of Ex by the photonic tip compared to that of Ez at the position of the
QD near the apex of the probe.

electric field at the QD location r is the sum of two distinct contributions
E(r, V ) + δE, where the first term is due to the voltage applied across the
electrodes and the second term is due to charges trapped in the vicinity of
the QD. We can then write E(r, V ) = αv(r) · V , where αv(r) is a position
dependent proportionality constant, which describes the spatial configura-
tion of the electric field produced by the split-gates and the dielectric wire.
This term is a single-valued function of r and V . In contrast, δE is not
a single-valued function of r or V ; it describes a electric field that changes
upon the stochastic reorganization of charges near the QD. These sudden,
but infrequent rearrangements occur on time-scales on the order of a single
voltage scan or longer and are often induced by the rapid changes in voltage
or position occurring between scans.

In our geometry, E‖ = Ez + δEz and E⊥ =
√

(Ex + δEx)2 + (Ey + δEy)2.
We scan above one electrode, where the electric field points nearly exclusively
along z. Given the direction and the preferential penetration of the field in
the z direction, we can assume Ex to be negligible in this region. Ey vanishes
due to the symmetry of the electrode structure. As a result, Eq. 4.3 becomes:

ξE =
[
ξ0 − p‖δEz + β‖δE

2
z + β⊥

(
δE2

x + δE2
y

) ]
−
[
p‖ − 2β‖δEz

]
Ez + β‖E

2
z .

(4.6)
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Figure 4.10 Full maps of Ez as a function of x and d at V = 40 V extracted from (a)
measurements and (b) simulations. Simulations consider a QD zdot = 110 nm from the end
of a photonic tip with bd = 350 nm and a tilt angle θt = 5◦. In (a), each point requires 21
seconds of measurement time; the full map in (a) requires 68 minutes.

Note that both the constant and linear terms in Ez (the first two terms in
square brackets) depend on the electric field due to local charge reorganiza-
tion. These terms are therefore subject to random and infrequent shifts. The
quadratic term, on the other hand, depends only on the polarizability along
the wire axis.

By collecting PL spectra, we measure the dependence of ξE on both volt-
age and position in the xz-plane. The measured QD exciton energies show
a parabolic dependence on V with an offset af,0, a linear coefficient af,1,
and a curvature af,2, each depending on position in the xz-plane, as seen in
Fig. 4.11(a). As expected from the dependence of the constant and linear
terms in Eq. 4.6 on components of the stochastic field δE, af,0 and af,1 ap-
pear random and are observed to be hysteretic in both voltage and position.
They are likely determined by the charging and discharging of defects within
the photonic wire, which generate an extra electric field in the vicinity of
the QD. On the other hand, af,2 remains constant as a function of voltage
and reproducible as a function of position, following what is expected from
Eq.4.6: af,2(x, z) = β‖αv,z(x, z)

2, where β‖ is a constant and αv,z(x, z) is set
by the configuration of the electrodes.

In order to make a detailed comparison to the experiment, we make a
finite element simulation of αv,z(x, z) at the position of the QD as the pho-
tonic wire is scanned above the electrode. A corresponding experimental
map of this term can be extracted from the fits to the measured data, since
αv,z(x, z) =

√
af,2(x, z)/β‖. In Figs. 4.10 (a) and (b), we plot the measured

and simulated Ez(x, z), respectively, corresponding to an applied voltage of
V = 40 V. In order to match the spatial dependence of our measurements
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Figure 4.11 (a) Energy of the leftmost QD emission peak in Fig. 4.6 versus the applied
voltage V for different values of tip-electrode distance d. Solid lines are parabolic fits and gray
dashed lines indicate the vertices of each parabola. The tip is positioned at the center of the
electrode (x = 2 µm). (b) Triangles represent Ez as a function of d at V = 40 V extracted
from the curvature fits for different x-positions (black dashed linecuts in 4.10); solid lines show
corresponding simulated values of Ez.

to the simulations, we introduce a tilt angle θt = 5 ◦, as shown in the inset
of Figure 4.5(b). Such a misalignment between both scanning stages is ex-
perimentally reasonable and, in practice, difficult to avoid. A polarizability
β‖ = −0.012± 0.005 µeV/(kV/cm)2 brings the measured and simulated val-
ues of Ez(x, z) into numerical agreement, as shown in Fig. 4.10 (a) and (b).
Such a polarizability is an order of magnitude smaller than what is typically
observed in literature for single exciton transitions in similar QDs under res-
onant excitation [127–129]. Under non-resonant excitation, as in this case,
a variety of groups have observed reduced Stark shifts [130], likely due to
the screening of electric fields by the clouds of electron-hole pairs generated
around the QD.

