Lectare 1 (16.09.2020)
Cantilaner Bosics
I. Contilouer

Force F
Torgae $\vec{\mu}$

- Useful a-b ropresentatice mechonical
tromsacer. Othors inclube dably-aloupér
beems, strings, nembromes, etc.
- Nred to introduce deformotion of solids in ordor to discass thir notion.
II. Stross and Strain (FN p. M45)

Stress:

Sol:d
\longrightarrow Each face los area

Force on each sarface: $\vec{F}_{i}=\sum_{j=1}^{3} F_{i j} \hat{x}_{j}$ where $i=1$ to 6 .

Wo befine a vector stress:

$$
\begin{aligned}
& \vec{F}_{i}=\frac{\vec{F}_{i}}{A}: \quad \vec{F}_{i}=\sum_{j=1}^{3} \frac{F_{i j}}{A} \vec{x}_{j}=\sum_{j=1}^{3} T_{i j} \hat{x}_{j} \\
& \frac{\text { Force }}{\text { arra }}=\text { pressuri }\left[\frac{\mathrm{N}_{2}}{2}\right] \\
& \text { stress } \\
& \text { tonsor }
\end{aligned}
$$

We hou. an infinitosimal cube in stotic gqailibriam. Tharofore forees ond torgans must b. uniform and obd to zaro.
Force 6oloce: $\left.\begin{array}{rl}\overrightarrow{F_{1}} & =-\vec{F}_{4} \\ \vec{F}_{2} & =-\vec{F}_{5} \\ \vec{F}_{3} & =-\vec{F}_{6}\end{array}\right\} \quad \therefore \quad$ ue con jcst $\quad \therefore \quad$ consides $;=1$ to 3

Torgar bolone: $\quad \vec{M}_{\text {tot }}=0 \quad \therefore \quad \therefore \quad T_{i j}=T_{j}$:
Stra:

Such a stress appliar to a solior con rosclt in doformotion, i.e. Strain.

The locol foformation of a solid is quontified by the relative displocement
voctor ü of a point in thot solid.
Spatiol dorivatives of this displocement dotine the stroin tensot:

$$
S_{i j}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)
$$

Genoral Stress-Strain Rolotions: (EN p. 191)

$$
T_{i j}=\sum_{k \ell} \alpha_{i, j k} S_{k \ell}
$$

Th. constouts $\alpha_{i j k}$ dopend on moterial paramotors:

$$
\begin{aligned}
& E= \text { Young's modclas } \\
& \Sigma=\text { Doisson's Ratio } \\
& \text { ratio of } \\
& \text { contraction } 1 \\
& \text { to applind load }
\end{aligned}
$$

III. Exomple: Bending 6y Pare Torgas (FN p.Pea)

Static cose.

$$
\begin{aligned}
& \vec{M}\left(x_{1}-\rho\right)=-\mu_{0} \hat{x}_{3} \\
& \vec{M}\left(x_{1}=0\right)=\mu_{0} \hat{x}_{3}
\end{aligned}
$$

One woy to apply this yype of torgen is with the scrfoce stress:

$$
\begin{aligned}
& F\left(0, x_{2}, x_{3}\right)=-t_{0} x_{2} \hat{x}_{1} \\
& F\left(\rho_{1} x_{2}, x_{3}\right)=t_{0} x_{2} \hat{x}_{1}
\end{aligned}
$$

In this cose, we need to houe:

$$
\begin{aligned}
& \vec{\mu}\left(x_{1}=l\right)=\int_{-\frac{\alpha}{2}}^{\frac{d}{2}} \int_{-\frac{m}{2}}^{\frac{\mu}{2}} \vec{r} \times \overrightarrow{+}\left(\rho_{1} x_{1}, x_{3}\right) \sigma x_{0} \delta x_{2} \\
& t_{0}\left(-x_{2}^{2} \hat{x}_{3}-x_{2} y_{3} \tilde{x}_{2}^{0}\right) \\
& \bar{\mu}\left(x_{1}=l\right)=\int_{-\frac{\sigma}{2}}^{\frac{6}{2}} \int_{-\frac{\varphi}{2}}^{\frac{\mu}{2}}\left(-t_{0} x_{2}^{2} \hat{x}_{3}\right) d x_{3} d x_{2}=-\frac{1}{12} w d^{3}+\hat{x}_{3} \\
& \therefore \quad \mu_{0}=\frac{w \delta^{3}}{12} t_{0}
\end{aligned}
$$

