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Supplementary Information Text 

 
1. Device information 
We have measured devices with four different twist angles [D1-1 (0.45°), D1-2 (0.44°), D2 (0.38°) 
and D3 (0.34°)]. Fig. S1 shows optical microscope images of corresponding stacks and devices. 
 
2. Gap opening at low magnetic field 
Fig. S2 shows the temperature dependent Rxx vs. n measured at different magnetic field B⊥. At zero 
magnetic field, all integer filling states exhibit a metallic behavior (Fig. S2A). Interestingly, at finite 
B⊥, these states start becoming thermally activated, showing an insulating behavior (Fig. S2B-D). 
As shown in Fig. S3, the gap values are extracted by fitting Rxx~exp (∆/2kT) temperature activated 
behavior for all integer filling states. We further demonstrate the evolution of gaps with magnetic 
field B⊥ (Fig. S4) for these state. All these gaps increase when magnetic field B⊥ becomes large 
until quantum Hall regime starts to dominate the transport. To understand the magnetic field 
induced metal-insulator transition in tBLG better, we have further measured the device D1-1 with 
tilted magnetic field (Fig. S5). By comparing Fig. S5a and Fig. S5B, we have found that the 
resistivity of all integer filling states is only sensitive to the perpendicular component of magnetic 
field. Our results indicate that it is orbital effect instead of spin that leads to the gap opening here. 
This is consistent with the fact that the Dirac nodes at a certain integer filling (if semi-metallic) are 
protected by a C2zT symmetry which does not act on spin (where T is the spinless time-reversal 
operator which does not act on spin) (1). Since in-plane field only acts on spin, it cannot gap out 
the Dirac nodes in the semimetallic case. In the case where the system has no Dirac nodes but a 
small gap, a small B⊥ would produce Landau levels and enlarge the gap, while an in-plane field 
shifts the spin up and down (pointing in-plane) bands oppositely and thus generically reduces the 
gap, which is also consistent with our experimental observation 
 
3. Hofstadter butterfly of tBLG with different angles 
In Fig. S7-8, we demonstrate magneto-transport results of three more devices (D2 0.38°, D3 0.34° 
and D1-2 0.44°). Similar with the spectrum shown in Fig. 2 in main text, all samples we have 
measured exhibit robust unbounded and connected features in Hofstadter spectrum. As shown 
continuous extension of LLs from the CNP to higher moiré bands shows a clear evidence of 
nontrivial band topology of tBLG, which otherwise would be obstructed. Similar with D1-1 shown in 
main text, (4, 0), (−4, 0), (8, 1) and (−8,−1) LL gaps are still dominant in the Hofstadter spectrum 
and crossing several moiré bands, giving an unbounded and connected Hofstadter butterfly in all 
devices. Some 𝐶 = 0 gaps also reappear in magnetic field, i.e. the (0, 0) gap starts to appear when 
the magnetic flux through one moiré unit cell is close to half quantized value 𝜙0 2⁄ , whereas (0, ±1) 

gaps reappear when the magnetic flux is above 𝜙0. We find that (0,±1) gaps in all measured 

samples are interrupted by (±4, 0) gaps that are emerging from the CNP. Moreover, (0,±2) gaps 

in device D2 and (0,−2) in device D1-2 also reappear above 𝜙0 and are further interrupted by 
(±4, 0) gaps.  
 
4. Hofstadter butterfly of fragile topology 
As demonstrated in Ref (2), the Hofstadter butterfly of the lowest two fragile topological bands of 
the single-valley tBLG continuum model (see SM Sec. 6 for definition) is always connected with the 
Hofstadter spectra of the higher bands at certain nonzero magnetic fluxes per moiré unit cell, which 
can be understood as the fingerprint of the fragile topology (this is specifically true for the tBLG 
continuum model here; see the last paragraph of this section for a brief discussion of generic C2zT 
fragile topology models). For large enough twist angles (> 2∘), the perturbation analysis in Ref (2) 
shows that the Dirac helicity 𝜂 = 2 at each graphene valley (which gives the fragile topology of the 

lowest two tBLG moiré bands) leads to two Chern gaps (±4,0) (counting the 4-fold spin-valley 
degeneracy) extending from the lowest two moiré bands to all the higher bands, which interrupts 
all the moiré band gaps (0, 𝑠) at nonzero integer fillings 𝑠 = 𝑛/𝑛𝑠. As a result, the Hofstadter 
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butterflies of all the moiré bands are connected together at nonzero magnetic fields. Numerical 
calculations in Ref (2) show that in a vast range of twist angle and relaxation parameter (see SM 
Sec. 6 for definition) including the parameters for the tBLG samples in our experiment, the 
Hofstadter spectrum of the lowest two moiré bands is connected with the spectrum of the higher 
bands at nonzero magnetic fluxes no larger than 𝜙/𝜙0 = 1. 
 
Here we also show in Fig. S9 (replotted from Ref (2)) the calculated Hofstadter butterfly for the ten-
band tight-binding model for tBLG (single spin and single valley) proposed by Ref (3), which 
faithfully characterize the fragile topology of the tBLG continuum model. In Fig. S9, we have 
multiplied all the Chern numbers of the Hofstadter gaps of the tight-binding model by 4, accounting 
for the 4-fold spin-valley degeneracy. One can clearly see that the Hofstadter spectrum of the 
lowest two bands is connected with the higher Hofstadter spectra at 𝜙 = 𝜙0, and the first moiré 
band gap (0, ±1) are interrupted by the Chern gaps (±4,0) from the CNP which extend all the way 
to higher bands. 
 
