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I. HOW CANTILEVER SIZE AFFECTS FORCE SENSITIVITY

A key component in any force microscopy is the force sensor. This device consists of

a mechanical transducer, used to convert force into displacement, and an optical or elec-

trical displacement detector. Although early atomic force microscopy (AFM) transducers

were simply pieces of gold or aluminum foil [31], specially designed and mass-produced Si

cantilevers soon became the industry standard and led to improved resolution and force sen-

sitivity [32]. These micro-processed devices are now cheap, readily available, and designed –

depending on the target application – to have integrated tips and a variety of other features

including coatings, electrical contacts, or magnetic tips.

Conventional ‘top-down’ cantilevers are well-suited for the measurement of the large

forces and force gradients present on the atomic-scale. Nevertheless, for some applications

sensitivity to small forces is crucial. These range from mass detection, to cantilever mag-

netometry, to scanning measurements of friction forces, Kelvin probe microscopy, electric

force microscopy, MFM, and force-detected magnetic resonance. This push towards higher

sensitivity has generated an interest in using ever smaller mechanical forces transducers,

especially those made by ‘bottom-up’ techniques. Researchers can now grow nanometer-

scale structures such as carbon nanotubes (CNTs) and NWs with unprecedented mechanical

properties. Unlike traditional cantilevers and other top-down structures, which are etched

or milled out of a larger block of material, bottom-up structures are assembled unit-by-

unit to be almost defect-free on the atomic-scale with perfectly terminated surfaces. This

near perfection gives bottom-up structures a much smaller mechanical dissipation than their

top-down counterparts.

The trend towards decreasing the size of mechanical transducers is based on fundamental

principles. For a thermally limited mechanical force transducer, the fluctuation-dissipation

theorem implies that the minimum detectable force and minimum detectable force derivative

are limited by the force noise spectral density SF = 4kBTΓ, where kB is the Boltzmann

constant, T is the temperature, and Γ is the resonator’s mechanical dissipation (friction

coefficient). In particular, the transducer’s force sensitivity is given by Fmin =
√

4kBTΓ.

Note that Γ = mω0/Q, where m is the motional mass of the mechanical resonator, ω0 is

its angular resonance frequnecy, and Q is its quality factor. In practice, this means that at

a given temperature, a well-designed cantilever force transducer must simultaneously have
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low mω0 and large Q.

For a cylindrical cantilever (e.g. a NW) we can apply Euler-Bernoulli beam theory to

relate its dimensions to force sensitivity. We find that mω0 ∝ d3/l, where d is the diameter

and l is its length. For sensitive transducers, experiments show that Q is limited by surface-

related losses1, which lead to a linear decrease of Q with increasing surface-to-volume ratio,

i.e. Q ∝ d. As a result, we see that Γ ∝ d2/l, meaning that long and thin cantilevers should

be the most sensitive. In fact, a review of real transducers confirms this trend. Furthermore,

if we fix the aspect ratio and scale each dimension of the cantilever uniformly by a factor

β, we find that Γ ∝ β and therefore Fmin ∝ β1/2. This implies that given a constant aspect

ratio, smaller structures will be sensitive to smaller forces.

High mechanical resonance frequencies are also attractive for sensitive force transducers,

since they allow for the measurement of fast dynamics and they decouple the sensor from

common sources of noise. A prominent example is the additional noise experienced by a

cantilever as its tip approaches a surface2,3. This so-called non-contact friction is largely due

to electronic fluctuators on the surface and typically has a 1/f -like frequency dependence.

As a cantilever approaches a surface, Γ usually increases and its force resolution suffers. Such

processes can be mitigated through the use of high-frequency cantilevers. When the resonant

frequency of the mechanical oscillator is much higher than the characteristic frequency of

the external noise, the resonator can be effectively decoupled from that noise. Since a

cantilever’s angular resonance frequency is given by ω0 ∝ d/l2 , if we scale each dimension

of the cantilever uniformly by β, we find ω0 ∝ 1/β.

