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Abstract
Nanometer-scale structures with high aspect ratios such as nanowires and nanotubes combine
low mechanical dissipation with high resonance frequencies, making them ideal force
transducers and scanning probes in applications requiring the highest sensitivity. Such structures
promise record force sensitivities combined with ease of use in scanning probe microscopes. A
wide variety of possible material compositions and functionalizations is available, allowing for
the sensing of various kinds of forces. In addition, nanowires possess quasi-degenerate
mechanical mode doublets, which allow for sensitive vectorial force and mass detection. These
developments have driven researchers to use nanowire cantilevers in various force sensing
applications, which include imaging of sample surface topography, detection of optomechanical,
electrical, and magnetic forces, and magnetic resonance force microscopy. In this review, we
discuss the motivation behind using nanowires as force transducers, explain the methods of force
sensing with nanowire cantilevers, and give an overview of the experimental progress so far and
future prospects of the field.
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1. Introduction

Recent years have seen a dramatic reduction in the size of
mechanical elements that can be used as mass and force
sensors. For the most sensitive applications, micro-processed
Si cantilevers are starting to give way to bottom-up fabricated
structures such as nanowires (NWs) and carbon nanotubes
(CNTs). Bottom-up processes rely on self-assembly or driven
self-assembly and allow for the production of nanometer-
scale structures with atomic-scale precision. This trend
towards miniaturization is not arbitrary: smaller mechanical
transducers are inherently more sensitive. At the same time,
atomic-scale control in the growth of such structures presents
the opportunity to drastically reduce defects, improving
mechanical quality and therefore also ultimate detection
sensitivity.

Among the large variety of bottom-up nanostructures,
NW cantilevers are particularly promising mechanical sensors
due to their high aspect ratio. A long and thin NW that is
clamped on one end forms an ideal scanning probe, making it

amenable to a number of sensitive nanometer-scale imaging
problems. At the same time, its symmetric cross-section
results in orthogonal flexural mode doublets that are nearly
degenerate. These modes allow a NW to be used as a kind of
nanometer-scale force compass [1], such that both the mag-
nitude and direction of a force can be measured. When the
NW axis is oriented perpendicular to a sample surface, i.e. in
the pendulum geometry, this enables the vectorial transduc-
tion of lateral forces. Moreover, the pendulum geometry
allows a significant reduction of surface-induced dissipation
compared to the more conventional parallel configuration.
Furthermore, epitaxial growth allows the realization of NWs
from a number of materials as well as heterostructures of such
materials. In fact, due to their large surface-to-volume ratio,
NWs are able to accommodate larger strain than conventional
epitaxial films, allowing for the dislocation-free combination
of materials with large lattice mismatch [2].

The application of NWs to force sensing is proving
particularly apt. As highly sensitive scanning probes, NW
sensors have the ability to reveal subtle force fields with high
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spatial resolution. Unlike conventional atomic force micro-
scopy (AFM), which reveals large, close-ranged forces—in
some cases with atomic resolution—NWs are adept at dis-
cerning weak interactions. Ultra-low intrinsic mechanical
losses make NWs excellent probes of tip-sample dissipation, a
contrast which can be used to observe phase transitions as
well as the local density of states [3–5]. The capability of
nearly symmetric NWs to transduce lateral forces in two
directions allows for imaging the full vectorial character of
force fields. In particular, this enables the distinction of non-
conservative forces, such as optical or frictional forces, from
conservative ones, such as those arising from an electrical
potential. Functionalized with a magnetic tip, a NW cantilever
forms an excellent probe for the subtle magnetic field patterns
produced by nanometer-scale magnetization textures such as
domain walls, vortices, and skyrmions; superconducting
vortices; mesoscopic transport in two-dimensional systems;

and small ensembles of nuclear spins. Although NW force
sensors are just starting to be used for many of these appli-
cations, they have already been applied as the active sensors
in some of the most sensitive and highest resolution magnetic
resonance imaging experiments realized to date [6–8].

This review is structured as follows: section 2 gives an
introduction to the mechanical dynamics of NW cantilevers.
We first describe in section 2.1 flexural motion in a single
oscillation direction and with displacement amplitudes small
enough such that motion remains linear. Next, in section 2.2
we consider flexural motion in two different oscillation
directions and the effects of vectorial forces and spatial force
derivatives. This provides the conceptual background for the
detection of 2D forces and force derivatives. We then see that
shear force derivatives can lead to coupling between oscilla-
tions in two directions. As shown in section 2.3, such cou-
pling can be used to implement coherent two-mode dynamics,

Table 1. Experimentally determined parameters of singly-clamped NW cantilevers. Here the diameter d is the average cross-sectional width
and ω0/2π is the average frequency of the fundamental flexural mode doublet. The quality factor Q is the average value of the fundamental
flexural mode doublet, taken for a freestanding NW, far from any sample surface and measured at low ambient pressures. RT stands for room
temperature.

Material Cross-section d (nm) L (μm) ω0/2π (kHz) k (Nm−1) Q Reference

GaAs/AlGaAs Hexagonal 350 25 417 ´ -1 10 2 50 000 (4 K) [9, 10]
GaAs Hexagonal 234 16.8 598 ´ -8.3 10 3 46 553 (4 K) [11]
GaAs Hexagonal 100 <25 1197 ´ -8.3 10 3 4900 (RT) [12]
GaAs/AlGaAs Hexagonal 390 20 795 ´ -9 10 2 6700 (4K) [13]
GaAs Hexagonal 130 14.5 465 — 2000–3000 (RT) [14]
InAs Hexagonal 60–80 4–5.5 2023.9 ´ -3.6 10 3 1752 (RT) [15]
SiC Circular 150 52 113 ´ -4 10 4 2890 (RT) [1]
SiC Circular 200 50 78 ´ -1.5 10 4 1000 (RT) [16]
SiC Circular 120 165 6.7 ´ -3 10 6 3000 (RT) [17]
SiC Circular 284 128 33 — 36 000 (RT) [18]
SiC Circular 206 93 43 — 159 000 (RT) [18]
SiC Circular 50 7 1519 — 2500 (RT) [19]
SiC Circular 300 6 6140 1.5 33 (RT, Air) [20]
Si Circular 44 14.4 210.5 ´ -2.8 10 5 9250 (RT) [21]
Si Circular 46 12.9 273 ´ -6.6 10 5 7250 (RT) [21]
Si — 35 15 1060 ´ -6.5 10 4 25 000 (8 K) [6]
Si — 50 15 333 ´ -1.5 10 4 18 000 (6 K) [7]
Si Circular 50 15 197.5 ´ -2.0 10 5 3000–3500 (RT) [22]
Si Elongated

circular
60, 80 20 342 ´ -1 10 4 8150 (4K) [8]

Si Hexagonal 100–300 5–10 2000–6000 — 2000 (RT) [23]
Si Hexagonal 165 12.7 1772.4 — 3000 (RT) [24]
Si Hexagonal 90 9.3 2504.3 — 3000 (RT) [24]
Si Hexagonal 100–200 6–8 3500–4000 - ´ -2.4 5 10 2 3000–3500 (RT) [25]
Si Hexagonal 150 (clamp),

60 (tip)
11.3 2480 — — [26]

Si Hexagonal 39–400 2–20 1000–12 000 — 3000–25 000
(RT)

[27]

Si (metallized) Hexagonal 142 2.25 200 000 110.3 2000 (25 K) [28]
Si (metallized ) Hexagonal 118 2.1 188 000 62.9 2500 (25 K) [28]
Si Hexagonal 81 1.69 215 000 31.4 5750 (25 K) [28]
Si Hexagonal 74 2.77 80 000 6.0 13 100 (25 K) [28]
CNT Circular 50 18 270 ~ -10 4 250 (RT) [29]
CNT Circular 1–3 5 38 178.5 ´ -4.5 10 8 2245 (RT) [30]
CNT Circular 4 1.2 5955 ´ -2.1 10 5 — [31]
CNT Circular — — 363.5 ´ -4.8 10 6 571 (RT) [31]
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reminiscent of the dynamics of a quantum two-level system.
Finally, we treat nonlinear regimes of motion in section 2.4.
In section 3.1, we discuss the high force sensitivity of NW
cantilevers. In particular, we cover how the geometry of a
NW impacts its force sensitivity. In section 3.2, we discuss
optical methods of detecting NW displacement in two direc-
tions. In section 4, we give an overview of experimental
progress thus far and of the capabilities of NW transducers for
specific forces. We conclude the review with an outlook for
NW force transducers in section 5.

2. Mechanics of nanowire cantilevers

In this section, we give an overview of the mechanical
behavior of NW cantilevers. Both the geometry and the
material composition play an important role in determining
the mechanical response of a NW cantilever to externally
applied forces and force gradients, through its displacement
profile, resonance frequency, and energy dissipation. NWs
differ from conventional cantilevers in possessing a nearly
symmetric cross-section. As we will see, this property implies
that it is possible to use NW cantilevers as bidimensional
force sensors. It is therefore of key importance to carefully
choose the right type of NW for a specific force sensing
application. Fortunately, a wide variety of NWs has become
available in the last decades, produced either through bottom-
up methods or by a top-down approach. This offers
researchers a choice of many materials, heterostructures
combining different materials, and various types of functio-
nalization such as integrated quantum dots or magnetic tips.
Furthermore, fine control over the shape of NWs has been
demonstrated, yielding NWs with a tunable diameter, length,
and with a variety of different cross-sections. In table 1, we
list experimentally determined mechanical properties of var-
ious NW cantilevers found in literature.