We note that depending on twist angle and the relaxation parameter, the lowest two moiré bands 
are not always gapped from the higher bands at zero magnetic field (in the absence of interactions). 
When there is no gap from the higher bands at zero magnetic field (for example, in the range of 
angles we study in this paper), the fragile topology of the lowest two moiré bands is in principle ill-
defined. However, it is shown in  previous work (1) that in all the tBLG parameter (twist angle) range 
where the lowest two moiré bands are gapped from the higher bands, the lowest two moiré bands 
are fragile topological. This shows that the gap closing and reopening between the lowest two moiré 
bands and the higher moiré bands in the entire tBLG parameter range do not alter the fragile 
topology of tBLG, and the Dirac helicity 𝜂 = 2 of each graphene valley at the CNP remains robust. 
As a result, for angles where the lowest two moiré bands are gapless with the higher bands, we 
find the fingerprint of the fragile topology, that the Hofstadter spectra of the lowest two moiré bands 
and the higher moiré bands are connected at nonzero magnetic field, remains unchanged. 
 
We also note that, in a generic symmetry analysis, a model with two fragile topological bands 
protected by C2zT symmetry could have their Hofstadter butterfly disconnected with that of the other 
bands, due to the T symmetry breaking in the zero field model (4). However, the disconnection of 
the Hofstadter butterfly requires a large enough T symmetry breaking; the C2x C2zT symmetry of 
the graphene model at any magnetic field also allows for Weyl points on the y-momentum axis. In 
particular, for the TBG continuum model, by both theoretical and numerical analyses, it is shown in 
Ref (2) that the Hofstadter butterfly connection between the lowest two fragile topological bands 
and the higher bands (in the range of nonzero magnetic fluxes including infinity) is stable for all the 
twist angles and relaxation parameters 0 ≤ 𝑢0 ≤ 1. 
 
 
 
5. Bandtructure of 0.45° tBLG and Hartree-Fock calculation 
We perform a self-consistent Hartree-Fock (HF) calculation for the continuum model to examine 
the effects of Coulomb interaction between electrons at integer moiré fillings 𝑛 = 𝑁𝑛𝑠 (𝑁 ∈ ℤ) at 
zero magnetic field. We take the Coulomb interaction 

𝐻𝐼 =
1

2
∑

𝑉(𝒒)

𝐴𝑡𝑜𝑡
𝑐𝛼,𝒌+𝒒
† 𝑐𝛼,𝒌𝑐𝛽,𝒌′−𝒒

† 𝑐𝛽,𝒌′
𝛼,𝛽,𝒒,𝒌,𝒌′

 , 

where 𝑉(𝒒) = 2𝜋𝑒2(1 − 𝛿𝒒,𝟎)/𝜖𝑞 is the Fourier transform of Coulomb interaction 𝑒2/𝜖𝑟 subtracting 

the background charge, 𝐴𝑡𝑜𝑡 is the total area of the system. 𝑐𝛼,𝒌 is the annihilation operator of the 

Dirac electron of the monolayer graphene at momentum 𝒌 (the plane wave basis), and 𝛼 is a 
shorthand notation for multiple indices: the sublattice 𝑎 = 𝐴, 𝐵, layer 𝑙 = 1,2, spin 𝑠 =↑, ↓ and 

graphene valley 𝜂 = 𝐾,𝐾′ indices (see also SM Sec. 6). The electron eigenstates are given by the 
single-particle mean-field Hartree-Fock Hamiltonian 

𝐻 = 𝐻0 + Σ𝐻 + Σ𝐹  , 
where 𝐻0 is the free continuum model Hamiltonian (see SM Sec. 6). The Hartree term and Fock 
terms take the form 
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Σ𝐻 = ∑
𝑉(𝒒)

𝐴𝑡𝑜𝑡
⟨𝑐𝛼,𝒌+𝒒
† 𝑐𝛼,𝒌⟩ 𝑐𝛽,𝒌′−𝒒

† 𝑐𝛽,𝒌′
𝛼,𝛽,𝒒,𝒌,𝒌′

  , 

Σ𝐹 = −[ ∑
𝑉(𝒒)

𝐴𝑡𝑜𝑡
⟨𝑐𝛼,𝒌+𝒒
† 𝑐𝛽,𝒌′⟩𝑐𝛽,𝒌′−𝒒

† 𝑐𝛼,𝒌
𝛼,𝛽,𝒒,𝒌,𝒌′

+ ℎ. 𝑐. ]  , 

where ⟨𝒪⟩ stands for the expectation value of operator 𝒪 from all the occupied electrons for a given 

electron filling 𝑛. We assume there is neither spontaneous translational symmetry breaking nor 
spontaneous polarization of spins and valleys. In general, translational symmetry breaking will 
enlarge the unit cell, and spin/valley polarization will break the 4-fold spin-valley degeneracy, both 
of which may lead to insulating states at non-integer fillings 𝑛/𝑛𝑠. Such non-integer filling insulating 
states are not observed in our experiment (see main text Fig. 1), so we assume translation 

symmetry and spin-valley degeneracy are unbroken. Thus ⟨𝑐𝛼,𝒌
† 𝑐𝛽,𝒌′⟩ is nonzero only if 𝒌 − 𝒌′ =

𝑚1𝒈1 +𝑚2𝒈2 (𝑚1, 𝑚2 ∈ ℤ) and 𝛼, 𝛽 belong to the same spin and valley, where 𝒈1 and 𝒈2 are the 
reciprocal vectors of the moiré superlattice.  
 
To perform the self-consistent calculation, we take a moiré momentum lattice cut off of the single-
particle Hamiltonian 𝐻0 so that it contains 146 bands (i.e., is a 146 × 146 matrix) per spin per valley. 

