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0 Introduction
This lecture gives an introduction to the physics of nanomechanical devices. These objects show signifi-
cantly different properties compared to macroscopic ones. For example, small bodies are heavily affected
by thermal fluctuations. Considering a spring-like harmonic oscillator with spring constant k in thermal
equilibrium at temperature T, the equipartition theorem states that

1

2
k⟨x2⟩ = 1

2
kBT , (0.1)

with ⟨x2⟩ the square mean of position, and kB the Boltzmann constant. For singly clamped beams (i.e.,
cantilevers) undergoing harmonic motion and with length l, thickness t and width w, the spring constant
is generally well approximated with

k ∝ wt3

l3
. (0.2)

Plugging equation (0.2) into (0.1) and rearranging yields then

⟨x2⟩ ∝ kBT
l3

wt3
(0.3)

The amplitude of thermal oscillations is given by xth =
√
⟨x2⟩. Let us compare macroscopic and micro-

scopic objects:

A beam of steel with (l,w,t)
= (2 m, 10 cm, 5 cm) at
300 K shows thermal fluc-
tuations of ∼ 0.2 pm.
xth/t = 4 · 10−12.

A nanoscale cantilever
with (l,w,t) = (120 µm,
3 µm, 100 nm) at 300 K
shows thermal fluctua-
tions of ∼8 nm.
xth/t = 0.08.

Surely, thermal fluctuations for the steel bar can be neglected. This, however, is not necessarily true for
the cantilever. When going to even smaller objects, quantum mechanical fluctuations start to become
relevant as well. Generally, the zero point fluctuations (fluctuations of the ground state) are given by:

xZPF =

√
ℏ

2mω
=

√
ℏ

2
√
mk

(0.4)

xZPF ∝
√

ℏl
wt2

(0.5)

For the previously encountered beam of steel, xZPF ∼ 0.2 am. For the cantilever, xZPF ∼ 0.2 pm. For a
carbon nanotube with a diameter of ∼ 1 nm, xZPF ∼ 4 pm. This corresponds to 0.4% of its diameter!

There are several reasons to study nanomechanics. First of all, this field links classical mechanics and
statistical mechanics, as demonstrated with the considerations concerning thermal fluctuations above.
Then, it also forms a link between classical mechanics and quantum mechanics.1 And finally, smaller
sensors are more sensitive. This is taken advantage of when measuring very small displacements, masses,
forces, charges, magnetic moments, etc. → keyword atomic force microscopy (AFM).

1This is a rather unique property, as many other fields of physics dealing with quantum phenomena cannot be scaled
up to show classical behavior. Consider e.g., atomic physics: This field is either treated completely classically with the
Lambert-Beer Law of absorption etc., or completely quantum mechanically with quantized energy levels etc. There is no
middle ground.
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1 Cantilever Basics
1.1 Nanomechanical resonators
A useful and representative mechanical sensor is a cantilever, i.e., a singly clamped beam. Others include
doubly-clamped beams, strings, membranes, etc. Most often, the behavior of these more complex systems
can be derived from the considerations of the cantilever as example.

1.2 Stress and Strain (FN p.145)
In order to discuss the motion of a cantilever, the deformation of solids has to be introduced. Consider
the forces acting on an infinitesimal cube inside a material:

The force on each surface is given by F⃗i =
3∑

j=1

Fij x̂j , where i = 1 to 6.

We define a vector stress:

t⃗i =
F⃗i

A︸ ︷︷ ︸
Force
area = pressure [ N

m2 ]

=

3∑
j=1

Fij

A
x̂j =

3∑
j=1

Tij x̂j (1.1)

with the stress tensor Tij .

Since we have an infinitesimal cube in static equilibrium, the forces and torques must be uniform and add
to zero:

Fore balance:

F⃗1 = −F⃗4

F⃗2 = −F⃗5

F⃗3 = −F⃗6

 ∴ We can just consider i = 1 to 3.

Torque balance: M⃗tot = 0
}

∴ Tij = Tji
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Such an applied stress to a solid can result in a deformation, i.e., a strain.