In the following, we model the NW cantilever as a sin-
gly-clamped beam of length L and with a uniform cross-
section along its length. Figure 1(a) schematically indicates
the relevant parameters describing a singly-clamped beam
undergoing flexural motion in a plane. For the purposes of
force sensing, we are primarily interested in flexural modes
and we do not consider longitudinal and torsional vibrations,
since these modes are comparatively stiff and consequently
have much higher oscillation frequencies.

2.1. Linear motion of a single mode

The flexural eigenfrequencies and eigenmodes of a singly-
clamped beam can be derived analytically using Euler–
Bernoulli theory, which gives a valid approximation when L
is much larger than the cross-sectional dimension and when
rotational bending and shear deformation can be neglected
[32]. For a beam with a cross-section that is fully symmetric
around its center (such as a cylindrical beam), the bending
moment of inertia is independent of the oscillation direction.
As a consequence, flexural motion takes place in an arbitrary

direction. For very asymmetric beams, such as conventional
cantilever force transducers, which are flat, thin, and long, the
predominant flexural motion occurs in one direction. In both
cases, we can approximate the flexural motion by considering
motion in one dimension. In section 2.2, we consider NWs
with slightly asymmetric cross-sections, in which case we will
generalize the formalism to take into account a second
dimension of flexural motion.

As a starting point, we consider an idealized situation in
which there is no dissipation and we do not take any driving
forces into account. In this case, one can approximate the
effect of a transverse force to be a torque perpendicular to
both force and beam axes. An evaluation of the internal forces
and torques along a flexing beam yields the following
equation of motion:

r
¶

¶
+

¶
¶

=
( ) ( ) ( )E I

U z t

z
A

U z t

t

, ,
0, 1Y

4

4

2

2

with z referring to the position along the beam, EY the Young’s
modulus of elasticity, I the second moment of area, which
depends on the direction of flexural motion with respect to the
cross-section, ρ the mass density, and A the cross-sectional area.
This equation can be solved for the beam displacement U(z, t),
which can be separated into position- and time-dependent parts
such that = å w

=
¥( ) ( )U z t r u z e, n n n

i t
1

n . Here, we sum over the n
particular solutions, or modes, with un(z), rn, and ωn the one-
dimensional shape, amplitude, and eigenfrequency associated
with the nth mode, respectively. In order for rn to correspond to
the amplitude of cantilever displacement, we use the normal-
ization =∣ ( )∣u L 1n . Note that this normalization entails that the
n modes are orthogonal but not orthonormal.

Using the boundary conditions of a cantilever, i.e. that
one end of the beam is fixed (un(0)=0) and not bending
( ¢ =( )u 0 0n )) and that the other end is free to move (zero
torque: ¢¢ =( )u L 0n and zero transverse force: ¢¢¢ =( )u L 0n ),
for small displacements Euler–Bernoulli theory yields the
mode shapes:
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with C a normalization constant and βn the dimensionless
wavenumber of mode n. Figure 1(b) shows the first three of
these flexural mode shapes. The modes un(z) can now be used
in equation (1), resulting in the eigenfrequencies:

w
b

r
= ( )

L

E I

A
. 3n

n Y
2

2

Table 2 lists values of βn and normalized values of the
eigenfrequencies.

The eigenmodes and eigenfrequencies of equations (2) and
(3) correspond to the ideal case of a cantilever without dis-
sipation and without specifying any external transverse forces.
To describe realistic time-dependent behavior of the beam, we
must also include dissipation and external driving forces.
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Dissipation can be characterized by a quality factor, which is
defined as the ratio between the total stored energy of a reso-
nator and the energy lost per cycle: Q=2πE/ΔE. In terms of
the displacement, Q is a dimensionless constant describing
exponential decay: = å =

¥( )U z t, n 1 =w w-( ) ( )/r u z e en n
i t t Q2n n n

å =
¥ ( )U zn n1

w+( ( )/ei i Q t1 2 n n . Hence, we see that dissipation can
be incorporated by defining a new eigenfrequency equal
to w+( )/i Q1 2 n n.

Mechanical force sensors sensitively transduce forces and
force gradients into a change of displacement or resonance
frequency. To explain this in more detail, we now introduce
transverse driving forces of the form = w( ) ( )F z t F z e, i t

0 d . For
times long compared to transient time scales ( w /t Qn n), the
displacement of the beam follows the driving force and has the
form = å w

=
¥( ) ( )U z t r u z e, n n n

i t
1

d . In the following, we only
consider the motion of the free end (z=L) of the cantilever. By
adding F(L, t) to the right-hand-side of equation (1), we can
evaluate the complex displacement response of the free end of
the cantilever as a function of driving frequency ωd as:

w w c w
w

w w w
= º

- +
( ) ( ) ( ) ( ) ( )

/
r F

F

m i Q

1
. 4n d d n d

n eff n d n n,
2 2 2

Here F(ωd) is the Fourier transform of F(L, t) and χn(ωd) the
mechanical susceptibility of the NW cantilever. Note that the
displacement response given by the mode shapes requires
the use of a mode-dependent effective mass mn,eff rather than the
cantilever mass in describing the dynamical behavior of the
cantilever. This can be understood by considering that elements
of the beam located closer to its clamped end react to a trans-
verse force as if the local mass were higher than for
elements closer to the free end. In fact, the effective mass is

proportional to the square of the mode volume =mn eff,

ò r ( )∣ ( )∣
∣ ( ) ∣

z u z dV
u z n

1 2
n 0

2 and hence depends on the chosen

normalization of un(z) [33]. Furthermore, mn,eff depends on the
position along the beam z0 for which motion is evaluated. For
the fundamental flexural mode using our normalization condi-
tion =∣ ( )∣u L 1n , it has a minimum of m0,eff=M/4 for z0=L,
with M the cantilever mass. From here on we will use the
notation m≡m0,eff. Interestingly, equation (4) differs only
slightly from the response of a simple harmonic oscillator, for
which w /i Qn n

2 is replaced by w w /i Qd n n. The difference is
negligible for large values of Qn and disappears when driving
on resonance.

In the following, we will therefore approximate the
dynamics of a mode of a singly-clamped NW cantilever with
that of a driven damped harmonic oscillator, considering only
the displacement of the free end of the NW and assuming
near-resonant driving. For simplicity, we only consider the
fundamental flexural mode (typically the only one used in
force sensing) and consequently we drop the subscript n (with
the exception of ω0). For small NW oscillation amplitudes, we

Figure 1. (a) Schematic overview of a singly-clamped beam. Inset shows three cross-sectional beam shapes and corresponding moments of
inertia. (b) Mode shapes of the first three flexural modes of a singly-clamped beam (solid line: n = 0; dashed line: n = 1; dotted line: n = 2).
(c) Plot of displacement power spectral density of a thermally driven resonator, for typical values of Q, ω0 and SF,Th. SN is the power spectral
density of measurement noise. Arrows indicate the half maximum.

Table 2. Wave numbers βn and normalized eigenfrequencies ωn of a
singly-clamped beam.

n bn ωn/ω0

0 1.875 1.000
1 4.694 6.267
2 7.855 17.547
3 10.996 34.386
n 3 (n+1/2)π p b+[( ) ]n 1 2 0

2
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can approximate the force F acting on the NW around its
equilibrium displacement r=0 as F≈F(0)+rFr, with

º ¶ ¶ ∣F F rr 0. Writing the displacement r(t) of the tip of the
nanowire in an equation of motion of a damped driven har-
monic oscillator, we obtain:

+ G + - = +˙ ( ) ( ) ( )mr r k F r F F¨ 0 , 5r Th

where k is the mode spring constant and dots indicate dif-
ferentiation with respect to time. We see that spatial deriva-
tives Fr of forces acting on the NW modify the effective
spring constant of the NW. Stationary forces acting on the
NW provide a static offset of the cantilever displacement,
whereas time-dependent forces can drive the motion of the
NW and change its displacement amplitude, through the
spectral transfer function of the resonance shown in
equation (4). The aim of most force sensing experiments is
the measurement of the forces F(0) and force derivatives Fr.