In the first step, we add to 𝐻0 a small Hermitian random matrix 𝐻𝑠𝑒𝑒𝑑  as a seed for all possible 

spontaneous symmetry breakings, and diagonalize 𝐻0 + 𝐻𝑠𝑒𝑒𝑑, after which we calculate the 
expectation values in Σ𝐻 and Σ𝐹 at the desired fixed filling. Then we iteratively diagonalize the full 

Hamiltonian 𝐻 = 𝐻0 + Σ𝐻 + Σ𝐹 (the initial seed is no longer added after the first step) and calculate 

Σ𝐻 and Σ𝐹 at the fixed filling until convergence (until the total Hartree-Fock energy 𝐸𝐻𝐹 = ⟨𝐻0 +
1

2
(Σ𝐻 + Σ𝐹)⟩ changes less than 0.01meV in one step). In the calculation of Fig. 1C and Fig. S10, we 

take 
|𝒈1|𝑉(𝒈1)

√3
= 10meV, relaxation parameter 𝑢0 = 0.3 (see SM Sec. 6), and add the random initial 

seed 𝐻𝑠𝑒𝑒𝑑  to allow for spontaneous symmetry breakings. 
 
Our Hartree-Fock calculations for integer fillings 𝑛 = 𝑁𝑛𝑠 with an initial Hermitian random matrix 

symmetry breaking seed 𝐻𝑠𝑒𝑒𝑑  show that the C3z symmetry is spontaneously broken, but C2zT is 

preserved. The Hartree-Fock band structures and the density of states for 𝑁 = 0,1,2,3,4 are shown 

in Fig. S10A and Fig. S11, respectively. For fillings 𝑛/𝑛𝑠 = 0,1,3,4, we find the band structures are 
semimetallic with 2 Dirac points at the Fermi energy. For filling 𝑛/𝑛𝑠 = 2, the band structure has a 
small indirect gap at the Fermi energy. Lastly, we comment that the realistic tBLG samples may 
also have external C3z breakings due to uniaxial strains, as revealed by scanning tunneling 
microscope experiments of tBLG (5-8).  
 
6. Hofstadter Butterfly Calculation 
We calculate the Hofstadter butterfly of the tBLG continuum model, which can be written in real 
space as 

𝐻0 = ∫ 𝑑2𝒓∑𝑐𝜂,𝑠
† (𝒓)

𝜂,𝑠

(
ℏ𝑣𝝈𝜂 ⋅ (−𝑖∇) 𝑇𝜂(𝒓)

𝑇𝜂†(𝒓) ℏ𝑣𝝈𝜂 ⋅ (−𝑖∇)
) 𝑐𝜂,𝑠(𝒓) , 

where 𝑐𝜂,𝑠(𝒓) = (𝑐𝐴,𝑡,𝜂,𝑠(𝒓), 𝑐𝐵,𝑡,𝜂,𝑠(𝒓), 𝑐𝐴,𝑏,𝜂,𝑠(𝒓), 𝑐𝐵,𝑏,𝜂,𝑠(𝒓))
𝑇

 is the free electron basis (𝑐𝑎,𝑙,𝜂,𝑠(𝒓) for an 

electron in sublattice 𝑎, layer 𝑙 = 𝑡, 𝑏 (for top and bottom), valley 𝜂 (= ±1 for K, K’) and spin 𝑠), 𝝈𝜂 =

(𝜂𝜎𝑥, 𝜎𝑦) are the Pauli matrices, 𝑇𝜂(𝒓) = ∑ 𝑇𝑗
𝜂
𝑒𝑖𝜂𝒒𝑗⋅𝒓3

𝑗 , and the 3 matrices 𝑇𝑗 are given by 

𝑇𝑗
𝜂
= 𝑤 (

𝑢0 𝑒𝑖2𝜋𝜂(𝑗−1)/3

𝑒−𝑖2𝜋𝜂(𝑗−1)/3 𝑢0
). 

The dimensionless parameter 𝑢0 characterizes the lattice relaxation. It equals to 1 when there is 

no relaxation. For 0.45°, we estimate the relaxation parameter to be 𝑢0 = 0.3 (9, 10), which we use 
in all of our calculations. Because of the presence of C2z symmetry and the absence of spin-orbital 
coupling, the Hofstadter butterflies of all the 2 spins and 2 valleys are identical (excluding the 
Zeeman energy). The Zeeman energy is negligibly small (0 < 𝐸𝑧 < 1.85 𝑚𝑒𝑉 for the magnetic field 
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range in the experiment, assuming the 𝑔 = 2) compared to the band energies, which is thus ignored 
in our Hofstadter butterfly calculations. 
 
In real samples, interlayer uniaxial strain may exist which breaks the C3z symmetry of tBLG (more 
information shown in SM Sec. 7). In addition, electron-electron interactions may also spontaneously 
break the C3z symmetry, as our Hartree-Fock calculations show (SM Sec. 5). We find the Hofstadter 
butterfly with a C3z symmetry breaking agrees better with the experimental data. In particular, 
adding C3z symmetry breaking allows us to reproduce the reemergence of the (0,0), (0,±1) and 

(0,±2) gaps at high B⊥ field (𝜙 > 𝜙0), one of the experimental details.  
 
The strain induced breaking of C3z symmetry is shown in SM Sec. 7, where due to strain the moiré 
Brillouin zone vectors 𝒒𝑗 for 𝑗 = 1,2,3 are no longer related to each other via three-fold rotation. The 

resultant moiré Brillouin zone is an irregular hexagon. Alternatively, the effect of the C3z symmetry 

breaking can also be incorporated in the interlayer hopping matrix by changing 𝑇1
𝜂
 into 𝛾𝑇1

𝜂
 (𝛾 is a 

dimensionless parameter) while keeping 𝑇2
𝜂
 and 𝑇3

𝜂
. In our Hofstadter butterfly calculations, we use 

the first approach to properly take strain into account (SM Sec. 7). We have verified that the 
qualitative features of Hofstadter butterfly are the same in both approaches.  
 