$$
t_{0}=\frac{12 \mu_{0}}{w d^{3}}
$$

$$
t_{0}=\frac{\mu_{0}}{I_{3}} \quad \text { with } \quad I_{3}=\frac{w \delta^{3}}{12}
$$

where 2~or of incrtia are:

$$
\begin{aligned}
& I_{3}=\int x_{2}^{2} \delta A \\
& I_{2}=\int x_{3}^{3} \delta A
\end{aligned}
$$

In torms of oar stross tansor, we hav.

$$
T_{11}=t_{0} x_{2}=\frac{\mu_{0}}{I_{3}} x_{2}
$$

All other torms are zoro.

By applyin to stross-strain rolotions
and boundory conditions, we con Fi-d the roselting ofoformotion (FN p.199):

$$
\begin{aligned}
& u_{1}=\frac{\mu_{0}}{I_{3}} \frac{\nu}{E} x_{1} x_{2} \\
& u_{2}=-\frac{\mu_{0}}{I_{3}} \frac{1}{\partial E}\left(x_{1}^{2}+\nu x_{2}^{2}-\nu x_{3}^{2}\right) \\
& u_{3}=-\frac{\mu_{0}}{I_{3}} \frac{\nu}{E} x_{2} x_{3}
\end{aligned}
$$

Along the nectrol oxis $\left(x_{2}=x_{3}=0\right)$:

$$
u_{2}=-\frac{\mu_{0}}{2 E I_{3}} x_{1}^{2} \quad(1)
$$

For $\quad \vec{\mu}=-\mu_{0} \hat{x}_{3}$

$$
x_{1}=0
$$

$$
x_{2}=-R
$$

Ciraln:

$$
\begin{aligned}
& x_{1}^{2}+\left(R+u_{2}\right)^{2}=R^{2} \\
& u_{2}=\sqrt{R^{2}-x_{1}^{2}}-R \\
& u_{2}=R \sqrt{1-\left(\frac{x_{1}}{R}\right)^{2}}-R
\end{aligned}
$$

For $\quad x, \ll R$:

$$
\begin{align*}
& u_{2} \approx R\left(1-\frac{1}{2}\left(\frac{x_{1}}{R}\right)^{2}\right)-R \\
& u_{2} \approx-\frac{x_{1}^{2}}{2 R}(2) \tag{2}
\end{align*}
$$

$$
\begin{gathered}
\text { Pctti-g }(1) \quad \text { ord }(2) \quad \text { togothor } \\
R \approx \frac{E I_{3}}{\mu_{0}}
\end{gathered}
$$

IV. Ealer - Bormonll: Thory of Beoms

- Seint-Vomont's Principle:

- Locol Rodics of Cunvatare:

$$
\begin{aligned}
& R>P \\
& R>R \theta \\
& \theta \ll 1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d u_{2}}{d x_{1}}=-\tan \theta \approx-\theta \\
& \frac{d^{2} u_{2}}{d x_{1}^{2}}=-\frac{d \theta}{d x_{1}} \quad d x_{1} \approx R d \theta
\end{aligned}
$$

$$
\frac{\sigma^{2} u_{2}}{\delta x_{1}^{2}} \approx-\frac{1}{R}=-\frac{\mu_{0}}{E I_{3}}
$$

$$
\begin{aligned}
& \text { I~ Eclar - Bornall: } \\
& \text { Limit: } \\
& \qquad \frac{\delta^{2} c_{2}}{\delta x_{1}^{2}} \approx-\frac{\mu_{0}}{E I_{3}}
\end{aligned}
$$