The remaining terms in equation (5), Gṙ and FTh, corre-
spond to dissipation and thermal force noise, respectively.
Forces acting on the resonator typically do not only arise from
controlled interactions, but also include components origi-
nating from the cantilever being in contact with a thermal
bath. The noise in the resonator motion that results from this
interaction is observable in the most sensitive force sensing
measurements and is what typically sets the limit to their
sensitivity. We include further terms in the equation of motion
that account for energy dissipation and noise arising from the
resonator being in contact with a largely uncontrolled and
fluctuating environment of temperature T. This environment
consists of a large number of degrees of freedom, such as
those describing the motion of the molecules in the (typically
highly diluted) fluid through which the nanowire moves and
the phonon bath in the substrate to which the NW is attached
through its clamping point. We use a statistical approach to
include these effects in the equation of motion. The interac-
tions with the environment can be decomposed into a rapidly
fluctuating thermal force noise term FTh and a slowly varying
dissipation term proportional to the velocity of the resonator,
Gṙ (see [34]), with Γ=mω0/Q. While in thermal equili-
brium, these two terms are related through the fluctuation-
dissipation theorem [35], resulting in:

òG = á + ñ
-¥

¥
( ) ( ) ( )

k T
F t F t s ds

1

2
, 6

B
Th Th

where kB is the Boltzmann constant and the brackets á ñ...
indicate that an ensemble average is taken, here used in the
correlation function á + ñ( ) ( )F t F t sTh Th , with t and +t s
different points in time. To further describe the fluctuating
force term FTh(t), we use the power spectral density (PSD).
We define the force PSD SF(ω) as the Fourier transform of the
force correlation function:

òw t t w= á + ñ < < ¥wt

-¥

¥
( ) ( ) ( )

( )

S F t F t e d2 , for 0 .

7

F
i

Here SF(ω) is taken to be single-sided: since
á + ñ( ) ( )F t F t sTh Th is real, its Fourier transform is even. This
allows us to only take into account positive values of ω in

equation (7), provided we multiply the integral by 2. Fur-
thermore, note that from the inverse Fourier transform of
equation (7) we find that ò w wá ñ =

p

¥
( ) ( )F t S dF

2 1

2 0
. Corre-

lations in a thermal bath (other than those taken into account
for damping) usually exist only for extremely short times
(typically < 10−13 s). Therefore, for thermal noise we can
assume dá + ñ = G( ) ( ) ( )F t F t s k T s2Th Th B , resulting in the white
single-sided force PSD = GS k T4F Th B, .

The single-sided displacement PSD Sr(ω) can be simi-
larly expressed by combining the amplitude response function
of equation (4) with equation (7) as:

òw t t w

w c w
w

w w w

= á + ñ < < ¥

= =
- +

wt

-¥
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( ) ( ) ( )

( )∣ ∣ ( ) ( )
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S
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m Q

2 , for 0

1
.
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r
i

F
F2

2
0
2 2 2

0
4 2

We see that the mechanical resonator acts as a filter on the
driving force, with χ(ω) the filter transfer function. An impor-
tant example of this filtering effect is that spectrally white force
noise results in displacement noise with a nearly Lorentzian
spectrum with a maximum of w=S k TQ m4r Th B, 0

3. As dis-
cussed in section 3.1, this thermally induced displacement noise
is what ultimately limits the sensitivity of force detection.
Finally, we note that thermally induced phase noise (see
[32, 36] for a thorough treatment) similarly limits the frequency
stability of a mechanical resonator [37].

2.2. Linear motion of two orthogonal modes

For any cross-section that is symmetric around its center
point, the moments of inertia Ix and Iy are equal, resulting in
degenerate eigenmodes. The flexural oscillation direction in
the plane is arbitrary in this case. Then the formalism of a
single mode direction as discussed in the previous subsection
suffices to describe the motion. However, small asymmetries
in the cross-section or in the clamping conditions [21] lift this
degeneracy and split each mode into a doublet of modes
oscillating along orthogonal directions r̂1 and r̂2 (see figure 2).
For the fundamental flexural mode of NW cantilevers, this
results in a doublet with resonance frequencies that are typi-
cally split by a small fraction of these frequencies, but many
times their linewidths. Several groups working with NW force
sensors have observed orthogonal modes with frequency
splittings of the order of 103−104 Hz. Moreover, similar
orthogonal flexural modes can arise in doubly-clamped beams
and have been observed, for example, in carbon nanotubes
and SiN etched beams [38–40]. The use of such mode
doublets as a way to realize bidimensional force sensing
forms a major motivation for using NW cantilevers as force
transducers and we will treat it in detail in this review. The
mechanical dynamics of these mode doublets are very similar
to that of two coupled modes and we can therefore apply the
formalism of the previous subsection generalized to two
modes.

Taking into account both orthogonal modes, the equation
of motion can now be written in vectorial form as:

G+ + = +· ˙ · ( ) ( )mr r K r F F¨ 0 . 9Th
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Here the displacement and forces are vectors defined in the

basis of the two mode directions r̂1 and r̂2, i.e. º ( )r
rr 1

2
,

º
⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )
F
F

F 0
0
0

1

2
, and º

⎛
⎝⎜

⎞
⎠⎟

F
F

FTh
Th

Th

,1

,2
. The effective mass m is

taken to be equal for the two modes (see for experimental
verification of this the supplementary information of [1]), and
ri are the mode displacements. FTh i, and Fi represent thermal
force noise and other external forces acting on each of the two
modes, respectively. We use the small-displacement approx-
imation around ri=0, » +

¶
( ) ∣F F r0i i j

F

r 0
i

j
. Furthermore, we

define the dissipation and effective spring constant matrices

G º
G

G
⎛
⎝⎜

⎞
⎠⎟

0
0
1

2
and º

- -
- -

⎛
⎝⎜

⎞
⎠⎟

k F F
F k F

K 1 11 21

12 2 22
. We write the

four spatial force derivatives in shorthand notation as
º ¶

¶
∣Fij

F

r 0
i

j
,with i, jä{1, 2}.

We see that the force derivatives Fii cause a change in the
spring constant of each mode, similar to the single mode case.
The off-diagonal elements of K linearly couple the two
modes, resulting in two new hybridized modes. The eigen-
values of the hybridized modes obtained by diagonalizing the
K matrix can be expressed as the modified spring constants
(for G < <m k m2i i ):

¢ = + - -

 - - + +

[

( ) ] ( )

k k k F F

k k F F F F

1

2

4 . 10

1,2 1 2 11 22

1 2 11 22
2

12 21

The modified eigenfrequencies then follow as w¢ = ¢k mi i0, .
The directions of the corresponding new eigenmodes can be

written as:
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12

1 11 2
2

21
2
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1 11 2

We can further simplify (10) by making the assumption that
the force derivatives are much smaller than the bare NW
spring constants ki, which is usually satisfied. This yields
¢ » -k k Fi i ii and the following expression for the diagonal

elements of the force derivative matrix:

w w» - D=∣ ( )F k2 . 12ii r i i i0 0, 0,i

Here Δω0,i is the frequency shift of mode i induced by the
force derivatives. Using the same approximation, the off-
diagonal elements of the force derivative matrix (shear force
derivatives) can be deduced from the angle fi (see figure 2(b))
between the mode direction ¢r̂i in the presence of the force
derivatives and the bare mode direction r̂i to be:

f» - ¹=∣ ∣ ∣ ( ) ( )F k k i jtan for . 13ij r i j i0i

Note that in the situation where the NW cantilever is very soft
and strong force derivatives are probed, these approximations
are not valid and expressions for Fii and Fij remain slightly
more complicated. In this case, the effects of the external
force field dominate over the intrinsic NW mechanical
properties, and the new eigenmodes tend to align with the
eigenvectors of the force derivative matrix [16].

Equations (12) and (13) show that all in-plane force deri-
vatives can be determined from measurements of the fre-
quencies and oscillation angles of the two modes. The effect of
Fij on the two resonance frequencies is illustrated in figure 2(a).
Finally, we note that the hybridized modes remain orthogonal
as long as only conservative forces are included, in which case
F12=F21. For forces with a finite curl, such as those arising
from optical or frictional forces, ¹F F12 21 and orthogonality is
not maintained. In this situation, the standard fluctuation-dis-
sipation theorem is no longer a valid method of describing the
interactions of the bimodal NW with a thermal environment and
needs to be modified to include excess noise arising from the
non-zero curl of F [17]. An important further consequence of
non-orthogonality is that it becomes impossible to distinguish a
rotation of a mode from a change in mode temperature without
a full vectorial read-out as described in section 3.2.

The forces F and FTh are two-dimensional general-
izations of the forces acting on a single mode. As for a single
mode, stationary forces F1 and F2 yield a static offset in the
NW displacement, now for each mode direction. Time-
dependent forces drive the modes, leading to mode dis-
placements given by a generalization of equation (4):

^w w c w= Î¢ ¢ ¢( ) ( ) · ( ) { } ( )r i jF r with , 1, 2 , 14i ii

with ¢r̂i the unit vector along the oscillation direction and
c w¢( )i the susceptibility of mode i, respectively. As described
before, the force derivatives acting on the NW lead to the
modified spring constants ¢ki and mode directions ¢r̂i, resulting

Figure 2. (a) Plot of thermal displacement PSD of a nearly-
degenerate mode doublet. Arrows indicate the effect of the force
derivatives Fij on the resonant frequencies. (b) Schematic picture of
rotation of mode directions under the influence of off-diagonal force
derivatives F12 and F21. Modes 1, 2 oscillate in the directions of the
unit vectors r̂1 2, . The force derivatives δ F12 and δ F21 rotate the
mode oscillation directions to point along the new unit vectors ¢r̂1 2, .
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in the new susceptibilities c w¢( )i . Figure 3(b) and (c) show
how measurements of the displacement amplitudes and pha-
ses of both modes as a function of driving frequency can be
used to reconstruct the full vectorial driving force.