Therefore, in order to simultaneously maximize ω0 and minimize Fmin, the entire structure

should be scaled down. This necessity for further reduction in cantilever size has positioned

bottom-up techniques as the fabrication methods of the future.
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II. OPTICAL SETUP FOR NANOWIRE MOTION DETECTION

The setup for the optical detection of the nanowire (NW) motion is entirely fiber-based.

Fig. S1(a) shows its terminal part4, which encases the fiber and the microscope lenses in

a titanium frame to minimize mechanical drift as a function of temperature. Given the

tiny amount of optical power interacting with the horizontal cross section of a NW (∼

200 nm), the use a high-NA focusing lens (as sketched in Fig. S1(b)) is desirable to keep the

displacement detection as localized as possible along the NW. The tightly focused spot also

maximizes the scattered light collection efficiency. The effective NA of the objective is 0.45

due to the slight mismatch in NAs between the fiber and the collimating lens.

The confocal arrangement of the lenses – with the fiber’s mode field diameter (MFD)

acting as a pinhole – allows for high imaging resolution and optical sectioning. In con-

focal microscopy, in fact, the final image is constructed by measuring an intensity for ev-
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FIG. S1: Fiber-based confocal reflection microscopy setup and beam waist estimation. (a) 3D

CAD microscope model. (b) Sketch of the optical setup. The lenses used are: Thorlabs 354430-C

aspheric lens with an outer diameter of 2 mm and a clear aperture of 1.6 mm for beam

collimation and Thorlabs 354140-C aspheric lens with an outer diameter of 2.4 mm and a clear

aperture of 1.6 mm for focusing.
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ery scanning position in the plane. The total coherent spread function (CSF) is given by

CSFtot = CSFillum ×CSFdet, where the former is determined by the field distribution of the

focused excitation Gaussian beam and the latter by the spatial filtering properties of the

pinhole (i.e. fiber’s mode field) in the image plane5.

A practical evaluation of the microscope’s performance at a wavelength λ = 1553 nm

can be obtained by scanning the NW in the beam’s waist area and collecting the reflected

signal (see Fig. S2(a)). The obtained map shows interference fringes superimposed to a

typical Gaussian waist profile. By taking a linecut along x at the focal plane (Fig S2(b)) –

because of the sub-wavelength width of the NW along the scanning direction – it is possible

to directly image the CSFtot itself and fit it with a Gaussian curve. The profile of the beam

incident on the NW, since in our case illumination and detection CSFs coincide, corresponds

to CSFillum =
√

CSFtot and has a waist w0 = 1.65 µm (see Fig. S2(c)). The measured waist

is close to the theoretically calculated value of 1.52± 0.15 µm for a polarization maintaining

fiber with MFD = 10.5 ± 0.5 µm. Deviations in the MFD and diffraction account for the

slight magnification measured when defocusing with respect to the collimating lens.

As shown in Fig S2(d), the interferometer response can be treated as a simple two-

component interference; multiple reflections in this low-finesse cavity can be neglected due

to the poor reflectivity of the NW and fiber’s cleaved facet6. The high visibility of the

fringes allows for steep gradients and an extended linear region around quadrature (intensity

I equal to its average value I0) with a constant response at the NW motion on the order of

few Vµm. By appropriately positioning the NW away from the optical axis, it is possible to

probe the motion along arbitrary directions (set by the intensity gradient) at the expense of

a decreasing sensitivity for angles progressively more orthogonal to the optical axis.

The choice of a standard communication wavelength and the relative low laser power of

25 µW allows us to neglect effects on the NWs’ dynamics such as bolometric forces, radiation

pressure, or changes in the Young modulus due to heating. This statement holds as long as

the the focal spot is aligned several µm from MnAs particle at the end of the NW. When the

focal spot overlaps with the MnAs tip, we observe heating up to 15 K in the displacement

PSD of the two NW modes, due to absorption of light by the MnAs particle.
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FIG. S2: Microscope characterization. (a) 2D map of the reflected light intensity as a function

of NW position in the beam’s waist (scale-bar 2 µm). The plot has been straightened by a

rotation of 2.8◦, indicating a small misalignment between the xy-scanners and the optical axis.

