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Full Derivation of Model

In order to interpret our data we begin by making the simplifying assumption that our nanotube
behaves as a single-domain magnetic particle, i.e. its magnetization is uniform and rotates in unison.
For high enough applied fields, the nanotube is magnetized to saturation, and thus this single-
domain assumption is valid. We therefore describe the nanotube's magnetic state by the orientation
of its total magnetization vector M. More complex states deviating from this assumption will be
addressed separately later. Since the Ni nanotube is polycrystalline and does not exhibit magneto-
crystalline anisotropy, we assume the nanotube to exhibit only shape anisotropy. The total energy of
the system can be written as the sum of the cantilever energy, the Zeeman energy, and an effective
anisotropy energy:

E = ~ko(l:0)? — MVH cos(8 — ¢) + KV sin? ¢, (S)

where V is the volume of the nanotube, K is its anisotropy in the plane of the cantilever oscillation
and ¢ is the angle between M and 2'. In order to calculate ¢, we minimize the energy of the system
with respect to this angle. The solutions must satisfy both dE /d¢ = 0 and d2E /d¢p? > 0, giving:

HM sin(6 — ¢) = 2K cos ¢ sin ¢, (S2)
HM cos(8 — ¢) + 2K (cos? ¢ — sin? ¢p) > 0. (S3)

Solutions for ¢ are difficult to obtain exactly, however, since 8 < 1, we can expand ¢ as a function
of 0 to first order around 6 = 0:
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Returning to (S2) we find for 6 « 1:
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0= 1y SN ¢ + tan ¢. (S5)

Solving for ¢, at 8 = 0 and using (%) =1/ (%) we find solutions in the form of (S4).
P=¢o

Applying (S3) for ¢pq and 6 = 0, we find limits on the stability of each solution,
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We then substitute the expansion (S4) for ¢(0) into the expression for the torque acting on the
cantilever, T = — 0E /00 = —kyl,°0 — HMV sin(6 — ¢). Using (S2) and keeping only terms up to
first order in 6, we find,

7= =KV sin(2¢) — |kole” + 2KV cos(2¢bo) (%)0] 9. (S7)

The left-most term in (S7) produces a constant deflection of the cantilever, while the term
proportional to 6 determines the cantilever's spring constant. Approximating the cantilever as a
simple harmonic oscillator, we have:

mex + 'k = T (S8)
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where m, is the effective mass of the cantilever and I’ is the cantilever's dissipation. Therefore,
KV .
m,xX¥ +I'x + [ko 0s(2¢y) (ae) ] = —Ism(ZgbO). (S9)

Solving this equation of motion we find the angular resonance frequency of the cantilever:

0= [2+ 2 cos(20,) (‘;‘;’) S, (S10)
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We define wy = ’% and solve for the angular frequency shift Aw = w — wy:

Aw=w0<\/1+—zlzcos(2¢0)( )— - —1). (S11)
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Since the last two terms in the square-root are small compared to 1, we expand (S11) to first order
in these small parameters:

KV d r?
Aw =22 Zl?cos(Zd)O) (%)O -—| (S12)
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In practice, the cantilevers used in these experiments show a small enough dissipation that the last
term in (S12) is negligible, resulting in:

Aw =

s 20 |2V cos(2g) (35 ) | (S13)

Combining (S6), (S13), and Af = Aw/(2m), we calculate the expected frequency shifts as a
function of H:
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Singularities at H = + % reflect the break-down of the small angle approximation and the solutions

become invalid near this field. The first two solutions correspond to M pointing along +2
respectively. The third solution, valid only for K < 0, corresponds to M along an easy axis
perpendicular to Z (the implication of a negative K) and rotating toward 2 with increasing H.



Fabrication

Fig. S1: Motion picture of the sample fabrication, from optical micrographs. Two main steps are involved in
the process, first, glueing of the cantilever tip, and second, attachment of the Ni nanotube. In preparation, a
glass rod has been pulled to form a sharp tip and inserted into a micromanipulator setup.






Fig. S2: Scanning electron microscopy (SEM) images
showing the three configurations of the Ni nanotubes
N1, N2, and N3. Each nanotube is affixed to the end of
an ultrasensitive Si cantilever. The liquid-like material
visible on the cantilevers is likely due to hydrocarbon
adsorption during the long periods in the cryogenic
measurement system. This material is non-magnetic
and has not been seen to affect the magnetic response
of our measurements. Three schematic diagrams (1, 2,
and 3) show the corresponding plane of the cantilevers
oscillation, with the nanotube’s symmetry axis aligned

along 7, X, and J, respectively (see also main article,
Fig. 1).



Step-like Structures in Configuration 1

-0.03  -0.02 ,  0.02 0.03 Fig. S3: Cantilever magnetometry measurements in

| T | [T | T | configuration 1 (the nanotube’s symmetry axis is
aligned along Z). Red (blue) points represent data
taken while sweeping H in the positive (negative)
direction. Averaging times and step sizes taken vary
with each measurement.

At low fields between 150 and 250 mT the data show
step-like structures, the field positions of the steps vary
slightly with each measurement. These steps cannot be
described by a uniform magnetization model. The
presence of discrete steps indicates three to four multi
domain states (MDSs), intermediate between two
uniform axial states (UASs). Behavior asymmetric
with respect to the sweep direction may be due to
actual geometrical asymmetries of the Ni nanotube.
Steps around 4f'= 0 (for non-zero fields) may suggest a
preference for a global vortex state (GVS).
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Minor Hysteresis Loops
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Fig. S4: Cantilever magnetometry measurements in minor sweep ranges for the three major orientations.
Each column shows measurements from one of the major orientations as indicated by the schematic
diagrams at the top (configurations 1, 2, and 3). The lower two rows show measurements of Af as a function
of H in different ranges for each configuration. Red (blue) points represent data taken while sweeping H in
the positive (negative) direction. For the measurements, the nanotubes were magnetized to saturation
(IH]> 1.0 T), then starting at field I, the field was swept as illustrated by arrow II. At III, the sweeps were
stopped and resumed in the opposite direction along arrow IV. The closer the reversal point I1I is towards the
opposite saturated magnetization (i.e. the longer the field is swept along arrow II), the closer the final sweep
resembles the measurements taken during a full sweep (black points).



Sample Specifications

Si Cantilever Ni Nanotube
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1| 150 | 1054 (2288(())18'95)* 70410 | 25000 | N1 | 21.0£0.5 | 36048 | 303+5 | 4449 | 0.83+0.18
2 150 | 105.4 2093.8" 50£10 | 42000 | N2 | 19.8+0.5 | 38146 | 270+4 | 4449 | 0.77+0.16

2782.6 22000

3 150 | 1054 (2781.0) 50£15 (15000) N3 | 18.2+0.5 | 34945 | 274+5 | 4449 | 0.67+0.14

Table S1: Properties of the Si cantilever and Ni nanotube sample for each configuration. Numbers in
parentheses reflect the change in mass of the cantilever after one cool-down/warm-up cycle, likely due to
adsorption of hydrocarbons or water present in the air. "Here the frequency is significantly lower compared
to the other cantilevers of the same type. This frequency shift can be explained by an additional drop of
glue unintentionally put on the cantilever. *The volume of the nanotube is calculated as a shallow, truncated

cone:
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