The similarity of the measured and simulated maps of Ez(x, z), demon-
strates the successful implementation of our QD probe to spatially map the
magnitude of a DC electric field along one direction. Nevertheless, the sim-
ulation does not capture all of the details of the measured map indicating
that the experiment is still affected by charging effects not included in our
model. Note that although we fit to full voltage sweeps at each position to
extract the electric field configuration, one could reduce noise and speed up
the measurement by applying a small AC voltage to the gate and recording
the QD’s response. Energy shifts at f and 2f , where f is the frequency of
the applied field, would correspond to the linear contribution, arising from
the electric dipole of the QD, and to the quadratic contribution, arising from
the polarizability, respectively [73]. Similarly, static electric fields generated
by arbitrary samples without electrodes could be mapped by dithering the
position of the QD sensor at frequency f and measuring the corresponding



80 Fiber-coupled QD

response. As a result, one could measure the spatial derivative of Ez along
the direction of the dither. In this way, the technique could be generally
applied to a variety of samples producing electric fields, including by charge
defects on surfaces.

4.4.4 Optimal wire geometry for sensing

One important observation that can be made from Fig. 4.10 (a) and (b) is the
rapid decrease in measured electric field as a function of tip-electrode distance
d compared to that expected in vacuum. As shown in Fig. 4.12 (a), this effect
is a direct consequence of the polarization charge induced on the bottom facet
of the photonic wire, which screens the out-of-plane electric field impinging on
the QD. Note that this effect must be considered for any electric field sensor
based on a dielectric scanning probe. In order to reduce the screening effect
for Ez, which decreases the sensitivity of the sensor and distorts the observed
field with respect to the unperturbed case, this surface charge density must
be minimized. If we exclude replacing the GaAs tip material with one having
a dielectric constant closer to the one of the vacuum, the reduction of this
screening charge can be achieved by reducing the diameter bd of the bottom
facet. This sharpening of the scanning probe, would also help to increase the
screening of Ex, making the QD Stark shift an even closer measure of Ez

2.
In practice, however, bd is constrained to values higher than 190 nm in order
to maintain optimal guiding of the QD PL up the photonic wire and into the
optical fiber [119]. The choice of bd in turn sets a natural minimum tip-sample
distance d of the same order, below which both the spatial resolution will
not improve and the tip will strongly perturb the local electric field. Once bd
and d are fixed, finite element calculations show that there exists an optimal
position for the QD above the bottom facet zopt, as shown by Fig. 4.12(b).
This position minimizes the screening effect and hosts the largest measurable
field from the electrodes within the tip. The black diamond in Fig. 4.12(b)
indicates the position of the QD within the device used in our experiments.
For d = 100 nm, optimization of bd and of the position of the QD could
result in the ability to measure much weaker fields parallel to the wire axis
with almost no tip-induced perturbation of this component. Note that in
order to ensure maximum reflection in the upward direction, zdot should be
a multiple of λ/2nr from the bottom facet, where λ is the wavelength of the
emitted light and nr the effective index of the fundamental guided mode for
a diameter bd. In general, there is a natural trade off between a scanning
probe tip which minimally perturbs the electric field and one that optimally
guides the sensor emission.
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Figure 4.12 (a) Simulated Ez at zdot = 110 nm is plotted in pink as a function of tip-
electrode distance d in a GaAs tip with bd = 350 nm. The corresponding condition without
screening is plotted in green. (b) Ez values along a z line-cut with the photonic tip at
d = 0.1 µm for different values of the bottom diameter bd. We define zopt as the position
where Ez is maximum inside the tip. The values of zopt are fitted by the red dashed line for
different values of bd. The black diamond indicates the QD position in our current device,
while the green dots are values of Ez in the absence of the trumpet, as a reference.

4.4.5 Discussion

Given a measured polarizability β‖ = −0.012 µeV/(kV/cm)2, typical count
rate of 2.3 kHz, and emission linewidth of 98 µeV, the measurements demon-
strate a sensitivity of 1.4 × 106 (V/m)/

√
Hz. Although such a sensitivity

is sufficient to demonstrate the feasability of electric field miscrosopy with
our fiber-coupled QD sensor, it must be improved in order to approach the
performance demonstrated by scanning SETs.