Furthermore, to partially include the effect of Coulomb interactions between electrons, we add the 
following term to the Hamiltonian 𝐻0 as an approximate Hartree term: 

𝐻𝐼 = 𝑈0∫ 𝑑
2𝒓∑(∑𝑒𝑖𝒈𝑗⋅𝒓

6

𝑗=1

)

𝜂,𝒔

𝑐𝜂,𝑠
† (𝒓) 𝑐𝜂,𝑠(𝒓), 

where 𝒈𝑗 are the six smallest reciprocal vectors of the moiré superlattice. Our Hartree-Fock 

numerical calculations at zero magnetic field show this is the leading term in the Hartree potential. 
The coefficient 𝑈0 depends on the electron filling fraction. For electron (hole) doping, 𝑈0 > 0 (𝑈0 <
0).  
 
The Hamiltonian is diagonalized in the Landau level basis of monolayer graphene |𝑙, 𝑁, 𝑌⟩, where 
𝑁 is the Landau level index, 𝑌 is the guiding center, and we have chosen the Landau gauge. In the 

Landau level basis, the matrix elements of the interlayer tunneling Hamiltonian 𝑇𝜂(𝒓) involves the 
evaluation of the following matrix element: 

⟨𝑡, 𝑁, 𝑌|𝑒𝑖𝒒𝑗⋅𝒓|𝑏,𝑀, 𝑌′⟩ = 𝛿𝑌,𝑌′+𝑞𝑗𝑥ℓ2𝑒
𝑖𝒒𝑗𝑦(𝑌+𝑌

′)

2 𝜒𝑁,𝑀(𝒒), 

 

𝜒𝑁,𝑀(𝒒𝑗) =

{
 
 

 
 
𝑒
−(
𝑞𝑗ℓ

2
)
2

√𝑀!

√𝑁!
(
(−𝑞𝑗𝑥 + 𝑖𝑞𝑗𝑦)ℓ

 √2
)

𝑁−𝑀

𝐿𝑀
𝑁−𝑀 (

𝑞𝑗
2ℓ2

2
)      𝑁 ≥ 𝑀

𝑒
−(
𝑞𝑗ℓ

2
)
2

√𝑁!

√𝑀!
(
(𝑞𝑗𝑥 + 𝑖𝑞𝑗𝑦)ℓ

 √2
)

𝑀−𝑁

𝐿𝑁
𝑀−𝑁 (

𝑞𝑗
2ℓ2

2
)      𝑀 > 𝑁.

 

 
 
Here 𝐿𝑀

𝑁  are the associated Laguerre polynomials. Hence the interlayer tunneling in the Landau 

level basis couples a guiding center 𝑌 from one layer to another guiding center 𝑌′ = 𝑌 ± Δ𝑗, where 

Δ𝑗 = 𝑞𝑗𝑥ℓ
2 from the other layer. Here ℓ is the magnetic length. For the C3z symmetric unstrained 

case, as well as for the C3z broken strained case under our choice of strain parameters (which 
constraints 𝑞2𝑥 = −𝑞3𝑥) (SM Sec. 7 and Fig. S13B), the interlayer term can be interpreted as a 1D 

lattice of guiding centers with nearest neighbor hopping and the lattice constant Δ = |𝑞2𝑥|ℓ
2.  

 
Similarly, the Hartree term 𝐻𝐼, couples the guiding center 𝑌 with the guiding centers 𝑌′′ = 𝑌 ± 𝛿𝑗, 

where 𝛿𝑗 = 𝑔𝑗𝑥ℓ
2within the same layer. The values taken by 𝑔𝑗𝑥are 0,±Δ/ℓ2, ±2Δ/ℓ2. In this guiding 

center chain picture, the Hartree term only further introduces next nearest neighbor hopping.  
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The guiding center chain becomes periodic for the rational flux ratio through the moiré unit cell, i.e. 
when  

𝐴𝑚ℓ
2 = 2𝜋

𝑝

𝑞
 , 𝐴𝑚 = 3√3|𝐾|2(𝜃2 − 𝜈2𝜖)ℓ2, 

For positive integers 𝑝 and 𝑞. Here |𝐾| = 4𝜋/3𝑎0, and 𝜖, 𝑣 are the strain and Poisson ratio [see SM 
Sec. 7]. The above relation for the area of the strained moiré Brillouin zone is only valid for the 
specific strain we have chosen for the purpose of numerical efficiency in Hofstadter butterfly 
calculation. In the limit of no strain one flux through moiré unit cell corresponds to B∼25 θ2 magnetic 
field in Tesla. In the guiding center chain picture, the number of orbitals on each guiding center site 
is set by the number of Landau levels kept within a cut-off to obtain convergent result for the 
Hofstadter spectrum. Overall the dimension of the matrix to be diagonalized is (4𝑁𝑐 + 2)𝑞, where 

the monolayer graphene Landau levels ranging from −𝑁𝑐to 𝑁𝑐 are kept within the cutoff. The value 

of 𝑁𝑐 is set by ∼ 500 𝑚𝑒𝑉 energy window on either side of Dirac point, with some variation for 
smoothing. Rest of the diagonalization procedure follows Bistritzer et. al (11).   
 
The gaps in the Hofstadter spectrum have associated topological indices (𝜎, 𝑠), where 𝜎 refers to 

the Hall conductivity and 𝑠 is associated with moiré band filling. To calculate these indices, we first 
notice the gaps in the Hofstadter spectrum and calculate the Landau level fulling 𝜈𝐿𝐿 at those gaps. 
Next the Landau level fillings are plotted as function of flux ratio. The gap trajectories plotted this 
way follow simple relation: 

𝜈𝐿𝐿 = 𝜎 + 𝑠
𝑝

𝑞
, 

and the integers 𝜎 and 𝑠 are simply the intercept and the slope of these gap trajectories.  
 