2.3. Coherent two-mode dynamics

As mentioned in the above, the shear force derivatives Fij,
with ¹i j, couple the motion in the two modes. Interestingly,
the resulting hybridized eigenmodes display coherent
dynamics similar to that of quantum two-level systems.
Coherent two-mode phenomena such as avoided mode
crossings and Rabi oscillations have been observed in clas-
sical systems including modes of optical ring resonators [41]
and recently also in nanomechanical resonators [39, 40, 42].
Furthermore, coupling of the orthogonal fundamental flexural
modes of a NW cantilever was demonstrated through the
measurement of avoided crossings of the mode frequencies
[10], see figure 4(a). In the same experiment, Rabi oscillations
were demonstrated through the use of time-dependent electric
field derivatives, see figure 4(b). The NW was embedded in a
scanning probe setup, which made it possible to tune both the
coupling strength and the Rabi frequency by positioning the
NW inside the electric field provided by the sample. Such
coherent two-mode dynamics do not only illustrate the
similarities of quantum and classical wave mechanics, but can
also be used to enhance force sensing. In particular, coherent
pulse sequences reminiscent from quantum control techniques
[43], such as Hahn echoes and dynamical decoupling, give
the potential to increase the frequency stability of mechanical
sensors, ultimately leading to higher sensitivities. Further-
more, such pulsing techniques make it possible to implement
a range of noise spectroscopy methods in classical force and
mass sensing [43].

Figure 3. (a) Illustration of two orthogonal flexural modes in a NW cantilever. (b) Illustration of projection of vectorial forces onto mode
directions, in the absence of spatial force derivatives. (c) Displacement amplitude and phase response of two modes as a function of driving
frequency. The green and purple curves correspond to the response to the two forces indicated in (b) with the same colors. The displacement
of each mode allows to extract the magnitude of the force component along that mode direction. The phase response of this mode with
respect to the driving then allows to determine the sign of the force component along each mode direction. Reprinted by permission from
Macmillan Publishers Ltd: [Nature Nanotechnology] [9], Copyright (2017).

Figure 4. (a) Mode frequencies as a function of voltage applied over
two nearby surface gates, for two different positions of the NW tip
inside the electric field. (b) Integrated displacement amplitudes of
both modes as a function of Rabi pulse duration. Points indicate
measured data, solid lines are fits to the data. Note that the offset in
the measured Rabi oscillations is due to thermal excitation of the
mode. Different offsets result from the difference in angle of the two
mode directions with the read-out vector. Reprinted with permission
from [10], Copyright (2018) by the American Physical Society.
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2.4. Nonlinear motion

In force sensing, nonlinear regimes of motion are typically
avoided. However, in nanomechanical resonators such as
NWs, nonlinear motion typically arises already for modest
driving amplitudes and therefore needs to be considered.
Moreover, nonlinearities can be put to good use, since they
allow to implement amplification of forces through parametric
driving [32] or through mechanical mixing [44]. Furthermore,
parametric driving allows one to increase the ratio of trans-
duced force signal to read-out noise [45]. In the last part of
this section, we treat the situation in which the displacement
of the NW cannot be considered to be small anymore and
nonlinear terms need to be added to the equation of motion
that depend on the oscillation amplitude.

It can be shown that for the fundamental flexural mode of
a cantilever, the geometric nonlinearity, associated with the
lengthening of the beam as it flexes, dominates over other
nonlinearities, such as the inertial nonlinearity [46–48]. The
first relevant higher-order terms are a damping term, as well
as an effective spring constant term, that both have a quad-
ratic dependence on the oscillation amplitude. For a single
mode, this results in the following equation of motion [49]:

h a+ G + + + = + +˙ ˙ ( ) ( )
( )

mr r r r kr r F F F r¨ 0 0 .
15

Th r
2 3

The coefficient α parametrizes the strength of the cubic
(Duffing) nonlinearity, whereas η is the coefficient of non-
linear damping (note that here we contracted m into α and η).
For weak damping and weak anharmonicity, other second-
and third-order terms can be absorbed into the coefficients α
and η [50, 51]. The equation of motion (15) leads to an
amplitude response as a function of driving frequency with a
characteristic shark-fin shape, as shown in figure 5. This
lineshape is a consequence of equation (15) having two stable
solutions within a certain frequency range. This bistability
leads to the switching phenomena seen for high driving
amplitudes at the right flank of the response peak
(figure 5(a)). Which of the two solutions is realized, is
determined by the initial conditions, and mechanical hyster-
esis can be observed when adiabatically sweeping the driving
frequency or driving amplitude up and down (figures 5(b) and
(c)). When α is positive (negative), the Duffing nonlinearity
increases (decreases) the effective spring constant with
increasing driving amplitude, thus stiffening (softening) the
motion. The magnitude and sign of α has been demonstrated
to be tunable both through the shape of the NW [14], as well
as through feedback using a nearby gate electrode [22]. The
nonlinear damping term has the effect of decreasing the shift
of the frequency of maximum response amplitude due to the
Duffing nonlinearity, as well as decreasing the size of the
hysteresis loop. Nonlinear damping has so far not been
demonstrated for NW cantilevers. Finally, note that the
dependence of mode frequencies on the displacement can lead
to coupling between the two orthogonal modes. Considering
only the Duffing nonlinearity, the nonlinear term for two
modes becomes a∣ ∣r r;2 this term induces a coupling between
two modes. The coupling can be observed as a quadratic shift

of a mode frequency as a function of the oscillation amplitude
of the other mode (see figure 5(d)).

Notwithstanding its potential for force amplification,
nonlinear motion has so far not been used in experiments on
force sensing with NW cantilevers. In the following sections,
we therefore only consider the operation of NW force trans-
ducers in a linear regime of motion.

3. Force sensing with nanowire cantilevers

3.1. Force sensitivity

The key component in any force microscope is the force
sensor. This device consists of a mechanical transducer, used
to convert force into displacement, and an optical or electrical
displacement detector. Although early AFM transducers were
simply pieces of gold or aluminum foil [52], specially
designed and mass-produced Si cantilevers soon became the
industry standard and led to improved resolution and force
sensitivity [53]. These micro-processed devices are now
cheap, readily available, and designed—depending on the
target application—to have a variety of features including
coatings, electrical contacts, or magnetic tips.

Conventional top-down cantilevers are well-suited for the
measurement of the large forces and force gradients present
on the atomic-scale. Nevertheless, for some applications
sensitivity to small forces is crucial. These range from mass
detection, to cantilever magnetometry, to scanning measure-
ments of friction forces, Kelvin probe microscopy, electric
force microscopy, magnetic force microscopy (MFM), and

Figure 5. (a) Displacement as a function of driving frequency, for
various amplitudes of piezoelectric driving. (b) Displacement as a
function of driving frequency (at a driving amplitude of 17 mV), for
two sweep directions (as indicated by arrows). (c) Displacement as a
function of driving amplitude (at a driving frequency of
1.326 77 MHz), for two sweep directions. (d) Frequency shift of one
mode as a function of amplitude of piezoelectric driving of
orthogonal mode. Reprinted from [44], with the permission of AIP
Publishing.
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force-detected magnetic resonance. This push towards higher
sensitivity has generated an interest in using ever smaller
mechanical force transducers, especially those made by bot-
tom-up techniques.

The trend towards decreasing the size of mechanical
transducers is based on fundamental principles. Once the
detection of a transducer’s displacement is optimized, the
minimum detectable force Fmin is ultimately limited by the
thermal force fluctuations acting on the transducer, whose
PSD, as discussed in section 2.1, is given by SF,th. As a result,

= = G ( )F S k T4 , 16F th Bmin ,

Optimizing sensitivity therefore involves reducing the oper-
ating temperature and the dissipation. Note that efforts aimed
purely at increasing mechanical quality factor may not
necessarily minimize Fmin. Work on so-called ‘damping
dilution’, uses tension applied to strings or membranes to
increase resonant frequency ω0 while holding Γ constant,
thereby increasing Q [48, 54–57]. Although these methods do
not improve Fmin, they do reduce the thermal decoherence
time, which is important for experiments seeking to probe
macroscopic quantum superposition states [58].

The sensitivity to a number of measurements is closely
related to Fmin [59]. For example, the minimum detectable force
gradient is given by ¶ ¶ =( )F x F xmin min osc, where xosc is the
root-mean-square oscillation amplitude of the transducer. Can-
tilever beams are also excellent torque transducers and, for
some applications, torque is the measurement quantity of
interest, e.g. in torque magnetometry. A cantilever’s thermally
limited torque sensitivity is given by τmin=le Fmin, where le is
the effective length of the cantilever, which takes into account
the shape of the flexural mode [60]. Finally, for experiments
that measure energy dissipation, Γmin=Fmin/(ω0xosc).