Measuring by resonance fluorescence constitutes a first step: the absence
of non-resonant excitation should reduce charge noise near the QD [90], al-
lowing the use of the linear Stark effect. Assuming measured values for the
count rate, emission linewidth, and a dipole moment p‖/e = 0.03 nm, a lin-

ear measurement would already yield a sensitivity of 5.6× 104 (V/m)/
√

Hz.
This worst-case estimate does not consider that measuring by resonance flu-
orescence would also eliminate screening of the sensor QD by photo-excited
electron-hole pairs and decrease the QD emission linewidth. Furthermore, by
optimizing the geometry of the photonic wire tip and the position of the QD,
higher optical collection efficiencies, resulting in higher count rates, could be
combined with better electric field penetration. These additional improve-
ments would lead to reduced distortion of the unperturbed electric fields and
higher sensitivity. If charge noise near the sensor could be reduced to levels
achieved by QDs buried in bulk semiconductor material, a linear Stark ef-
fect measurement could then approach 20 (V/m)/

√
Hz, assuming p‖/e = 0.3
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nm [116,122]. This estimate is based on a count rate of 1 MHz and an emis-
sion linewidth of 5 µeV, which were observed in shot-noise-limited resonance
fluorescence measurements carried out in photonic-trumpet QDs similar to
those measured here [131]. Given that the bandwidth of this type of SQDM
is determined by the efficiency of the luminescence collection and limited by
the QD’s spontaneous emission rate, it could approach the GHz range. These
characteristics, combined with a spatial resolution roughly set by the bottom
diameter of the tip, are promising for mapping of single charges on surfaces,
measuring individual tunneling events, and monitoring charging dynamics in
few electron and mesoscopic systems.
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5 Conclusion and Outlook

In this thesis we explored some of the aspects that make NWs very promis-
ing for sensing, focusing mainly in Scanning Probe Microscopy applications.
NWs have drawn growing interest in the last years due to the incredible
versatility and consequent variety of suitable applications. Due to favorable
geometry and low mass, NWs present themselves as excellent force transduc-
ers. Their almost perfect structure free of defects significantly increases the
quality of mechanical resonators based on them. The possibility to control
geometrical parameters like diameter and length makes it possible to move
the resonance frequency of these objects to higher frequencies so it is easier
to decouple them from noise. However, such slender beams are more suscep-
tible to enter non-linear regimes of motion, where the analysis becomes more
complex but sometimes difficult to avoid.

For this reason, we studied the nonlinear regime of motion of GaAs NWs.
Our results indicate that although nonlinear motion can be non-negligible
for NWs, the nonlinearity can also be turned into an advantage using simple
measurement schemes. We have then seen how the fundamental mode of
our NWs is always split in two orthogonal modes due to a small asymme-
try in the cross section and we studied how these modes interact through a
non-linear coupling. When driving one mode to high enough amplitudes its
displacement affects the motion of the other mode shifting its frequency. This
mode coupling was clearly visible in a ringdown measurement and different
pump-probe experiments. Such mode coupling could have several applica-
tions, including tuning the resonance frequency [29] and quality factor [30]
of one mode through driving of the other mode, and implementing quan-
tum non-demolition measurements of mechanical excitation [132]. Another
prospective use of the two orthogonal modes in the nanowires lies in bidi-
mensional sensing. We then proceeded to demonstrate how the two modes
of the NW in a pendulum geometry could be detected simultaneously giving
access to a bidimensional AFM setup when we scan a sample close to the tip
of the wire. Moreover, by exploiting the nonlinear regime of motion in each
mode, a force sensitivity of ∼100 zN/

√
Hz [63] could in principle be reached

in both orthogonal directions simultaneously. Such a bidimensional sensor
has been used before to measure the non-conservative nature of radiation
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pressure [28]. Mode coupling could additionally lead to coherent dynamics,
where energy can be exchanged between the two modes similarly as it could
be done in quantum two-level systems. As a consequence, reaching strong
coupling between the modes could allow to reduce frequency fluctuations of
the resonators through dynamical decoupling, eventually reaching the ther-
mal limit.

Nonetheless, we are not limited to bidimensional surface interactions: the
versatility in the growth of NWs, that can be grown with different structures
and materials, opens the gate to a vaste range of possible probes suitable
to different environments. Functionalization of the NW tip gives access to
sensibility to other types of forces. Semiconductor NWs with magnetic tips
can then be used as probes for magnetic samples while maintaining a rela-
tively simple and all-optical readout. Stray fields from particular magnetic
configurations can interact with the magnetic tip, affecting the detected mo-
tion of the wire. We believe that NWs heterostructures offer great tools for
sensing. As an example, it has been shown that when subjected to pulsed
exitation, III-V core-shell semiconductor NWs, exhibit lasing up to room
temperature [133]. While keeping the same NW scanning setup as used in
Section 2.6, it would be possible to excite and detect light emitted from the
wire. When close to threshold, due to the nonlinearity of the lasing process,
these NWs could be used to sense a small change in the dielectric environment
close to the wire.