In Fig. S12B-C, we compare the Hofstadter butterflies for 𝑈0 = 0 (corresponding to no doping), both 

of which have a 0.4% strain breaking the C3z symmetry (see SM Sec. 7), and 𝑈0 = 10meV 

(corresponding to electron doping), where one can see the (4, 𝑠) gaps  (with 4-fold degeneracy from 
spin and valley) are suppressed by 𝑈0. This suggest that the absence of (4, 𝑠) gaps for 𝑠 ≥ 2 (where 
the sample is electron doped) in the experiment may be due to interaction effects.  
 
7. Uniaxial strain and C3z symmetry 
In general, both graphene layers are likely to experience strain that may be unavoidable during 
fabrication process. The signature of strain is observed in the spectroscopy data at the magic angle, 
where the C3z rotational symmetry broken moiré pattern is observed (5-8). Here we outline the 
procedure to take strain effects into account in our theoretical calculations.  
Let the vectors 𝑲𝑖, (for  𝑖 = 1,2,3) denote the momentum space position of the three 𝐾 valley points 
of a monolayer of graphene, such that: 

𝑲1 = (
|𝑲|
0
) , 𝐾2 =

(

 
−
|𝑲|

2

√3

2
|𝑲|)

 ,𝐾2 =

(

 
−
|𝑲|

2

−
√3

2
|𝑲|)

 , |𝑲| =
4𝜋

√3𝑎0
. 

 
 Rotation of a graphene layer by an angle 𝜃 is generated by the rotation matrix 

𝑅(𝜃) = (
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

), 

 
while application of uniaxial strain 𝜖 in a graphene layer along a strain direction at angle 𝜑 from 𝑥 -
axis is generated by the strain tensor 

𝑆(𝜖, 𝜑) = 𝑅(𝜑)−1 (
1 − 𝜖 0
0 1 + 𝜈𝜖

) 𝑅(𝜑), 

where 𝜈 = 0.12 is the Poisson ratio of graphene and the sign of 𝜖 dictates compression or stretch. 
 
We consider the tBLG under strain as a two-step process, first, the top and the bottom graphene 

layers are rotated by angles −
𝜃

2
 and 

𝜃

2
 respectively as shown in the Fig. S13A, then independent 

uniaxial strain 𝑆(𝜖𝑡 , 𝜑𝑡) and 𝑆(𝜖𝑏 , 𝜑𝑏) are applied to the two layers as shown in the Fig. S13B. The 
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hexagonal moiré Brillouin zone is constructed by taking the difference between the new positions 
of the three 𝐾 valley Dirac points of the two layers. 

𝒒𝑖 = 𝑲𝑖
𝑡 − 𝑲𝑖

𝑏 = [𝑆(𝜖𝑡 , 𝜑𝑡)𝑅 (−
𝜃

2
) − 𝑆(𝜖𝑏 , 𝜑𝑏)𝑅 (

𝜃

2
)]  𝑲𝑖  . 

     
In the limit of zero strain, the three high symmetry moiré vectors 

𝒒1 = (
0

−2𝐾 sin
𝜃

2

) , 𝒒2 = (
√3𝐾 sin

𝜃

2

𝐾 sin
𝜃

2

) , 𝒒3 = (
−√3𝐾 sin

𝜃

2

𝐾 sin
𝜃

2

) , 

shown in right of Fig. S13A are related by C3z rotational symmetry. The resultant moiré Brillouin 
zone is a regular hexagon. 
 
Generally under strain the C3z symmetry is broken and the moiré Brillouin zone is an irregular 
hexagon as shown in the Fig. S13B. For the numerical efficiency in the Hofstadter butterfly 
calculations, we consider the form of strain that deforms the hexagonal moiré Brillouin zone in a 
specific form shown in the Fig. S13C, which still breaks the C3z symmetry. For this specific kind of 
strain deformation, the strain in the top and bottom layer is generated by 𝑆(𝜖, 𝜑) and 𝑆(−𝜖, 𝜑) 
respectively. The strain angle 𝜑 is determined under the following constraints on the moiré Brillouin 

zone vectors 𝒒𝑖: 
𝑞1𝑥 = 0,  𝑞2𝑥 = −𝑞3𝑥 ,  

𝑞2𝑦 = 𝑞3𝑦 = −
𝑞1𝑦

2
 . 

We note that this way of breaking C3z makes 𝒒1 different from 𝒒2 and 𝒒3. The effect of such a 

deformation on the Hofstadter butterfly is similar to the effect of changing 𝑇1
𝜂
 into 𝛾𝑇1

𝜂
 (𝛾 is a 

dimensionless parameter) while keeping 𝑇2
𝜂
 and 𝑇3

𝜂
, as we have checked numerically. Heuristically, 

this is because enlarging 𝒒1 increases the on-site (momentum site) energy (the Dirac fermion term) 

difference between 𝒌 and 𝒌 + 𝒒1, which hop with each other by matrix 𝑇1
𝜂
; perturbatively, this is 

similar to reducing the magnitude of 𝑇1
𝜂
 while maintaining the Dirac kinetic energy difference (which 

is proportional to 𝒒1). At zero magnetic field, both ways of breaking C3z shift the Dirac points away 
from 𝐾𝑀 and 𝐾𝑀′ points in a similar way. 
 
8. Landau fan in the large magnetic field limit 
In the large magnetic field limit, both the experiment and the numerical calculation demonstrate 
that the Landau fan is dominated by (4, 𝑠), (8, 𝑠), …, where 𝑠 is an integer. Here we give a heuristic 
understanding of these gaps from the zero twist-angle limit. We note that at zero twist angle 
(assuming AB stacking), there are only two low energy graphene bands which are connected by a 
quadratic Dirac point of helicity 𝜂 = ±2 at each graphene valley (± signs for original graphene 
valleys K and K’, respectively). So if we view the two graphene valleys as decoupled, the Dirac 
helicity of each AB-stacked graphene valley matches the fragile topology of the tBLG.  
 