In practice, this means that at a given temperature, a well-
designed cantilever transducer must simultaneously have low
mω0 and large Q. In the limit of long and thin cantilever
beams, the Euler–Bernoulli equations imply that mω0∝d3/l,
where d is its diameter and l its length. For sensitive trans-
ducers, experiments show that Q is limited by surface-related
losses, which lead to a linear decrease of Q with increasing
surface-to-volume ratio, i.e. Q∝d [61]. As a result, we see
that Γ ∝ d2/l, implying that long and thin cantilevers should
be the most sensitive. In fact, a review of real transducers
confirms this trend.

High mechanical resonance frequencies are also attrac-
tive for sensitive force transducers, since they allow for the
measurement of fast dynamics and they decouple the sensor
from common sources of noise. A prominent example is the
additional noise experienced by a cantilever as its tip
approaches a surface [62, 63]. This so-called non-contact
friction is largely due to electronic fluctuators on the surface
and typically has a 1/f-like frequency dependence. As a
cantilever approaches a surface, Γ usually increases and its
force resolution suffers. Such processes can be mitigated
through the use of high-frequency cantilevers. When the
resonant frequency of the mechanical oscillator is much
higher than the characteristic frequency of the external noise,
the resonator can be effectively decoupled from that noise.

A cantilever’s angular resonance frequency is given by
ω0∝d/l2. Therefore, if we scale each of its dimensions
uniformly by a factor β, we find that ω0∝ 1/β, while Γ ∝ β.
Therefore, in order to simultaneously maximize ω0 and
minimize Γ, the entire structure should be scaled down. Fmin

∝ β1/2, and because of the additional contribution of the
cantilever’s effective length le ∝ β, τmin ∝ β3/2. Reducing all
dimensions while preserving the aspect ratio of a long and
thin cantilever beam should thus optimize its ultimate force
and torque sensitivity. This necessity for further miniatur-
ization has positioned bottom-up techniques as the fabrication
methods of the future.

In recent years, remarkable progress has been made in
this direction with force sensors made from doubly-clamped
CNTs [64], suspended graphene sheets [65], and NW canti-
levers [1, 9, 16]. In two separate papers, Moser et al
demonstrated the use of a CNT as a sensitive force sensor
with a thermally limited force sensitivity of 12zN/ Hz at
1.2 K in 2013 [38] and then of 1zN/ Hz at 44 mK in 2014
[66]. Given their geometry, graphene resonators are extremely
difficult to apply in scanning probe applications. Singly-
clamped NWs and CNTs on the other hand, when arranged in
the pendulum geometry—that is, with their long axes
perpendicular to the sample surface—are well-suited as
scanning probes. Their orientation prevents the tip from
snapping into contact [67]. When brought close to a surface,
NWs experience extremely low non-contact friction [6],
making near-surface (<100 nm) force sensitivities around
1aN/ Hz . As a result, NWs have already been used as
scanning probes in a variety of proof-of-principle experiments
discussed in section 4.

3.2. Displacement detection

As discussed above, the force transducer sets the fundamental
sensitivity limits of any force sensor. However, for a force to
be measured, the transducer’s displacement must be detected.
Therefore, in order to achieve the sensor’s ultimate sensitiv-
ity, a displacement detection scheme sensitive enough to
detect the transducers thermal motion is required. The dis-
placement of conventional AFM cantilevers is measured
through the deflection of a laser beam reflected off of the
cantilever and onto a split photodetector. Although this
scheme works well for cantilevers with flat surfaces large
enough to specularly reflect a laser beam, it is not well-suited
for NWs. Given their shape and sub-wavelength diameter,
diffraction effects emerge and an alternative means of dis-
placement detection must be employed.

To circumvent this challenge, researchers have devel-
oped a number of optical [25, 27, 68–71] and non-optical
techniques, including electron beam [72], piezoresistive [73],
magnetomotive [28], and capacitive [64, 74] displacement
detection. None of these, however, are compatible with sen-
sitive scanning probe microscopy (SPM) applications, in
which the NW cantilever’s thermal motion must be non-
invasively detected while its tip is positioned close to the
surface of a sample. Most recently, a pair of optical techni-
ques based on optical interferometry or scattering have been
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shown to be compatible with SPM applications, while at the
same time providing access to both the amplitude and
direction of the NW displacement [1, 9, 11, 16, 21]. A
technique in which the electron beam in a scanning electron
microscope (SEM) is focused on a cantilever and the inelas-
tically scattered electrons are detected also resolved thermal
displacement fluctuations of a singly-clamped CNT [31]. This
scheme was subsequently integrated into a SPM with the
CNT as the force transducer [29]. Due to its flexibility and
relatively simple hardware required for its implementation,
we will focus here on the optical techniques.

Using Mie scattering analysis, it can be shown that a NW
positioned near the focus of an incident laser beam scatters
sufficient light such that a measurement of optical transmis-
sion is sufficient to sensitively detect its displacement [75].
The technique uses the strong scattering intensity gradient as
a function of the NW position in the plane perpendicular to its
axis (xy-plane), to convert NW displacement into a change in
optical transmission intensity IT. The gradient of this intensity
as a function of the NW position yields both the detection
efficiency  = ∣ ( )∣I x y,T in Wm−1 and the direction along
which displacement is detected =  ˆ ( ) ∣ ( )∣I x y I x ym , ,T T

[1]. The measured displacement is therefore a projection of
the displacement of the two flexural modes =( ) ˆ ·m t m

+( ( ) ( ))t tr r1 2 along a direction that depends on the position
of the NW in the beam waist. Using a split-photodiode
detector, different response profiles can be obtained from the
sum and difference of the two sensors. As a result, dis-
placement signals along two perpendicular directions can be
measured at the same time [16]. In this way, even with
modest optical powers, the thermal displacement of the NW

modes can be measured in two-dimensions. The detection can
be used to fully characterize the response of each set of
doublet flexural modes to external forces and force gradients.
Ultimately, this vectorial information allows for the recon-
struction of the full, two-dimensional, force field acting on the
NW. In addition, the relative orientation of the doublet, i.e.
whether these modes oscillate orthogonal to each other or not,
carries information about whether the force field in which the
NW is immersed is conservative or not [17].

Another version of this detection scheme uses the inter-
ference between light scattered back from the NW and light
reflected from the cleaved end of an optical fiber to measure NW
displacement [11, 76]. In this case, a fiber-based confocal
reflection microscope is used to collect the light scattered from the
NW, as shown in figure 6(a). The fiber’s end and the NW form a
low-finesse Fabry–Perot cavity interferometer [9, 21], whose
interferometric response depends on the position of the NW in the
beam waist, as seen in figure 6(b). A fast photo-receiver monitors
variations in the reflected intensity IR, allowing for the sensitive
detection of NW motion. As before, the efficiency  =
∣ ( )∣I x y,R and the direction of the detected displacement
=  ˆ ( ) ∣ ( )∣I x y I x ym , ,R R depend on the variations of IR as a

function of the NW position in the optical waist [11]. In this case,
along the cavity’s axis,∇IR depends on an interference effect and
therefore can have a very high ò, which can be improved by
increasing the cavity finesse. Detection efficiency perpendicular to
the cavity axis, on the other hand, depends on the narrowness of
the optical waist. Using this method, the axis along which dis-
placement is measured can be changed either by moving the NW
within the optical waist or by tuning the laser excitation wave-
length, which alters the interference pattern shown in figure 6(b).

Figure 6. (a) Diagram of NW displacement detection setup. (b) Reflected intensity measured as a function of xy position of NW tip showing
the interference fringes resulting from the low-finesse interferometer in the detection path. Arrows indicate the direction of the gradient of the
intensity at different positions, determining the direction of the measurement vector. (c) Diagram illustrating mode directions and
measurement vector. (d) NW displacement PSD as a function of measurement angle.
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As with the scattering based technique, this two-dimensional
displacement detection technique allows for both angular and
spectral tomography of a NW’s flexural modes. As an example,
the displacement power spectral density of a NW’s thermally-
excited fundamental mode doublet and its displacement power
density as a function of the angle in the xy-plane are shown in
figure 6(d).

Both the optical transmission and the interferometric
techniques have been successfully integrated into a SPM
using a single NW as the force transducer. Although technical
restrictions exist, such that there is sufficient optical access to
the NW (e.g. on the length of NW and the distance of the
scanning region from the sample edge), setups can be
designed to work with most samples of interest.

4. Force microscopy with nanowire cantilevers

Recently, several proof-of-concept experiments have been
performed that demonstrate the potential of force microscopy
with NW cantilevers. First experiments focused on develop-
ing the optical detection of NW displacement [21, 25, 26]
with high enough precision to observe the NW’s thermo-
mechanical noise, as well as on characterizing the mechanical
properties of NW cantilevers [12, 22, 44]. The promise of
ultra-low dissipation motivated researchers to implement NW
cantilevers into scanning probe setups, for the sensitive
detection of various types of forces. In a series of experiments
[6, 7, 22], Nichol et al first used Si NWs as transducers in
magnetic resonance force microscopy, exploiting their high
mechanical frequencies and low dissipation to improve the
sensitivity and resolution in measurements of small numbers
of nuclear spins.