(b) Intensity linecut along x at the focal plane (dashed blue line in (a)). Measured points (gray

asterisks) are fit by a Gaussian curve with an offset given by the background noise (solid blue

line). (c) Comparison between the CSFtot (solid blue line) and the CSFillum (solid cyan line).

The CSFtot is taken as the normalized fitted intensity profile in (b) and the CSFillum as its

squared root. The measured characteristics of the incident laser beam are a waist w0 = 1.65 µm –

at which the intensity drops by a factor of 1/e2 – and a full width at half maximum

FWHM = 2 µm. (d) Intensity linecut along the optical axis (dashed green line in (a)). The

measured light intensity (gray asterisks) is fit (solid green line) as the response of a

two-component interferometer I = I0(1− V cos(4πy/λ+ φ)), where I0 is the fit average Gaussian

intensity (solid black line), V = (Imax − Imin)/(Imax + Imin) = 70% is the fringe visibility, and

wavelength λ = 1553 nm. The most sensitive operating points are located at quadrature (i.e.

where y is an odd multiple of λ/8) where the gradient is just given by ∂I/∂y = I0V 4π/λ. In

focus (I0 is maximum), ∂I/∂y = 1.65 V/µm.
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III. DISPLACEMENT CALIBRATION AND FORCE ESTIMATION

Scanning a NW sensor over a sample presents challenges and constraints, which are

not present in pendulum AFM with conventional soft cantilevers. Practically, the scanned

sample should not cut-off the beam’s optical power upon approach of the NW nor modulate

it while moving. At the same time, the profile of the first flexural mode (Fig S3(a)) requires

that the amplitude of NW deflection reduces as one moves from its tip towards its clamping

point. Given these two competing requirements, the working point on the NW has to be

chosen far enough from the sample, but still with a good dynamic range for measuring its

displacement.

In order to estimate the driving force from the mechanical response of each mode, it is

crucial to know their amplitude of the motion ri at the tip of the NW: given the first mode’s

normalized profile u(z), plotted in Fig S3(a), this can be calculated as ri = ri(zwp)u(zwp)
−1

by measuring the distance of the working point from the tip zwp.

In our setup, we can only finely position the NW with a limited scanning range of ∼ 2 µm

along the z-axis. Therefore, in order to crosscheck the value of zwp, we estimate u(zwp)

by fitting the thermally driven displacement noise power spectral density (PSD) at the tip

and at the working point, as shown in Fig S3(b). Both spectra are acquired projecting the

modes’ motion along the same measurement direction (i.e. optical gradient), coincident with

the optical axis (i.e. y-axis).

Each PSD, acquired at an arbitrary position z along the NW, is fitted by the sum of the

two independent Lorentian peaks:

S(ω, z) = (u(z))2(S1(ω) cos2 θ0 + S2(ω) sin2 θ0) + Sn =

= (u(z))2 4kBT

me

ω1

Q1

cos2 θ0

(ω2
1 − ω2)2 +

(
ω1ω
Q1

)2 +
ω2

Q2

sin2 θ0

(ω2
2 − ω2)2 +

(
ω2ω
Q2

)2

+ Sn (1)

where θ0 is the angle between r̂1 and ŷ, Sn is the measurement noise floor and me is the

effective mass of the resonator. It is important to point out that terms like Qi, ωi and θ0 can

be kept as fit parameters because of their independence, while T , me and u(z) contribute

to the overall scaling of the two Lorentians peaks and therefore only one of them can be

set as fit parameter. By acquiring the thermal noise PSD in several positions along the

NW as a function of the laser power, it is possible to figure out if T is greater than the
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FIG. S3: Optical working point calibration for NW2. (a) First flexural mode shape function for

singly-clamped nanowire of length LNW . The function u(z) is normalized to the maximum

displacement value rtip. (b) Zoomed plots around the two modes resonance frequencies

f1 = 581 kHz and f2 = 615 kHz of thermally driven PSDs acquired at the tip and at the working

point, as schematically shown in the inset. The raw spectral responses (gray dots) are fit by Eq 1:

at the tip, z ≈ 0, (dark gray solid line) the fit shows a slightly higher temperature T = 7.5 K ,

while at the working point z = zwp, (green solid line) the fitted curve – for T = 4.2 K – returns a

normalized mode displacement u(zwp) = 0.312, which means that the scanning measurements

were performed focusing the laser at a distance zwp = 0.52LNW = 8.8 µm from the tip.