As discussed in Chapter 3, NWs can also be host of quantum objects
such as QDs. Semiconductor NWs make excellent waveguiding platforms.
As a consequence, an optically active QD embedded in a tailored GaAs NW
results in a high fidelity single photon source. Moreover, the QD emission
results intrinsically coupled to the nanoresonator through strain, creating
effectively a monolithic hybrid system with potential for various quantum
applications. By exploiting this coupling, we read the resonance fluorescence
signal of the QD to detect sub-picometer displacements of the mechanical
modes at cryogenic temperature by measuring the fluctuations in the single
photon count rate, an amelioration in position sensitivity by four orders of
magnitude compared to previous results [8,9]. As an application of the sens-
ing capabilities of our device, we used the thermal excitation of a series of
mechanical modes to determine the location of the QD within the nanowire.
Finally we discussed the impact of the strain coupling on the coherence of
the single photon emitter, introducing extra noise and dephasing in the QD
emission, and, as a consequence, reduces the indistinguishability of the pho-
tons.

To this end, we developed a new device, a quantum-fiber pigtail, where
we directly couple a QD to an optical fiber eliminating the need for complex
optical setup and at the same time reducing the strain coupling that leads
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to dephasing of the QD emission. The prototype of our device resulted to be
a robust and compact single photon source but with relative low collection
efficiency. In this direction, with the support of numerical simulations, we
demonstrated how the efficiency of our device can be increased by one order
of magnitude with no subversive changes of the wire. Photonic wires with
geometries closer to what we found to be the optimal values have been already
developed [134]. This, in combination with suspended photonic trumpets
[99], allowing to control better the distance of the QD to the tip of the wire,
could greatly improve the performance of our device with minimal effort.
Last, due to the favorable geometry of our device, we demonstrated how
it can be implemented as sensor for local electric fields. As a first proof-
of-principle, we map the vertical component of the electric field produced
by two parallel gold electrodes. As the PW was not originally designed for
scanning applications and direct coupling to an optical fiber, the sensitivity
of our device has not reached our initial expectations. This device, however,
has proven to be an excellent starting point for sensing electric fields. The
first step in optimization corresponds in re-designing our tip for our specific
purpose. With the help of FEM simulations we found the optimal geometry
for the optimal scanning PW. While it is true that the dielectric nature of
our probe reduces the effective field at the QD position, the major limitation
for our devices resulted to be charge noise inside the wire, close to the QD.
Implementation of a resonance fluorescence setup as well as the passivation
of the surface of the PW will most likely be the major advancement in this
technique in the near future. Avoiding rearrangements of charges could make
the approach to a surface more reliable and simplify the analysis while at the
same time improving the sensitivity of our device.

As a last remark, we note how the geometry of our device results ex-
tremely favorable for any sensor based on optical readout combining scan-
ning tip and optical collection into one monolithic fiber-coupled object. This
provides efficient and easy optical coupling as well as a convenient scanning
geometry and can be adopted to any optically addressable quantum sensor
(molecules, Nitrogen-Vacancy (NV) centers in diamond, etc.). The axial ac-
cess for excitation and detection of the optical element grants no limitation
of access to scan sample regions, with the only disadvantage of shining light
directly on the sample. While a perpendicular detection setup like the one
used in Section 2.6 is definitely possible, it presents few disadvantages when
trying to detect an optical active object close to the tip of a probe. First,
the NW itself acts as a waveguide along the axial direction (already reducing
emitted light perpendicular to it) and, in addition, the investigated sample
would produce a shadowing effect, reducing the collected light and limiting
the accessibility of the sensor to areas only close to the edge of the sam-
ple. This is true not only for QDs in NWs but it is something to keep in
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consideration for any scanning setup based on optical readout.
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A Appendix A

A.1 Dielectric wire in uniform field

Here we show the procedure leading to Eq.4.5 where we calculate the value of
the electric field along the axis of a dielectric wire in a uniform electric field
E0. We can distinguish the two main particular cases where the external field
is directed parallel or perpendicular to the axis of the wire. In both cases
we consider the following hypotesis: the polarization of the wire is uniform
and there are no charges inside the wire. We start for simplicity considering
a cylindrical wire aligned along z.