As mentioned before, when used in the pendulum geo-
metry, NW cantilevers enable scanning probe microscopy of
lateral forces. Such a mode of operation may be applied to, for
example, the detection of frictional forces [4] or short-range
non-central forces [77]. Although one-dimensional dynamic
lateral force microscopy can be realized using the torsional
mode of conventional AFM cantilevers [78–82], the ability to
simultaneously image all vectorial components of nanoscale
force fields is of great interest. Not only does it provide more
information on tip-sample interactions, but it also enables the
investigation of inherently 2D effects, such as the anisotropy
or non-conservative character of specific interaction forces.
Such vectorial force sensing has now been demonstrated for a
variety of types of interaction.

The first implementation of a vectorial NW force sensor
was realized by Gloppe et al [1] in an experiment where the
optical force field of a laser beam focused onto a NW was
mapped out. Optomechanical interactions lie at the basis of a
very fruitful line of research in which quantum states of
motion are studied using optical fields, for instance in optical
resonators. To fully describe such optomechanical interac-
tions, one needs to account for their non-conservative nature,
and their spatial mapping necessitates the use of a fully
vectorial force sensor, as described by Gloppe et al.
Interestingly, this non-conservative character of the

optomechanical interaction can induce strong coupling
between orthogonal mechanical modes, which can lead to
non-trivial forms of back-action on the NW motion.

In a next step, vectorial NW force sensors were imple-
mented in scanning probe setups, in which the NW cantilever
could be scanned over a sample surface [9, 16]. These setups
allowed for the measurement of two-dimensional maps of the
sample surface, in which forces arising from Coulombic
interactions, chemical bonding, and van der Waals interac-
tions provide a topographic contrast. The NW cantilevers
complement conventional AFM in providing a full determi-
nation of the four lateral force derivatives. Together, these
experiments show the potential of NW cantilevers as ultra-
sensitive bidimensional force transducers and provide exper-
imental quantification of sensitivities and resolution. Force
sensitivities were measured to be in the -aN Hz 1 2 range.
This is on par with or slightly better than sensitivities reached
with conventional AFM. However, there is great potential for
improvement of the force sensitivity, through optimization of
NW geometry and surface properties. Spatial resolution was
limited, as expected, by the NW tip diameter, which for these
first experiments ranged between 100 and 350 nm. Also here,
there is a clear route for improvement, since several types of
NWs and nanotubes with tip diameters that are 10–100 times
smaller have been grown.

A further exciting new development is the use of
magnetic NW cantilevers or NWs with magnetic tips for
sensitive and vectorial detection of magnetic forces. There are
many current research topics that could be studied using
MFM with NW cantilevers, including magnetic skyrmions,
mesoscopic transport and quantum computation devices, and
current flow in topologically non-trivial samples. First proof-
of-principle results of NW MFM were obtained using a NW
with a magnetic segment grown at its tip [11].

4.1. Optical force sensing

Optical setups used to detect the displacement of a cantilever,
based on either interferometry or scattering of light, can also be
applied to study optomechanical interactions. The NW canti-
lever with its two orthogonal flexural modes gives the oppor-
tunity to investigate the vectorial nature of optomechanical
coupling. Gloppe et al have performed such a study, by placing
a NW cantilever inside the optical field of a laser beam tightly
focused by a microscope objective with a high numerical
aperture [1]. In this experiment, the optical intensity of the field
was modulated with a frequency that was swept through both
orthogonal mode resonant frequencies, providing driving forces
through the optomechanical interaction. A second, much
weaker laser beam was used to probe the thermal force noise of
the NW, allowing the determination of the direction of the NW
modes following the method outlined in section 2.2. The
method of figure 3 was then used to acquire a map of the
magnitude and direction of the in-plane optomechanical force.
The force field of figure 7(a) shows a converging and diverging
vector flow corresponding to the waist area of the focused laser
beam. The optomechanical interaction is in general non-con-
servative and therefore the force field acting on the NW can
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possess a non-zero curl. The curl can be found by differentiating
the vector force field and was determined to be maximum at the
waist, on each side of the optical axis (see figure 7(b)). Fur-
thermore, by measuring the delay between the laser intensity
modulation and the NW response it was shown that the opto-
mechanical force was in phase with the intensity modulation, as
expected for a dissipative optomechanical coupling. The
authors report a force sensitivity in the -aN Hz 1 2 range at
room temperature.

4.2. Electrical force sensing

In scanning probe measurements of a sample surface, such as
those made in conventional atomic force microscopy, the
underlying sample-cantilever forces are typically of electrical
origin. These forces include contributions from van der Waals
forces and various other interactions of electrostatic origin. The
measured forces closely follow the geometrical pattern of the
sample surface, enabling the reconstruction of sample topo-
graphy. In contrast to conventional AFM, NW cantilevers
arranged in the pendulum geometry allow for the measurement
of vectorial topographical maps of sample surfaces through the
measurement of in-plane forces and force derivatives. In two
experiments [9, 16], researchers recently demonstrated the use
of NW cantilevers to measure such topographical maps.

Figure 8 shows various measurements involving a specific
sample featuring 200 nm thick Au gate electrodes litho-
graphically defined on a planar Si substrate. By scanning a NW
cantilever over the sample surface, vectorial maps of the tip-
sample forces and forces derivatives, as well as of the dissipa-
tion of both NW modes, were measured [9]. Figures 8(a)–(c)
show maps of in-plane spatial force derivatives F11, F22, and

F12 (since electrical potentials are conservative, here
F21=F12), through measurements of the frequency shift and
oscillation direction of the two orthogonal flexural modes of the
NW. The measured in-plane force derivatives can be integrated
to produce a map of in-plane tip-sample forces, up to an inte-
gration constant corresponding to a constant force in the plane.
Figure 8(d) shows a map of the force field Fint extracted from
such an integration and confirms that the measured forces are
roughly perpendicular to the edges defined by the sample
topography. Furthermore, figures 8(e)–(f) show maps of mea-
sured dissipations Γi, extracted from the mode linewidths.
Dissipation was measured to be nearly isotropic in the plane and
was affected mostly by the different materials and tip-sample
spacing over electrodes and substrate. In principle, however, the
demonstrated ability to produce vectorial maps of dissipation
shows that NW cantilevers could find an application in the study
of anisotropic non-contact friction, which is important for
instance for the study of superlubricity [83].

In a next step, the authors generated an alternating
electric field E(r,t) using the patterned electrodes to drive the
motion of both NW modes. In this way, vectorial in-plane
maps of the driving forces were obtained (see figures 8(g),
(h)), with a thermally limited sensitivity of 5 -aN Hz 1 2 at a
temperature of 4 K. Two types of driving forces resulted from
E(r, t): Fq=qE and a= -( ∣ ∣ )F Ep

2 . Here q is the net
charge on the NW tip and α the polarizability of the NW.
Since Fq shows a linear dependence on the magnitude of the
electric field, while that of Fp is quadratic, these two forces
are spectrally separated and could therefore be distinguished
in measurement. Interestingly, such force measurements also
allow the characterization of the NW itself. By comparing the
magnitude of the measured forces with that of the applied
electric field, the average values of the constants q and α were
determined.

In a similar setting, Mercier de Lépinay et al measured
vectorial force fields and force field derivatives arising from
the electrostatic interaction of a voltage-biased metallic
sample of pyramidical shape with a NW cantilever [16]. The
authors furthermore reconstructed a three-dimensional image
of the force field derivatives by scanning the NW vertically
away from the sample, up to a tip-sample distance of several
microns.

4.3. Magnetic force microscopy

In recent years, there has been a flurry of activity in devel-
oping nanometer-scale magnetic imaging technology. These
efforts are driven by a number of outstanding questions in
spintronics—such as how to control magnetic skyrmions—
and in mesoscopic transport—such as how current flows in
topological insulators and two-dimensional materials. Scan-
ning probe microscopy, in particular, has made remarkable
improvements in both the sensitivity and resolution of
magnetic imaging. Some of the most successful tools are
magnetic force microscopy (MFM), spin-polarized scanning
tunneling microscopy, as well as scanning magnetometers
based on nitrogen-vacancy centers in diamond, Hall-bars, and
superconducting quantum interference devices (SQUIDs).

Figure 7. (a) Measured spatial map of optomechanical force field on
NW tip placed inside focused laser beam. (b) Spatial map of the local
curl derived from measurement displayed in (a). Reprinted by
permission from Macmillan Publishers Ltd: [Nature Nanotechnol-
ogy] [1], Copyright (2014).
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Despite this progress, it is now becoming clear that nano-
mechanical sensors, in general, and NWs in particular, pro-
vide a huge untapped opportunity in magnetic sensing.