The quadratic Dirac point band touching at valley 𝜂 (𝜂 = ±1 for K and K’) of the zero-twist-angle 

bilayer graphene can be effectively described by a 𝑘 ⋅ 𝑝 Hamiltonian ℎ𝐵𝐿𝐺
𝜂 (𝑘) = 𝜂(𝑘𝑥

2 − 𝑘𝑦
2)𝜎𝑥 +

2𝑘𝑥𝑘𝑦𝜎𝑦. In a magnetic field, LLs are developed at the quadratic touching bands at each spin and 

valley, leading to in total 8 degenerate zero mode LLs, and 4-fold degenerate non-zero-mode LLs 
with energies linear in B. As a result, the system with 4-fold spin-valley degeneracy has LL gaps 
denoted by (4𝑡, 0) with 𝑡 = ±1,±2,⋯, where (𝐶, 𝑠) denotes a gap with Chern number 𝐶 and electron 

filling 𝑠 at zero magnetic field (𝑠 = 0 for CNP). Fig. S14A illustrates such LLs and the LL gaps 

between them, where gap A has Chern number 𝐶 = 4, and gap G has a Chern number 𝐶 = 8 
(counting the 4-fold spin-valley degeneracy). We note that this LL picture is valid because we are 
considering magnetic fields corresponding to negligibly small magnetic fluxes per original graphene 
unit cell; hence, we are not considering the Hofstadter butterfly of the bands of untwisted bilayer 
graphene in the original graphene Brillouin zone. The spectra are therefore well characterized by 

the LLs of the 𝑘 ⋅ 𝑝 quadratic Dirac Hamiltonian ℎ𝐵𝐿𝐺
𝜂 (𝑘) at two graphene valleys, and no Hofstadter 

physics in the original graphene BZ is expected. 
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In twisted bilayer graphene, at sufficiently large magnetic field, the Hofstadter spectrum can be 
thought of as adiabatically deformed from the LLs in the untwisted limit (see Fig. S14A-B), during 
which the original LL gaps in the untwisted limit remain open above a certain threshold magnetic 
field. With the two layers twisted relative to each other, a spatially periodic moiré superlattice 
potential arises, and defines a moiré unit cell (at zero magnetic field) of area Ω𝑚. Consider some 

large magnetic flux per moiré unit cell 𝜙 = 𝑝𝜙0, where 𝑝 is an integer (so the moiré superlattice 
translation symmetry is unbroken). Before we turn on the moiré potential, by Streda formula, the 
number of electron states each LL can accommodate per moiré unit cell is 𝑝. Therefore, when the 

moiré potential is turned on, each LL (per spin per valley) in the untwisted limit will split into 𝑝 

subbands. Each subband 𝑗 (1 ≤ 𝑗 ≤ 𝑝) has 𝑛𝑗 = 1 electron state per area Ω𝑚 and may carry some 

Chern number 𝜎𝑗 (∑ 𝜎𝑗
𝑝
𝑗=1 = 1). Fig. S14B gives some illustrative examples of the splitting of the 

first LL (at one spin one valley) into 𝑝 subbands at integer fluxes 𝑝 = 2,3,4,5, and the Chern numbers 

𝜎𝑗 of the subbands at each flux 𝑝𝜙0 are denoted by the red numbers. We note that here we only 

require 𝑝 to be large enough so that the original LL gaps (e.g., gaps A and G in Fig. S14B) are 
large enough (larger than the typical zero-magnetic-field moiré band widths) and remain open as 
the moiré potential is turned on. In our case of twist angles around 0.5∘, this requires 𝑝 greater than 
2 or 3.   
 

When the magnetic flux changes, by Streda formula, the number of electron states 𝑛𝑗 per area Ω𝑚 

of a subband 𝑗 at flux 𝑝𝜙0 satisfies 𝑑𝑛𝑗/𝑑𝜙 = 𝜎𝑗/𝜙0.  Therefore, if 𝜎𝑗 ≠ 0, a subband 𝑗 at flux 𝑝𝜙0 

cannot uniquely deform into a subband 1 ≤ 𝑗′ ≤ 𝑝 + 1 at flux (𝑝 + 1)𝜙0, since 𝑛𝑗 = 𝑛𝑗′ = 1. If a 

subband at flux 𝑝𝜙0 carry a negative Chern number 𝜎𝑗 < 0, its electron density will decrease to 

zero before or at flux (𝑝 + 1)𝜙0, so it has to merge with another subband. An example is the Chern 

number −1 subband at flux 2𝜙0 in Fig. S14B, which merges with another subband at flux 3𝜙0. If a 

subband at flux 𝑝𝜙0 has a Chern number 𝜎𝑗 > 0, it has to split into 𝜎𝑗 + 1 subbands (𝜎𝑗 > 0) as flux 

increases by 1 (for example, The Chern number 2 subband at flux 2𝜙0 and the Chern number 1 

subbands at fluxes 3,4,5𝜙0 in Fig. S14B). Therefore, a subband 𝑗 can adiabatically sustain itself as 

a single isolated subband for a wide range of magnetic fluxes only if its Chern number 𝜎𝑗 = 0 (e.g., 

the Chern number 0 subbands in Fig. S14B). Non-zero chern number bands have to split at some 
point as a function of the magnetic field. 
 