The local deformation of a solid is quantified by the relative dis-
placement vector u⃗ of a point in that solid. Spatial derivatives of
this displacement define the strain tensor:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.2)

The general Stress-Strain-Relations are then given by (FN p.191):

Tij =
∑
k,l

αijkSkl (1.3)

The constants αijk depend on material parameters:

• E = Young’s modulus (stiffness)

• ν = Poisson’s ratio (ratio of contraction perpendicular to applied load)

1.3 Example: Bending by Pure Torque (FN p.194)

Static case:

M⃗(x1 = l) = −M0x̂3

M⃗(x1 = 0) =M0x̂3

One way to apply this type of torque is
with the surface stress:

t⃗ (0, x2, x3) = −t0x2x̂1
t⃗ (l, x2, x3) = t0x2x̂1

In this case, we need to have:

M⃗(x1 = l) =

d
2∫

− d
2

w
2∫

−w
2

r⃗× t⃗(l, x2, x3)︸ ︷︷ ︸
t0(−x2

2x̂3+x2x3x̂2)

= −t0x22x̂3

dx3 dx2 (1.4)

M⃗(x1 = l) =

d
2∫

− d
2

w
2∫

−w
2

(−t0x22x̂3) dx3 dx2 = − 1

12
wd3t0x̂3 (1.5)
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Therefore:

M0 =
wd3

12
t0 (1.6)

t0 =
12M0

wd3
=

M0

I3
, with I3 =

wd3

12
(1.7)

The second moments of inertia are defined as

I3 =

∫
x22 dA (1.8)

I2 =

∫
x23 dA (1.9)

In terms of our stress tensor, we have:

T11 = t0x2 =
M0

I3
x2 (1.10)

All other terms are zero.

By applying the stress-strain relations and boundary conditions, we can then find the resulting deformation
(FN p.199):

u1 =
M0

I3

ν

E
x1x2 (1.11)

u2 = −M0

I3

1

2E

(
x21 + νx22 − νx23

)
(1.12)

u3 = −M0

I3

ν

E
x2x3 (1.13)

Along the neutral axis, i.e. x2 = x3 = 0, we have in the case of M⃗ = −M0x̂3 applied at x1 = l:

u2 = − M0

2EI3
x21 (1.14)

Considering the radius of curvature R, the equation of a circle
reads:

x21 + (R+ u2)
2 = R2 (1.15)

u2 =
√
R2 − x21 −R (1.16)

u2 = R

√
1−

(x1
R

)2
−R (1.17)
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In the case of x1 ≪ R, we have:

u2 ≈ R
(
1− 1

2

(x1
R

)2)
−R (1.18)

u2 ≈ −
x21
2R

(1.19)

Combining equations (1.14) and (1.19) yields:

R ≈ EI3
M0

(1.20)

1.4 Euler-Bernoulli Theory of Beams

Saint-Venant’s Principle:

Given a beam much longer than thick and wide, i.e., w, d≪ l, we can consider a force distribution at the
end of the beam to be a point-force.

Local Radius of Curvature:

For a slightly bent beam, the radius of curvature R is much larger than its length (no bending: R→∞).
In the slightly-bent beam limit:

R≫ l

R≫ RΘ

Θ≪ 1

du2
dx1

= −tanΘ ≈ −Θ

d2u2
dx21

≈ − dΘ

dx1

dx1 ≈ R dΘ

d2u2
dx21

≈ − 1

R
= −M0

EI3

Therefore, in the Euler-Bernoulli Limit:
d2u2
dx21

≈ −M0

EI3
(1.21)
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2 Cantilever Statics: Beam Bending Formula
2.1 Force & torque balances
To compute the bending of a beam, we consider a slice of the beam along the x1 direction:

The force balance dictates:

Full beam: F0 +

l∫
0

f(x′1)A dx′1 + F (l) = 0 (2.1)

Any part of the beam: F0 +

x1∫
0

f(x′1)A dx′1 + F (x1) = 0 (2.2)

Combining these equations and differentiation leads to:

F (x1) = −F0 −
x1∫
0

f(x′1)A dx′1 (2.3)

dF

dx1
= −f(x1)A =⇒ dF = −f(x1)Adx1 (2.4)

The torque balance dictates:

Full beam: M0 +

l∫
0

x′1f(x
′
1)A dx′1 + lF (l) +M(l) = 0 (2.5)

Any part of the beam: M0 +

x′
1∫

0

x′1f(x
′
1)A dx′1 + x1F (x1) +M(x1) = 0 (2.6)

Again, combining the equations and differentiation leads to:

M(x1) = −M0 −
x1∫
0

x′1f(x
′
1)A dx′1 − x1F (x1) (2.7)

dM

dx1
= −x1f(x1)A− F (x1)− x1

dF

dx1
(x1) (2.8)

dM = −x1f(x1)A dx1 − F dx1 − x1 dF (2.9)
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Combining equations (2.4) and (2.9):

dM

dx1
= −x1f(x1)A− F − x1

dF

dx1
(2.10)

=������−x1f(x1)A− F +�����x1f(x1)A (2.11)

(2.12)

Differentiating one more time and using equation (2.4):

d2M

dx21
= f(x1)A (2.13)

Recall equation (1.21):
d2u2
dx21

=
M0

EI3
(2.14)

Putting everything together, we arrive at the beam bending formula:

d4u2
dx41

=
1

EI3

d2M

dx21
=⇒ d4u2

dx41
=
f(x1)A

EI3
(2.15)

2.2 Examples
Let us use these two (boxed) formulas to solve some simple static examples:

Example 1: Point Force

Consider a singly-clamped beam with
a point force applied to its end.

(Force density: Fp · δ(z−l)
A

[
N
m3

]
)

There are the following boundary conditions (BC):

1. ux(0) = 0 : There is no displacement at the clamping point.

2. dux

dz (0) = 0 : There is no bending at the clamping point.

3. d2ux

dz2 (l) = 0 : There is no torque applied to the end of the beam.

To solve the problem, we start with equation 2.15, integrate four times and apply the boundary conditions:

d4ux
dz4

=
f(z)A

EIy
=

1

EIy
[−Fpδ(z) + Fpδ(z − l)] (2.16)

d3ux
dz3

= − Fp

EIy
for z < l (2.17)

d2ux
dz2

= − Fp

EIy
z + c1 , where c1 =

Fpl

EIy
(from BC 3) (2.18)

dux
dz

= − Fp

2EIy
z2 +

Fpl

EIy
z + c2 , where c2 = 0 (from BC 2) (2.19)

ux = − Fp

6EIy
z3 +

Fpl

2EIy
z2 + c3 , where c3 = 0 (from BC 1) (2.20)

10



Finally, we arrive at

ux =
Fp

2EIy

(
lz2 − z3

3

)
(2.21)

Example 2: Point Torque

Now, consider a singly-clamped beam with
a point torque applied to its end.

In this case, the boundary conditions (BC) are:

1. ux(0) = 0 : There is no displacement at the clamping point.

2. dux

dz (0) = 0 : There is no bending at the clamping point.

To solve this problem we start with equation (2.14), integrate twice and apply the boundary conditions:

d2ux
dz2

=
My

EIy
(2.22)

dux
dz

=
My

EIy
z + c1 , where c1 = 0 (from BC 2) (2.23)

ux =
My

2EIy
z2 + c2 , where c2 = 0 (from BC 1) (2.24)

Therefore, the bending of the beam is given by:

ux =
My

2EIy
z2 (2.25)
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3 Cantilever Dynamics
So far, we have treated only static forces and torques, which caused bending of cantilevers. Now, we want
to investigate the dynamic behavior of cantilevers, especially under oscillating forces.

3.1 Flexural Vibrations
Let us calculate the dynamic behavior of this beam as the end flexes in the x-direction:

Balance Forces:

Fx(z + dz)− Fx(z) = ρA dz︸ ︷︷ ︸
mass

· d2ux
dt2︸ ︷︷ ︸

acceleration

(3.1)

Balance Torques:
My(z + dz)−My(z) + Fx(z + dz) dz = 0 (3.2)

Expanding out for small dz around z:

∂Fx

∂z
= ρA

∂2ux
∂t2

∂My

∂z
= −Fx(z)

(3.3)

(3.4)

=⇒ ∂2My

∂z2
= −ρA∂

2ux
∂t2

(3.5)

Recall from before: d2ux

dz2 =
My

EIy
. Then, it follows:

My = EIy
∂2ux
∂z2

(3.6)

EIy
∂4ux
∂z4

= −ρA∂
2ux
∂t2

(3.7)

=⇒ EIy
∂4ux
∂z4

+ ρA
∂2ux
∂t2

= 0 (3.8)

Let us now assume harmonic time dependence for the displacement:

ux(z, t) = ux(z) e−iωt (3.9)