The first magnetic SPM, MFM, was introduced in the late
1980s as a natural extension of AFM. These days, it is per-
formed in air, liquid, vacuum, and at a variety of tempera-
tures. Under ideal conditions, state-of-the-art MFM can reach
spatial resolutions down to 10nm [84], though more typically
around 100 nm. In 2009, its application to magnetic reso-
nance, magnetic resonance force microscopy (MRFM),
resulted in the first demonstration of three-dimensional
nuclear magnetic resonance imaging (MRI) with nanometer-
scale resolution [85].

NW scanning force sensors with proper functionalization of
their tips, can be used to measure weak magnetic forces. Recent
experiments have shown that a NW’s high force sensitivity—
when combined with a highly concentrated and strongly mag-
netized tip—gives it an exquisite sensitivity to magnetic field
gradients [11]. Using a MnAs-tipped GaAs NW, Rossi et al
demonstrated a sensitivity to ( )/11 mT m Hz . Having quanti-
fied the NW’s response to magnetic field gradients, the authors
calculate its sensitivity to other magnetic field sources, including
a magnetic moment (dipole field), a superconducting vortex
(monopole field), or an infinitely long and thin line of current
[86]. In particular, they expect a moment sensitivity of
54m HzB , a flux sensitivity of 1.3mF Hz0 , and line-

current sensitivity of 9 nA Hz at a tip-sample spacing of
250 nm. Such sensitivities compare favorably to those of other
magnetic microscopies, including scanning Hall microscopy,
magneto-optic microscopy, scanning SQUID microscopy, and
scanning nitrogen-vacancy magnetometry. Furthermore, mag-
net-tipped NWs have a huge potential for improvement as
probes of weak magnetic field patterns if tips sizes and tip-
sample spacings can be further reduced.

In addition to improved sensitivity, NW MFM provides
other potential advantages compared to conventional MFM.
First, scanning in the pendulum geometry with the NW
oscillating in the plane of the sample has the characteristics of
lateral MFM. This technique, which is realized with the tor-
sional mode of a conventional cantilever, distinguishes itself
from the more commonly used tapping-mode MFM in its
ability to produce magnetic images devoid of spurious topo-
graphy-related contrast and in a demonstrated improvement in
lateral spatial resolution of up to 15% [87]. Second, the
nanometer-scale magnetic particle at the apex of the NW
force sensor minimizes the size of the MFM tip, allowing for
optimal spatial resolution and minimal perturbation of the
investigated sample.

There have been a number of efforts at creating high-
resolution MFM tips on conventional cantilevers, including
attaching coated CNT tips [88], milling tips by FIB [89], or
using electron beam induced deposition techniques [90, 91].

Figure 8. (a)–(c) Measurements of F11, F12, and F22 tip-sample force derivatives as a function of NW tip position over patterned sample
surface. The scale bar corresponds to 1 μm (d) Vector plot of in-plane force field derived by numerically integrating the derivatives of (a)–(c).
The plot is overlaid on a scanning electron micrograph of the sample with patterned gate electrodes. (e), (f) Dissipation of each orthogonal
mode as a function of NW tip position. (g) Vector plot of Fq induced by gate electric field on the charged NW. (h) Vector plot of Fp induced
by gate electric field on the polarizable NW. Reprinted by permission from Macmillan Publishers Ltd: [Nature Nanotechnology] [9],
Copyright (2017).
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Despite this work, non-invasive, high-resolution MFM tips are
still needed. In particular, the tips with the smallest volumes
realized thus far, tend to have rather undefined magnetization
directions due to amorphous magnetic materials and nearly
symmetric particle shape. Recent results show that small, sin-
gle-crystal, magnetic particles with defined and predictable
magnetization directions can be realized atop a single NW
[11, 92]. In particular, Rossi et al carried out measurements of
dynamic cantilever magnetometry [60, 93, 94] to extract the
magnetic properties of each MnAs tip from the mechanical
response of the NW to a uniform external magnetic field. These
measurements, along with measurements of the NW’s response
to a well-known magnetic field profile generated by a litho-
graphically patterned wire, confirmed that in remanence the
magnetic tips are—in most cases—strongly magnetized and
dipole-like. Figures 9(a) and (b) show the experimental setup in
which the magnet-tipped NW is scanned across a current-car-
rying wire. An SEM of the MnAs magnetic tip is shown in
figure 9(c). The magnetic force measured along the two mode
directions is shown in figure 9(d), showing a response con-
sistent with a remanent dipole-like magnetic tip. These results
bode well for the resolution possible with NW MFM probes. In
principle, as discussed by van Schendel et al, detailed analysis
of MFM tips shows that the closer a tip approaches an ideal
magnetic dipole, the better its sensitivity to high spatial fre-
quencies, and therefore the higher its potential resolution [95].

The prospect of increased sensitivity and resolution,
combined with few restrictions on operating temperature,
make NW MFM ideally suited for investigating nanometer-
scale spin textures, skyrmions, superconducting and magnetic

vortices, as well as ensembles of electronic or nuclear spins.
Non-invasive magnetic tips may also open opportunities to
study current flow in 2D materials and topological insulators.
The ability of a NW sensor to map all in-plane spatial force
derivatives [9, 16] should provide fine detail of stray field
profiles above magnetic and current-carrying samples, in turn
providing detailed information on the underlying phenomena.
Directional measurements of dissipation may also prove
useful for visualizing domain walls and other regions of
inhomogeneous magnetization. As shown by Grütter et al,
dissipation contrast, which maps the energy transfer between
the tip and the sample, strongly depends on the sample’s
nanometer-scale magnetic structure [3].

4.4. Magnetic resonance force microscopy

So far, the most developed application for magnetic force
sensing with NWs has been MRFM for nanometer-scale
magnetic resonance imaging (nano-MRI). The method relies
on an ultra-sensitive mechanical force sensor to detect the
magnetic resonance from tiny ensembles of nuclear spins.

Conventional MRI techniques employ pick-up coils to
detect the small changes in magnetic field induced by flipping
nuclear moments contained in a sample. These magnetic
signals are so weak that conventional instruments cannot
resolve objects smaller than several micrometers—about the
size of a small cell [96]. MRFM improves on this sensitivity
by mechanically detecting the magnetic forces produced by
nuclear moments. A mechanical resonator is used to sense the
forces arising between nuclear moments in a sample and a

Figure 9. (a), (b) Schematic illustration of MFM experiment with NW cantilever and current-carrying Au wire. The NW scan direction used
to produced measurements in (d) is indicated by the green line in top view (a) and side view (b). BAC corresponds to the magnetic field
produced by the alternating current in the wire and B to an externally applied magnetic field. (c) Scanning electron micrograph of the tip of a
GaAs NW featuring a MnAs segment at the end. The scale bar corresponds to 100 nm. (d) Plots of the measured (dotted line) and calculated
(solid line) forces driving the first (blue) and the second (red) mode over the line scan indicated in (a) and (b). For each plot three distinct
drive contributions are shown as dashed lines: the monopole (black), dipole (gray) and torque (magenta) terms. Reprinted with permission
from [11]. Copyright (2019) American Chemical Society.
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nearby magnetic field gradient. In MRFM, RF pulses cause
nuclear moments in a sample to periodically flip, generating
an oscillating force on the mechanical resonator. These
alternating forces, in turn, drive the resonator to oscillate.
Force-detected MRI is more sensitive to nanometer-scale
samples than conventional techniques because much smaller
detectors can be made. For the inductive technique to be
sensitive, the size of the pick-up coil must be similar to the
size of the sample. For nanometer-scale samples, this is
practically impossible. On the other hand, high-quality can-
tilevers can have dimensions far below a micrometer such that
the sample mass is significant compared to the bare resonator
mass. Such mechanical transducers enabled the current state-
of-the-art force-detected nano-MRI, which was demonstrated
by Degen et al in 2009 [85]. In this work, researchers cap-
tured 3D images of individual tobacco mosaic virus (TMV)
particles with a resolution better than 10 nm along each
dimension. The technique has the unique capability to image
the interior of nanometer-scale objects non-invasively and
with intrinsic chemical selectivity. Despite a number of fur-
ther refinements and demonstrations [97, 98], improvements
in MRFM sensitivity and resolution have stalled in recent
years, leaving a number of technical obstacles to be overcome
for the technique to become a useful tool for biologists and
materials scientists.

Foremost among these obstacles is the reduction in the
mechanical dissipation of the cantilever sensor. Lower
mechanical dissipation would yield better force sensitivities
and therefore sensitivity to smaller numbers of nuclear spins.
Such an improvement would result in nano-MRI with
improved resolution. In the last few years, the development
and application of NW cantilevers to MRFM has been mak-
ing promising steps in this direction. In 2012, Nichol et al
used a Si NW force transducer in an MRFM experiment
detecting 1H in a nanometer-scale polystyrene sample [6].
During the measurements they achieved a thermally limited
force sensitivity of around 1aN/ Hz at a spacing of 80 nm
from the surface at 8 K, which is significantly lower than was
measured at 300 mK in the TMV experiment [85]. This
improvement is largely due to the ultra-low native dissipation
of the NWs in comparison to top-down ultra-sensitive canti-
lever and to their drastically reduced surface dissipation. In
fact, Nichol et al show that at a tip-surface spacing of 7 nm, a
typical Si NW experiences nearly a factor of 80 less surface
dissipation and factor of 250 less total dissipation than audio
frequency cantilevers under similar conditions. The mechan-
isms behind this difference are not completely clear; the small
cross-sectional area of a NW may decreases its coupling to
the surface or, perhaps, the spectral density of surface fluc-
tuations is lower at the MHz resonant frequencies of the NWs
that at the kHz resonant frequencies of the cantilevers.