A.1.1 E0 ⊥ z

If we assume the external field E0 directed along the positive x axis, this field
will produce a polarization P in the wire also parallel to the x axis. We will
then proceed to calculate the field Ed(z) produced by this polarization on
the axis of the wire. In this case the field along the axis is gonna be produced
entirely by the surface charges on the cylinder wall while no contribution will
be given by the top and bottom facets as they lie parallel to the field. With
reference to Fig.A.1, we can write the expression for surface charge σ at a
point C on the wall of the cylinder as:

σ(C) = P cos θc, (A.1)

where P is the polarization of the cylinder (directed along x). The electric
field along the axis of the wire is then given by:

E⊥d (z) = 2

∫ π/2

−π/2

∫ s2

−s1
δE(C) · ex dz dθ, (A.2)

where we considered twice the contribution of the semi-surface due to symme-
try and δE(C) is the field generated by an infinitesimal surface dS centered
in C that can be written as:

δE(C) =
1

4πε0

σ(C)dS

OC2

CO

OC
, (A.3)
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Figure A.1 Side and top view of a cylindrical dielectric wire in a uniform electric field aligned
along x

where dS = rdθdz and OC =
√
r2 + z2. Since OC = r cos θex+r sin θey+zez

then OC · ex = r cos θ, substituting in Eq.A.3 we obtain:

δE(C) · ex = − 1

4πε0

P cos θrdθdz

r2 + z2

r cos θ√
r2 + z2

. (A.4)

Eq.A.2 then becomes:

E⊥d (z) = − 2P

4πε0

∫ π/2

−π/2
cos2 θ dθ

∫ s2

−s1

r2

(r2 + z2)3/2
dz. (A.5)

By solving the integrals and defining the angles ψ1 and ψ2 so that:

cos(ψ1) =
s1√
r2 + s2

1

, cos(ψ2) =
s2√
r2 + s2

2

, (A.6)

we obtain:

E⊥d (z) = − P

4ε0

(cosψ1 + cosψ2) . (A.7)

A.1.2 E0 ‖ z
In the case where the external field is parallel to the axis of the wire, the
polarization is aligned entirely along z and, in particular, we have σsup = P
on the top facet and σinf = −P on the bottom facet. In an analog way to the
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Figure A.2 Side and top view of a cylindrical dielectric wire in a uniform electric field aligned
along z

previous case, we can calulate the field along the axis of the wire produced by
charges on the surface (in this case only the top and bottom facet contribute).
For the symmetry of the problem we start considering only the bottom facet.
For an infinitesimal surface dS centered in C we can write:

E
‖
d,inf(z) = 2

∫ 2π

0

∫ r

0

δE(C) · ez dr′ dθ. (A.8)

Similar to before, we use Eq.A.3, but in this case we have: σinf = −P ,
dS = r′dθdr′, OC =

√
s2

1 + r′2, and OC = r′ cos θex + r′ sin θey − s1ez so
that OC · ez = −s1. We can then write:

δE(C) · ez = − 1

4πε0

Pr′dθdr′

r′2 + s2
1

s1√
s2

1 + r′2
. (A.9)

Substituting Eq.A.9 into Eq.A.8 we obtain:

E
‖
d,inf(z) = − P

4πε0

∫ 2π

0

dθ

∫ r

0

s1r
′

(s2
1 + r′2)3/2

dr′. (A.10)

By recalling the definition for ψ1 given by A.6, we can write:

E
‖
d,inf(z) = − P

2ε0

(1− cosψ1) . (A.11)
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By symmetry we can write the expression for the field on the axis generated
by the top facet as:

E
‖
d,sup(z) = − P

2ε0

(1− cosψ2) . (A.12)

Summing the contribution of the two facets and remembering that:

sin2 ψ =
1− cos(2ψ)

2
, (A.13)

the overall field on the axis is given by:

E
‖
d(z) = −P

ε0

(
sin2

(
ψ1

2

)
+ sin2

(
ψ2

2

))
. (A.14)

A.2 General case

We can now take into account the total field on the axis of the wire by writing
εrε0E = ε0E + P where E = E0 + Ed is now the total field at a point along
the axis. By expressing Ed = −χP

ε0
, from Eq.A.7 and A.14 we can write:

E =
1

χ(εr − 1) + 1
E0, (A.15)

where we defined χ for the perpendicular and parallel geometry respectively
as:

χ⊥ =
1

4
(cosψ1 + cosψ2) , χ‖ =

(
sin2 (ψ1/2) + sin2 (ψ2/2)

)
(A.16)

We can now extend the treatment to a tapered wire of length L, top
diameter D and bottom diameter bd by just using the definition for ψ1,2 as in
Eq.4.4 where we substituted s1 = s and s2 = L− s and r has been replaced
by bd/2 and D/2 for ψ1 and ψ2 respectively.