base temperature and if it is independent of z. Since me is constant and set only by the

NW’s geometry and material properties, a lowering of the resonant frequencies is usually a

clear indication of heating. In our case, since we noticed an increase in temperature only

for the laser illuminating the MnAs tip, we extracted me by fitting the measured power of

each mode as a function of (u(z))2 along the NW above the tip, where T = 4.2 K. The

returned value of me = 780 fg is consistent - within 2% - with what expected from basic

geometrical considerations and more accurate COMSOL modeling of the NW structure and

mode shape.
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To summarize, the component of the force resonantly driving the mode i is calculated as

Fi = ki
Qi
ri = ki

Qi
ri(zwp)u(zwp)

−1, where ki = meω
2
i and ri(zwp) are obtained from the measured

projected displacement signal xrms as r1(zwp) = xrms cos θ0
−1 and r2(zwp) = xrms sin θ0

−1.

For the line scans, values of ki and Qi have been extracted from thermal noise spectra

acquired at each point, but the difference from the intrinsic values is negligible because of

the high value of Qi compared to the shift ∆ωi.
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IV. MICROMAGNETIC SIMULATIONS FOR NW MAGNETOMETRY

The core of the simulation is the calculation of the magnetic energy of the MnAs tip for

each value of the applied external field and for small tilt angles around the oscillation axis of

each NW mode (r̂1 ,̂r2). To define the problem’s geometry, we refer the hard axis direction

(θK ,φK) and every other possible misalignment to a principal reference system formed by

the NW axis n̂ and the direction of the two modes of oscillation r̂i. More specifically, for

each NW we take into account a small misalignment between n̂ and the external magnetic

field B (θB,φB) as well as the orientation of the tip itself with respect to the NW (θt,φt) (see

Table I below).

The deviation of the magnetic field with respect to the NW axis accounts for an imperfect

perpendicular growth of each NW with respect to the substrate and for a small tilt angle

of 2◦ along the optical axis ŷ of the NWs’ chip holder. This design ensures that the NWs

on the edge of the chip are the first objects to approach the bottom sample, avoiding any

unwanted contact due to an imperfect parallelism between the two.

(θK ,φK) (θB,φB) (θt,φt)

NW1 (4.2◦, 45.5◦) (2.5◦, 160.5◦) (4.7◦, 170◦)

NW2 (8◦, −9.5◦) (2.5◦, 110.5◦) (0◦, 0◦)

NW3 (68.3◦, 142.2◦) (5◦, 137◦) (20◦, 210◦)

TABLE I: Summary of the angles giving the best fit to

data for each NW.

n

r1

r2

K

t

B

In the simulation for NW1, shown in Fig.2 (b,c) of the main text, the two pinning

points are modeled in Mumax3 by freezing the magnetization on a region of 4 cells (∼

10 nm × 10 nm) along the entire tip’s height. In one case the magnetization is fixed along

−n̂ and in the other along +n̂. The second pinning point on the vortex trajectory (see

supplementary video) is not crucial for the evolution of the reversal process but counteracts

– in terms of energy – the presence of the first one, preserving the symmetry of the frequency

shift asymptotes for both the negative and positive high field limit.

In Fig. S4 and Fig. S5 we show the evolution of the simulated magnetization reversal for

NW2 and NW3 respectively (see also supplementary videos).
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FIG. S4: NW2. (a) Calculated frequency shifts. Insets: sketch of simulated tip, SEM close up
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FIG. S5: NW3. (a) Calculated frequency shifts. Insets: sketch of simulated tip, SEM close up

of NW3’s tip (scale bar 200 nm). (b) Magnetization states for relevant values of B. Each cell is

color-coded according to its magnetization component along r̂1.
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V. SIMULATED MAGNETIC FIELD PROFILE BAC

In order to calibrate the NW magnetic response over the line scan, the monopole and

dipole terms (q0 and m respectively) are extracted from the complete driving force expression

for each mode: Fi = q0BAC · r̂i +∇(m ·BAC) · r̂i + l−1
e (n̂× (m×BAC)) · r̂i. The Biot-Savart

field BAC, generated by a current driven through the Au wire constriction at the modes’

resonance frequencies, is calculated by the finite element simulation package COMSOL.