These subbands carrying Chern number 𝜎𝑗 = 0, which remain a single isolated subband for a wide 

range of magnetic field, then give rise to the series of gaps (4, 𝑠), (8, 𝑠) …, where (𝐶, 𝑠) denotes a 

gap with Chern number 𝐶 and electron filling 𝑠 = 𝑛(𝜙 = 0)/𝑛𝑠 at zero magnetic field, and 𝑛𝑠 =
4/Ω𝑚 with 4-fold spin-valley degeneracy considered. The reasoning is as follows: 
 
First, given that the original LL gaps (in the untwisted limit) remain open in a wide range of 
sufficiently large magnetic field (large magnetic fluxes per moiré unit cell, but still much smaller than 
one magnetic flux per microscopic graphene unit cell), they correspond to (4𝑡, 0) gaps in the tBLG 
(counting the 4-fold spin-valley degeneracy). For example, gaps A and G in Fig. S14B correspond 
to the (4,0) gap (occupying all the zero-mode LLs and below) and (8,0) gap (occupying the zeroth 
and first LLs), respectively.  
 
Then, in the illustrative Fig. S14B, the gaps C, D, E, F are separated with gap A by 1 to 4 Chern 
number 0 subbands, respectively. Accordingly, they correspond to a series of Chern number 4 

gaps (4,1), (4,2), (4,3), (4,4), respectively. In particular, they can remain open over a wide range 
of magnetic fluxes, since the Chern number 0 subbands separating them can remain isolated 
without restriction from the Streda formula. In contrast, gap B (with quantum numbers (0,3)), which 
differs from gap A by a Chern number -1 band at flux 2𝜙0, has to close readily at flux 3𝜙0. This 

shows that the splitting of the first LL by moiré potential would most likely give rise to the (4, 𝑠) 
series of gaps extending over a wide range of fluxes (and similarly (8, 𝑠) for the second LL, and 
higher). For the zero-th LLs, similarly they could develop a Hofstadter spectrum with certain (0, 𝑠) 
gaps remaining open in a wide range of magnetic fluxes at large enough magnetic field. 
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Experimental data (main text Fig. 2) and numerical calculation (Fig. S12) show that this can 
happen, e.g., the (0,0) and (±1,0) gaps (after they are interrupted by the (±4,0) gaps). 
 
9. Tight-binding model for Fig. 3A-B 
The Hofstadter butterfly in main text Fig. 3A-B are calculated with the following 2-band tight-binding 
model on a 2D square lattice (of lattice constant 1): 

𝐻TB(𝒌) = (𝑀 − cos 𝑘𝑥 − cos 𝑘𝑦)𝜎𝑧 + 𝐴(𝜎𝑥 sin 𝑘𝑥 + 𝜎𝑦 sin 𝑘𝑦) , 

where 𝑀 and 𝐴 > 0 are constants, 𝜎𝑥,𝑦,𝑧 are Pauli matrices in the band basis, and 𝒌 = (𝑘𝑥, 𝑘𝑦) is 

the quasimomentum in the BZ. We note that this model can be viewed as half of the Bernevig-
Hughes-Zhang model (13).  
 
The valence band and conduction band of this model both have Chern numbers 0 if |𝑀| > 2. In 

contrast, when |𝑀| < 2,  the valence band and conduction band have Chern numbers ±𝑀/|𝑀|, 
respectively. Fig. 3A is calculated by setting 𝑀 = 3 and 𝐴 = 2, for which both bands are trivial bands 

with Chern number 0. Fig. 3B is calculated by setting 𝑀 = 1 and 𝐴 = 2, for which the valence and 

conduction bands carry Chern number ±1, respectively. 
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Fig. S1. Optical microscope images of stacks and devices. Red lines in (A) mark the contact 
pairs which are further labeled as device D1-1 (0.45°). The contact pair indicated by yellow line is 
labeled as D1-2 (0.44°) with measured data shown in Fig. S8B. Device D2 (0.38°) and device D3 
(0.34°) are measured with contact pairs indicated by red lines in (B) and (C), with corresponding 
results displayed in Fig. S7 and S8. The outlines of fabricated Hall bars are demonstrated with the 
white dashed lines. All scale bars are 5 m. 
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Fig. S2. Magnetic field induced metal-insulator transition. Longitudinal resistance Rxx vs. 
carrier density n at various temperatures measured at a magnetic field B⊥ of 0T (A), 0.15T (B), 0.3T 
(C) and 0.45T (D). Data is measured from D1-1 (0.45°). 
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Fig. S3. Extraction of gaps in all integer filling states. (A-I) Longitudinal resistance Rxx vs. 
inverse temperature 1/T at various integer fillings n=Nns and B⊥ = 0.45T. The straight dashed lines 
are fits to Rxx ~ exp (∆/2kT) temperature activated behavior. Data is measured from D1-1 (0.45°). 
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Fig. S4. Gap evolution with B⊥ at all integer filling stages. (A-I) Magnetic field B⊥ dependent 
gaps at various integer fillings n=Nns extracted from Rxx ~ exp (∆/2kT) temperature activated 
behavior. Data is measured from D1-1 (0.45°). 
 
  



 

 

14 

 

 
 

Fig. S5. Rxx vs. carrier density n at various magnetic field. (A) Rxx vs. n at different perpendicular 
magnetic field B⊥. (B) Rxx vs. n at fixed total field B = 0.45T with different tilt angles.  Data is 
measured from D1-1 (0.45°) at a temperature of 1.5K 
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Fig. S6. Hofstadter butterfly measured from D1-1. Color plot of longitudinal conductivity 𝜎𝑥𝑥 =