B Appendix B

B.1 6 axis scanning NWs Microscope

Images of the microscope used in Chapter 2. The design realized in Solid-
works is shown on the left and pictures of the actual microscope are shown
on the right.
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[55] Lü, L. et al. Modeling a radio-frequency single-electron-transistor
scanning probe. Jpn. J. Appl. Phys. 53, 085001 (2014). http:

//iopscience.iop.org/article/10.7567/JJAP.53.085001/meta.

[56] Colombo, C., Spirkoska, D., Frimmer, M., Abstreiter, G. & Fontcu-
berta i Morral, A. Ga-assisted catalyst-free growth mechanism of GaAs
nanowires by molecular beam epitaxy. Phys. Rev. B 77, 155326 (2008).
https://link.aps.org/doi/10.1103/PhysRevB.77.155326.

[57] Heiss, M. et al. Self-assembled quantum dots in a nanowire system
for quantum photonics. Nature Materials 12, 439 (2013). https:

//www.nature.com/articles/nmat3557.

[58] Sarid, o. Scanning Force Microscopy: With Applications to Electric,
Magnetic and Atomic Forces. Oxford Series in Optical and Imaging
Sciences (Oxford University Press, Oxford, New York, 1994), revised
edition edn.

[59] Yasumura, K. Y. et al. Quality factors in micron- and submicron-
thick cantilevers. Journal of Microelectromechanical Systems 9, 117–
125 (2000).

https://doi.org/10.1080/03601217808907349
https://doi.org/10.1080/03601217808907349
https://link.springer.com/article/10.1007/BF01856950
https://link.springer.com/article/10.1007/BF01856950
http://doi.wiley.com/10.1002/9783527617586
http://doi.wiley.com/10.1002/9783527617586
http://iopscience.iop.org/article/10.7567/JJAP.53.085001/meta
http://iopscience.iop.org/article/10.7567/JJAP.53.085001/meta
https://link.aps.org/doi/10.1103/PhysRevB.77.155326
https://www.nature.com/articles/nmat3557
https://www.nature.com/articles/nmat3557


References 105

[60] Yang, J., Ono, T. & Esashi, M. Energy dissipation in submicrometer
thick single-crystal silicon cantilevers. Journal of Microelectromechan-
ical Systems 11, 775–783 (2002).

[61] Dobosz, M., Usuda, T. & Kurosawa, T. Methods for the calibra-
tion of vibration pick-ups by laser interferometry: I. Theoretical anal-
ysis. Meas. Sci. Technol. 9, 232 (1998). http://stacks.iop.org/

0957-0233/9/i=2/a=010.

[62] Hutter, C., Platz, D., Tholén, E. A., Hansson, T. H. & Havi-
land, D. B. Reconstructing Nonlinearities with Intermodulation Spec-
troscopy. Phys. Rev. Lett. 104, 050801 (2010). https://link.aps.

org/doi/10.1103/PhysRevLett.104.050801.

[63] Braakman, F. R. et al. Nonlinear motion and mechanical mixing in as-
grown GaAs nanowires. Appl. Phys. Lett. 105, 173111 (2014). http:

//aip.scitation.org/doi/10.1063/1.4900928.

[64] Malatkar, P. Nonlinear Vibrations of Cantilever Beams and Plates
(2003). https://vtechworks.lib.vt.edu/handle/10919/28301.

[65] Westra, H. J. R., Poot, M., van der Zant, H. S. J. & Venstra, W. J.
Nonlinear Modal Interactions in Clamped-Clamped Mechanical Res-
onators. Phys. Rev. Lett. 105, 117205 (2010). https://link.aps.

org/doi/10.1103/PhysRevLett.105.117205.

[66] Sapmaz, S., Blanter, Y. M., Gurevich, L. & van der Zant, H. S. J.
Carbon nanotubes as nanoelectromechanical systems. Phys. Rev. B
67, 235414 (2003). https://link.aps.org/doi/10.1103/PhysRevB.
67.235414.

[67] Pfeiffer, O., Bennewitz, R., Baratoff, A., Meyer, E. & Grütter, P.
Lateral-force measurements in dynamic force microscopy. Phys. Rev. B
65, 161403 (2002). https://link.aps.org/doi/10.1103/PhysRevB.
65.161403.