The (x,y) coordinates of the line scan with respect to the center of the wire are estimated

by the direct imaging of the sample’s topography7. Along ẑ, the distance dz = 250 nm

between the wire and NW’s tip is determined with a soft-touch onto the sample and con-

sequent retraction by the desired amount with the z-axis piezo scanner (the absence of

a direct calibration for this open-loop may introduce an error in the distance estimation

around ±10%).
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FIG. S6: Simulated magnetic stray field at a distance of 350 nm from the wire and for a current

IDC = 50/
√

2 µA flowing in +x direction, used to fit the measured driving forces Fi for NW2.

The field components are plotted separately over a 15 µm × 15 µm area centered above the Au

wire constriction (dashed line contour). Each inset shows the value of the field component in

correspondence of the acquired 10 µm-long line scan in +y direction.

Given the µm-sized dimension of the wire and the modest frequencies around 500 kHz,

the impedance of the wire is frequency independent, with a negligible reactive part; this

fact allows us to approximate the problem with the static case where a DC current IDC =

IAC/
√

2 flows through the wire. Following our point-probe approximation of the magnetic
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tip behavior, the best fit with the data is obtained by taking the stray field calculated at a

distance of 100 nm from the tip’s apex (see Fig S6).
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VI. SENSITIVITY TO DIFFERENT TYPES OF MAGNETIC FIELD SOURCES

In the experiments described in the main text, we find that our magnet-tipped NW has

a thermally-limited displacement (force) sensitivity of 16 pm/
√

Hz (4 aN/
√

Hz) at T =

4.2 K. Given the measured current transduction factor β = 0.26 nm/µA at the working

distance dz = 250 nm, we obtain a sensitivity to current flowing through our lithographically

patterned wire of 63 nA/
√

Hz. Because of the dipole-like character of the MnAs tip, this

transduction of current into displacement is dominated by the effect of the time-varying

magnetic field gradient generated by the current at the position of the tip: Fi ≈ ∇(m ·BAC) ·

r̂i = m·∇(BAC·r̂i). As discussed in the main text, the torque resulting from the time-varying

magnetic field acting on the tip also produces an effective force, Ti = l−1
e (n̂×(m×BAC)) · r̂i,

but this term is typically secondary. Therefore, in the following analysis we restrict ourselves

to considering the role of the magnetic field gradient. From COMSOL simulations of the field

profile produced by current flowing through the wire, we find the measured current sensitivity

to translate into a sensitivity to magnetic field gradient of Gmin = 11 mT/(m
√

Hz) at the

position of the tip’s effective point probe, i.e. dz + d = 350 nm above the surface.

As a result, in addition to knowing the sensitivity to the specifc current distribution

flowing through our lithographically defined wire, we can now calculate the NW’s sensitivity

to other sources of magnetic field. We simply need to calculate the appropriate magnetic field

gradient for each field source at the position of the probe and compare it to the demonstrated

gradient sensitivity. For a tip with both its dipole moment and one of its modes oriented

along x̂, the relevant component of the field gradient is x̂ · ∇(BAC · x̂) = ∂BAC,x/∂x. Then,

following a similar treatment by Kirtley8 for magnetic scanning probes, we calculate the

NW’s expected sensitivity to a magnetic moment (dipole field), a superconducting vortex

(monopole field), and an infinitely long and thin line of current (Biot-Savart field).