This ground-breaking work established NW oscillators as
ultra-sensitive cantilevers for MRFM detection. The mea-
surement protocol that was developed for the NW transducers
uses a nanoscale current-carrying wire to generate both time-
dependent RF magnetic fields and time-dependent magnetic
field gradients. This protocol, known as MAGGIC, may

ultimately open new avenues for nanoscale magnetic reso-
nance imaging with more favorable SNR properties [7].

Given that nanometer-scale MRFM requires intense sta-
tic magnetic field gradients, both NMR spectroscopy and
uniform spin manipulation using RF pulses have always been
difficult to implement in such measurements. As a result,
MRFM experiments often rely on inherently slow adiabatic
passage pulses, which limited the mechanical transducer to
resonance frequencies in the few kHz regime. In addition,
conventional pulsed magnetic resonance techniques cannot be
applied to nanometer-scale MRFM because statistical spin
fluctuations often exceed the Boltzmann spin polarization
[99]. In this regime, the projection of the sample magnetiza-
tion along any axis fluctuates randomly in time.

In their article, Nichol et al presented a new paradigm in
force-detected magnetic resonance that overcomes both
challenges to enable pulsed nuclear magnetic resonance in
nanometer-size statistically polarized samples. The first
challenge was solved by using the nanometer-scale constric-
tion to generate both large RF fields and large magnetic field
gradients. In this way, the authors were able to turn their
magnetic field gradients on and off at will. The method
allowed the use of high-frequency mechanical resonances,
such as those provided by a NW. Using a scheme similar to
conventional MRI, switchable gradients in static and RF
fields encoded the Fourier transform of the 2D spin density
into their spin signal. As a result, they were able to reconstruct
a 2D projection of the 1H density in a polystyrene sample
with roughly 10-nm resolution. The protocol was able to
function in the statistically polarized regime because the
authors periodically applied RF pulses, which create corre-
lations in the statistical polarization of a solid organic sample.
The spin-noise correlations were then read-out using gradient
pulses generated by ultra-high current densities in the
nanoscale metal constriction. The authors also showed that
Fourier transform imaging enhances sensitivity via the mul-
tiplex advantage for high-resolution imaging of statistically
polarized samples. Most importantly, the protocol established
a method by which all other pulsed magnetic resonance
techniques can be used for nanoscale imaging and
spectroscopy. Recent work by Rose et al, combines the high
spin sensitivity of NW-based magnetic resonance detection
with high-spectral-resolution NMR spectroscopy [8]. The
authors make use of the resulting enhancement in nuclear spin
coherence times to perform Fourier transform imaging of
proton spins with a one-dimensional slice thickness
below 2 nm.

Given the potential for even more sensitive NW trans-
ducers, these proof-of-concept experiments bode well for
increasing nano-MRI sensitivity and resolution. Even without
sensitivity improvements, the authors’ technique could also
be extended to enable full 3D encoding with constrictions
capable of producing two orthogonal static gradients [100].
More generally, the approach serves as a model for applying
sophisticated pulsed magnetic resonance schemes from con-
ventional MRI to the nanometer-scale version.
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5. Outlook

The application of NW cantilevers as sensitive force trans-
ducers is in the early stages. Nevertheless, the demand for
more sensitive techniques has positioned nanometer-scale
mechanical structures—and NWs in particular—as the
transducers of the future. At present, the promise of these
devices has been demonstrated in a small number of proof-of-
concept experiments. As discussed in this review, these
methods and applications demonstrate the capabilities of NW
transducers and their unique advantages, especially in the
detection of weak forces. Nevertheless, much work remains to
be done before NWs become part of the standard tool-box of
scanning probe microscopies.

Better spatial resolutions could be achieved by develop-
ing NWs with sharper tips, through, for example, specialized
growth techniques or by focused ion beam milling. This could
be pushed to obtain atomic resolution. Sharp NW tips ending
in a single atom could be produced in the same way that such
tips are produced for regular AFM, using oxidation shar-
pening [101, 102]. A second point that needs to be addressed
to achieve atomic resolution is the amplitude of lateral dis-
placement. Lateral oscillation amplitudes smaller than the
spacing between adjacent sample surface atoms (typically a
few Å) are obtained in regular lateral AFM by using very stiff
cantilevers, such as a qPlus sensor [102], or a stiff torsional
mode of a standard Si cantilever [77]. Similarly, stiff NWs
could be used for this purpose. Additionally, feedback cool-
ing [103] could be used to decrease thermal displacement
amplitudes of less stiff NW cantilevers. Finally, experiments
aiming for atomic resolution should be performed in ultra-
high vacuum conditions. Combined with its vectorial force
sensing capability, such a NW scanning probe could be used
to reveal the anisotropy of atomic bonding forces.

Force sensitivity can undoubtedly be improved by
developing longer and thinner NW transducers. So far,
researchers have not made concerted efforts to optimize NW
geometry, leaving much to be gained by such work. Further
improvements in force sensitivity can be expected from the
mitigation of surface-related dissipation processes. Even
though such processes likely dominate the mechanical dis-
sipation of NWs, detailed studies into characterization miti-
gation strategies have so far been sparse. Such studies could
be combined with the development of growth methods opti-
mized for producing high-quality NW cantilevers. In addition
to surface-induced losses, dissipation related to the NW
clamping point could potentially also be addressed through
refined growth techniques and suitable patterning of the
substrate to which the NW is attached. Moreover, high-finesse
optical cavities could be used to enhance the signal-to-noise
ratio of NW displacement detection through preferential
scattering into cavity modes.

Higher force sensitivity would also translate into more
sensitive measurements of dissipation and non-contact fric-
tion. AFM in the pendulum geometry—the same geometry
used for NWs—is ideally suited to measurements of nan-
ometer-scale dissipation. Such measurements have recently
been used to detect superconducting [4] and bulk structural

phase transitions [104]. They can also shed light on concepts
such as superlubricity, atomic-scale friction, and quantum
friction [105]. Furthermore, energy dissipation plays a central
role in the breakdown of topological protection, the loss of
quantum information, and disorder-assisted hot electrons
scattering in graphene [106]. The ability to map tip-sample
force fields and energy losses makes NW transducers ideal for
investigating how and where energy leaks.

The combination of high force sensitivity, high spatial
resolution, and low invasiveness of magnetic NW probes has
the potential to expand the applicability of MFM. Such sen-
sors could image the stray field from thin ferromagnetic layers
and other magnetic nanostructures hosting non-uniform states
too fragile for conventional MFM. For such applications,
efforts must first focus on producing smaller magnetic tips.
Alternatively, the production of different types of magnet-
tipped NWs could be attempted, through the evaporation of
magnetic caps on sharp non-magnetic NWs or by direct
focused ion beam induced deposition. The resulting
improvement in spatial resolution, combined with the already
demonstrated sensitivity to charge currents, could make
magnet-tipped NWs ideal tools for mapping mesoscopic
current flow. With the current sensitivity shown by Rossi et al
it should be possible to detect with a bandwidth of 1 Hz the
current flowing in a transport channel with a single quantum
of conductance, when a reasonable bias voltage of order mV
is applied over the channel. The quoted current sensitivity
was limited by thermal displacement noise of the NW canti-
lever, which could also be improved by optimizing NW
geometry. Such current sensitivities would enable imaging
currents in quantum transport devices, such as gated quantum
dots. Recent interest in imaging current densities in 2D
materials and topological insulators has already driven the
development of NV and SQUID based SPM, although much
room for improvement remains, and NW cantilevers could
find similar applications. In addition, by combining NW
transducers with ferromagnetic resonance techniques, the
spatial imaging of spin waves and the dynamics of individual
skyrmions may also become possible.

Finally, viewed from a broader perspective, NW canti-
levers hold potential for detection schemes beyond force
sensing alone. In particular, NW and CNT cantilevers have
been used as transducers for ultra-sensitive mass sensing
experiments, leveraging their low mass, low spring constant,
and vectorial character [23, 107–109] (Note that this list of
references is by no means exhaustive). Another example is
the hybridization of nanowires with self-assembled quantum
dots. Such quantum dots host excitonic states which can be
excited optically and which decay by emitting photons. The
excitonic transition energies and amplitudes depend on local
fields and can be used as sensitive and fast detectors of
electric fields [110], strain gradients [111], and potentially
also magnetic fields. The integration of such quantum dots
within NW cantilevers allows for various types of SPM by
monitoring the excitonic transition energy while scanning the
NW over a sample.
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