[68] Giessibl, F. J., Herz, M. & Mannhart, J. Friction traced to the sin-
gle atom. PNAS 99, 12006–12010 (2002). http://www.pnas.org/

content/99/19/12006.

[69] Kawai, S., Kitamura, S.-i., Kobayashi, D. & Kawakatsu, H. Dy-
namic lateral force microscopy with true atomic resolution. Appl. Phys.
Lett. 87, 173105 (2005). http://aip.scitation.org/doi/10.1063/

1.2112203.

http://stacks.iop.org/0957-0233/9/i=2/a=010
http://stacks.iop.org/0957-0233/9/i=2/a=010
https://link.aps.org/doi/10.1103/PhysRevLett.104.050801
https://link.aps.org/doi/10.1103/PhysRevLett.104.050801
http://aip.scitation.org/doi/10.1063/1.4900928
http://aip.scitation.org/doi/10.1063/1.4900928
https://vtechworks.lib.vt.edu/handle/10919/28301
https://link.aps.org/doi/10.1103/PhysRevLett.105.117205
https://link.aps.org/doi/10.1103/PhysRevLett.105.117205
https://link.aps.org/doi/10.1103/PhysRevB.67.235414
https://link.aps.org/doi/10.1103/PhysRevB.67.235414
https://link.aps.org/doi/10.1103/PhysRevB.65.161403
https://link.aps.org/doi/10.1103/PhysRevB.65.161403
http://www.pnas.org/content/99/19/12006
http://www.pnas.org/content/99/19/12006
http://aip.scitation.org/doi/10.1063/1.2112203
http://aip.scitation.org/doi/10.1063/1.2112203


106 References

[70] Kawai, S., Sasaki, N. & Kawakatsu, H. Direct mapping of the lat-
eral force gradient on Si(111)-(7x7). Phys. Rev. B 79, 195412 (2009).
https://link.aps.org/doi/10.1103/PhysRevB.79.195412.

[71] Kawai, S. et al. Ultrasensitive detection of lateral atomic-scale inter-
actions on graphite (0001) via bimodal dynamic force measurements.
Phys. Rev. B 81, 085420 (2010). https://link.aps.org/doi/10.

1103/PhysRevB.81.085420.

[72] Karabacak, D., Kouh, T., Huang, C. C. & Ekinci, K. L. Optical knife-
edge technique for nanomechanical displacement detection. Appl. Phys.
Lett. 88, 193122 (2006). http://aip.scitation.org/doi/10.1063/

1.2203513.

[73] Rossi, N. et al. Vectorial scanning force microscopy using a nanowire
sensor. Nat Nano 12, 150–155 (2017). http://www.nature.com/

nnano/journal/v12/n2/full/nnano.2016.189.html.

[74] Frimmer, M. & Novotny, L. The classical Bloch equations. American
Journal of Physics 82, 947–954 (2014). http://aapt.scitation.org/
doi/abs/10.1119/1.4878621.

[75] Sansa, M. et al. Frequency fluctuations in silicon nanoresonators.
Nature Nanotechnology 11, 552 (2016). https://www.nature.com/

articles/nnano.2016.19.

[76] Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optome-
chanics. Rev. Mod. Phys. 86, 1391–1452 (2014). https://link.aps.

org/doi/10.1103/RevModPhys.86.1391.

[77] Ding, L. et al. High Frequency GaAs Nano-Optomechanical Disk Res-
onator. Phys. Rev. Lett. 105, 263903 (2010). https://link.aps.org/
doi/10.1103/PhysRevLett.105.263903.

[78] Nguyen, D. T. et al. Improved optomechanical disk resonator sitting
on a pedestal mechanical shield. New J. Phys. 17, 023016 (2015).
http://stacks.iop.org/1367-2630/17/i=2/a=023016.

[79] Claudon, J. et al. A highly efficient single-photon source based on a
quantum dot in a photonic nanowire. Nature Photonics 4, 174–177
(2010). http://adsabs.harvard.edu/abs/2010NaPho...4..174C.