A magnetic moment M generates a magnetic field,

BM(r) =
µ0

4π

3r̂(r̂ ·M)−M

r3
, (2)

where r is the distance from the moment to the position of the probe and µ0 is the permeabil-

ity of free space. If M is made to flip up and down along the ẑ direction, e.g. using magnetic

resonance pulses as in magnetic resonance force microscopy9, it generates a time-varying

gradient, ∂BM,x/∂x. The amplitude of this gradient component is maximum directly above
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or below the magnetic moment (x = y = 0) and has the following dependence on the vertical

distance z: (
∂BM,x

∂x

)
max

=
3µ0

4π

(
M

z4

)
. (3)

We now take the maximum gradient component generated by a single electron, whose mo-

ment is given by the Bohr magneton µB. By comparing this term to our measured gradient

sensitivity Gmin, we find a sensitivity to magnetic moment in terms of µB/
√

Hz:

Mmin = Gmin

/(
∂BµB ,x

∂x

)
max

=
4π

3µ0

(
Gmin

µB

)
z4. (4)

If we assume the same tip-sample spacing as in our measurements of current flowing through

our lithographically patterned wire, z = dz + d = 350 nm, we find Mmin = 50 µB/
√

Hz.

We can carry through a similar procedure for the sensitivity to a superconducting vortex,

modeled as a magnetic monopole generating a field,

BΦ0(r) =
Φ0

2πr2
r̂, (5)

where r is the distance from the vortex to the position of the probe and Φ0 = h/(2e) is

the magnetic flux quantum. If the position of this vortex is modulated, it will generate a

time-varying gradient, ∂BΦ0,x/∂x. As before, the amplitude of this component is maximum

directly above or below the vortex (x = y = 0) and has the following dependence on the

vertical distance z: (
∂BΦ0,x

∂x

)
max

=
Φ0

2π

(
1

z3

)
. (6)

The sensitivity to magnetic flux in terms of Φ0/
√

Hz is then given by,

Φmin = Gmin

/(
∂BΦ0,x

∂x

)
max

= 2π

(
Gmin

Φ0

)
z3. (7)

Again, by assuming the same tip-sample spacing as in our measurements, z = dz + d =

350 nm, we find Φmin = 1 µΦ0/
√

Hz.

Finally, we calculate the expected sensitivity to an infinite line of current I generating a

field,

BI(r) =
µ0

2π

I× r̂

|̂I× r|
, (8)

where r is the distance from the current line to the probe position and I ‖ ŷ. By modulating

I, one can generate a time-varying gradient, ∂BI,x/∂x. The amplitude of this component
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FIG. S7: Magnetic field gradients due to different sources plotted in the xy-plane. Left:

∂BM,x/∂x resulting from a single electron at the origin with moment µB ẑ. Middle: ∂BΦ0,x/∂x

resulting from a single superconducting vortex at the origin. Right: ∂BI,x/∂x for I = 1 A of

current flowing through an infinitely long and thin wire along ŷ. All plots show the gradients

components in gray-scale in the z = 350 nm plane over a range of 2 µm× 2 µm.

is maximum in the planes defined by x = ±z/
√

3. In those planes, I produces a maximum

gradient amplitude with the following dependence on z:(
∂BI,x

∂x

)
max

=
3
√

3µ0

16π

(
I

z2

)
. (9)

The resulting sensitivity to a line of infinite current in terms of A/
√

Hz is given by,

Imin = Gmin

/(
∂BI,x

∂x

)
max

=
16π

3
√

3µ0

(
Gmin

I

)
z2, (10)

where I = 1 A. Assuming the same tip-sample spacing as in our measurements, z = dz+d =

350 nm, we find Imin = 9 nA/
√

Hz. Note the better sensitivity of the NW to an infinitely long

and thin line of current than to the test currents of our experiments, which are distributed

across a wider wire.

It is interesting to note the different scaling exponents of the tip-sample spacing in the

expressions for the sensitivity to the difference field sources. The magentic moment, super-

conducting vortex, and current line sensitivity scale with the 4th, 3rd, and 2nd power of z,

respectively. In particular, sensitivity to magnetic moment could be greatly improved by

smaller tip-sample spacing. The gain in the magnetic field gradient (proportional to z−4)

should more than compensate for the reduction of the effective tip moment interacting with

the sample moment (roughly proportional to z3).
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