𝜌𝑥𝑥 (𝜌𝑥𝑥
2 + 𝑅𝑥𝑦

2 )⁄  (A) and magnitude of hall conductivity /𝜎𝑥𝑦/= /𝑅𝑥𝑦/  (𝜌𝑥𝑥
2 + 𝑅𝑥𝑦

2 )⁄  (B) as a function 

of carrier density n and B⊥ measured at a temperature of 1.5K. Yellow solid lines indicate gaps with 
different Chern numbers and yellow dashed lines give sight guidance for tracing to different moiré 
bands. Black dashed lines mark the positions of magnetic flux values (𝜙0 2⁄  and 𝜙0) through the 
moiré unit cell.  
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Fig. S7. Hofstadter butterfly spectrum in 0.38° tBLG (D2). (A) Color plot of longitudinal 
resistance Rxx as a function of carrier density n and B⊥. Black and yellow solid lines indicate gaps 
with different Chern numbers and extended dashed lines give sight guidance for tracing to different 
moiré bands. The horizontal dashed lines mark the positions of magnetic flux values (𝜙0 2⁄  and 𝜙0) 
through the moiré unit cell. (B) Longitudinal conductivity 𝜎𝑥𝑥 and hall conductivity 𝜎𝑥𝑦 vs. carrier 

density n measured at a maximum magnetic field of 16T. Both (A) and (B) are measured at a 
temperature of 1.5K. 
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Fig. S8. Hofstadter butterfly spectrums measured from device D3 (0.34°) and D1-2 (0.44°). 
Color plot of longitudinal resistance Rxx as a function of carrier density n and B⊥ measured from 
device D3 (A) and device D1-2 (B). Inserts show optical images and measurement configurations 
of devices D3 and D1-2. Black and yellow solid lines indicate gaps with different Chern numbers 
and extended dashed lines give sight guidance for tracing to different moiré bands. The horizontal 
dashed lines mark the positions of magnetic flux values (𝜙0 2⁄  and 𝜙0) through the moiré unit cell. 
Both (A) and (B) are measured at a temperature of 1.5K. 
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Fig. S9. (A) The band structure of the ten-band tight-binding model (one spin one valley) in Ref 
(12) at zero magnetic field. (B) The Hofstadter butterfly of the ten-band tight-binding model, where 
(𝐶, 𝑠) labels a Hofstadter gap with Chern number 𝐶 (counting the 4-fold spin-valley degeneracy) 
and zero-magnetic-field filling 𝑠 = 𝑛/𝑛𝑠 per unit cell. Both figures are replotted from Ref (2). 
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Fig. S10. Band structures simulation. (A) The band structure of the 0.45° tBLG under the 

Hartree-Fock approximation considering Coulomb interaction 
|𝒈1|𝑉(𝒈1)

√3
= 10meV between electrons 

(𝑔1: moiré reciprocal vector) at various integer fillings n=Nns, where the Fermi energies are 
indicated with red dashed lines. The 2D band structures are plotted in the diamond (instead of 
honeycomb) moiré Brillouin zone (see the top insert in (A)), and viewed from the side perpendicular 
to the long diagonal of the diamond. For each filling, the C3z symmetry is spontaneously broken, 
and C2zT is preserved, allowing Dirac points away from high symmetry points of the moiré Brillouin 
zone. The first panel for 𝑛 = 0 is also shown in the main text Fig. 1(C). (B) The non-interacting 
band structure of tBLG calculated using the continuum model (without interaction), and plotted 
along the moiré Brillouin zone high symmetry lines shown in the top insert of (B). The lowest 8 
bands are connected among each other by Dirac points, and are gapped from higher bands, which 
is different from the Hartree-Fock interacting band structures in (A). All the bands presented here 
are 4 fold degenerate. 
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Fig. S11. Density of states in 0.45° tBLG continuum model with Coulomb interactions between 
electrons considered using the Hartree-Fock method at zero magnetic field, where we assume no 
spin or valley degeneracy breaking. The calculations are done for full moiré band fillings 𝑛 = 𝑁𝑛𝑠. 
The corresponding Hartree-Fock band structures are shown in Fig. S10A. Note that the energy 
values shown in x axis are relative to the Fermi energy values which are all set at zero (indicated 
by the grey dashed line). 
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Fig. S12. Calculated Hofstadter Butterfly of 0.45° tBLG. Hofstadter butterfly of the tBLG 
continuum model (one-spin one-valley) under different Hartree potential and C3z configurations. In 
(B) and (C), a 0.4% strain is considered and C3z symmetry is broken by a single particle term. A 
10meV Hartree potential is further considered in (C). 𝐶 = ±4 gaps are highlighted with light blue 
color with corresponding numbers denoting different s values. Yellow color in (B) highlights C=0 
gaps (𝑠 = 0, ±1, ±2) which reappear at high B⊥ field (𝜙 > 𝜙0). 
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Fig. S13. Strained tBLG. (A) Momentum space of tBLG without strain. The momentum space of 

top layer of graphene rotated by −
𝜃

2
 and bottom layer rotated by 

𝜃

2
. The momentum difference of 

the Dirac points of the two layers is used to construct the moiré Brillouin zone. (B) The rotated top 
and bottom layers are under independent uniaxial strain. The resultant momentum difference 
between the Dirac points are no longer related by C3z rotation symmetry. (C) The specific choice of 
strained moiré Brillouin zone used in the Hofstadter butterfly calculations.  
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Fig. S14. (A) Illustration of the LLs in the untwisted bilayer graphene at nonzero magnetic field. 
Counting the 4-fold spin-valley degeneracy, the LL gap A carries Chern number 𝐶 = 4, and the LL 

gap G has Chern number 𝐶 = 8. At zero magnetic field, all the LL gaps collapse to the CNP. (B) 
Illustration of large magnetic field Hofstadter butterfly of twisted bilayer graphene, which can be 
viewed as the LLs of the untwisted bilayer graphene splitting into moiré subbands, during which we 
assume the LL gaps of untwisted bilayer graphene (e.g., A and G) remain open (above certain 
threshold magnetic field). 𝜙/𝜙0 is the number of magnetic fluxes per moiré unit cell. For illustration 
purpose, only the splitting of the 1st LL is shown, while the splitting of the 0th LLs (per spin per 
valley) are not shown. The red numbers near the dashed vertical lines denote the Chern number 
𝜎𝑗 of the subbands (per spin per valley) at integer magnetic fluxes (the dashed vertical lines). 
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