[80] Reimer, M. E. et al. Bright single-photon sources in bottom-up tai-
lored nanowires. Nature Communications 3, 737 (2012). https:

//www.nature.com/articles/ncomms1746.

https://link.aps.org/doi/10.1103/PhysRevB.79.195412
https://link.aps.org/doi/10.1103/PhysRevB.81.085420
https://link.aps.org/doi/10.1103/PhysRevB.81.085420
http://aip.scitation.org/doi/10.1063/1.2203513
http://aip.scitation.org/doi/10.1063/1.2203513
http://www.nature.com/nnano/journal/v12/n2/full/nnano.2016.189.html
http://www.nature.com/nnano/journal/v12/n2/full/nnano.2016.189.html
http://aapt.scitation.org/doi/abs/10.1119/1.4878621
http://aapt.scitation.org/doi/abs/10.1119/1.4878621
https://www.nature.com/articles/nnano.2016.19
https://www.nature.com/articles/nnano.2016.19
https://link.aps.org/doi/10.1103/RevModPhys.86.1391
https://link.aps.org/doi/10.1103/RevModPhys.86.1391
https://link.aps.org/doi/10.1103/PhysRevLett.105.263903
https://link.aps.org/doi/10.1103/PhysRevLett.105.263903
http://stacks.iop.org/1367-2630/17/i=2/a=023016
http://adsabs.harvard.edu/abs/2010NaPho...4..174C
https://www.nature.com/articles/ncomms1746
https://www.nature.com/articles/ncomms1746


References 107

[81] He, Y.-M. et al. On-demand semiconductor single-photon source with
near-unity indistinguishability. Nature Nanotechnology 8, 213 (2013).
https://www.nature.com/articles/nnano.2012.262.

[82] Kuhlmann, A. V. et al. Transform-limited single photons from a single
quantum dot. Nature Communications 6, 8204 (2015). https://www.
nature.com/articles/ncomms9204.

[83] Somaschi, N. et al. Near-optimal single-photon sources in the solid
state. Nature Photonics 10, 340 (2016). https://www.nature.com/

articles/nphoton.2016.23.

[84] Ding, X. et al. On-Demand Single Photons with High Extraction Ef-
ficiency and Near-Unity Indistinguishability from a Resonantly Driven
Quantum Dot in a Micropillar. Phys. Rev. Lett. 116, 020401 (2016).
https://link.aps.org/doi/10.1103/PhysRevLett.116.020401.

[85] Munsch, M. et al. Dielectric GaAs Antenna Ensuring an Efficient
Broadband Coupling between an InAs Quantum Dot and a Gaus-
sian Optical Beam. Phys. Rev. Lett. 110, 177402 (2013). https:

//link.aps.org/doi/10.1103/PhysRevLett.110.177402.

[86] Bleuse, J. et al. Inhibition, Enhancement, and Control of Spontaneous
Emission in Photonic Nanowires. Phys. Rev. Lett. 106, 103601 (2011).
https://link.aps.org/doi/10.1103/PhysRevLett.106.103601.

[87] Stepanov, P. et al. Large and Uniform Optical Emission Shifts in Quan-
tum Dots Strained along Their Growth Axis. Nano Lett. 16, 3215–3220
(2016). http://dx.doi.org/10.1021/acs.nanolett.6b00678.

[88] Kuhlmann, A. V. et al. A dark-field microscope for background-free
detection of resonance fluorescence from single semiconductor quantum
dots operating in a set-and-forget mode. Review of Scientific Instru-
ments 84, 073905 (2013). http://aip.scitation.org/doi/10.1063/
1.4813879.

[89] Nguyen, H. S. et al. Optically Gated Resonant Emission of Single
Quantum Dots. Phys. Rev. Lett. 108, 057401 (2012). https://link.

aps.org/doi/10.1103/PhysRevLett.108.057401.

[90] Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor
quantum device. Nature Physics 9, 570 (2013). https://www.nature.
com/articles/nphys2688.

https://www.nature.com/articles/nnano.2012.262
https://www.nature.com/articles/ncomms9204
https://www.nature.com/articles/ncomms9204
https://www.nature.com/articles/nphoton.2016.23
https://www.nature.com/articles/nphoton.2016.23
https://link.aps.org/doi/10.1103/PhysRevLett.116.020401
https://link.aps.org/doi/10.1103/PhysRevLett.110.177402
https://link.aps.org/doi/10.1103/PhysRevLett.110.177402
https://link.aps.org/doi/10.1103/PhysRevLett.106.103601
http://dx.doi.org/10.1021/acs.nanolett.6b00678
http://aip.scitation.org/doi/10.1063/1.4813879
http://aip.scitation.org/doi/10.1063/1.4813879
https://link.aps.org/doi/10.1103/PhysRevLett.108.057401
https://link.aps.org/doi/10.1103/PhysRevLett.108.057401
https://www.nature.com/articles/nphys2688
https://www.nature.com/articles/nphys2688


108 References

[91] Matthiesen, C., Stanley, M. J., Hugues, M., Clarke, E. & Atatüre, M.
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