=⇒ d4ux
dz4

=

(
ρA

EIy

)
ω2ux(z) Define β ≡

(
ρA

EIy

) 1
4

ω
1
2 (3.10)
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The particular solutions for ux(z) are then of the form:

ux(z) = eκz , with κ = ±β,±iβ (3.11)

A general solution for ux(z) is:

ux(z) = A eiβz +B e−iβz + C eβz +D e−βz (3.12)

or equivalently:
ux(z) = a cos(βz) + b sin(βz) + c cosh(βz) + d sinh(βz) (3.13)

With this result, we can now apply boundary conditions to find the motion of a singly clamped beam
(i.e., a cantilever):

1. ux(0) = 0 → no displacement at clamp

2.
dux
dz

(0) = 0 → no bendig at clamp

3.
d2ux
dz2

(l) = 0 → no torque at free end

4.
d3ux
dz3

(l) = 0 → no net force over full beam

Going through the math, one finds that these conditions require:

a = −c (3.14)

b = −d (3.15)
and cos(βl) cosh(βl) + 1 = 0︸ ︷︷ ︸

βnl=1.875, 4.644, 7.855, 10.446, ...

(3.16)

Therefore, complete solutions with the parameter n are given by:

ux,n(z) = an [cos(βnz)− cosh(βnz)] + bn [sin(βnz)− sinh(βnz)]

with
an
bn

= −1.362, −0.982, −1.008, −1.000, ...

(3.17)

These solutions take the following form:

with angular frequencies

ωn =

√
EIy
ρA

β2
n (3.18)

13



3.2 Zener’s Model of an Anelastic Solid (FN p.282)
One model which describes solids in a more realistic way by introducing losses, is the Zener’s model.
Beginning from a linear stress-strain relation:

stress = Young’s Modulus · strain

⇐⇒ σ = E · Σ (3.19)

We introduce a time dependence of stress and strain:

σ + TΣ
dσ

dt
= ER

(
Σ+ Tσ

dΣ

dt

)
(3.20)

Now, we consider harmonic motion:

σ = σ0 eiωt Σ = Σ0 eiωt (3.21)

σ0
Σ0

= ER

[
1 + Tσ iω

1 + TΣ iω

]
≡ E(ω) (3.22)

This can be expressed differently by introducing following definitions:

T ≡
√
TσTΣ ∆ ≡ Tσ − Tσ

T
Eeff(ω) ≡ ER

1 + ω2T 2

1 + ω2T 2
Σ

(3.23)

=⇒ E(ω) = ER

[
1 + ω2T 2

1 + ω2T 2
Σ

+ i
ω T

1 + ω2T 2
Σ

∆

]
(3.24)

E(ω) = Eeff(ω)

[
1 + i

ωT

1 + ω2T 2
∆

]
(3.25)

E(ω) = Eeff(ω)

[
1 +

i

Q

]
, with

1

Q
≡ ωT

1 + ω2T 2
∆ (3.26)

Inserting this back into the result from Euler Bernoulli (3.8):

EIy
∂4ux
∂z4

+ ρA
∂2ux
∂t2

= 0 (3.27)

∂4ux
∂z4

(z) =

 ρA

Eeff

(
1 + i

Q

)
Iy

ω2

︸ ︷︷ ︸
β4

ux(z) (3.28)
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This results in new angular frequencies:

ω′
n =

√
EeffIy
ρA

β2
n

(
1 +

i

2Q

)

ω′
n =

(
1 +

i

2Q

)
ωn for Q≫ 1

(3.29)

(3.30)

3.3 Cantilevers as Harmonic Oscillators
So far, we have not considered any external forces on our cantilever. Let us add a driving field, and
equation (3.8) becomes:

EIy
∂4ux
∂z4

+ ρA
∂2ux
∂t2

= f(t)︸︷︷︸
[ Force
length ]

(3.31)

If we Fourier decompose f(t), we can do the same for ux, considering:

f(t) =
1

2π

∞∫
−∞

F̂ (ω) eiωt dω (3.32)

ux(t) =
1

2π

∞∫
−∞

Ûx(ω) eiωt dω (3.33)

Plugging in these expressions and canceling out both the time dependence and integrals from the equations,
we have:

EIy
∂4Ûx

∂z4
− ω2ρAÛx = F̂ (ω) (3.34)

Ûx can be written in terms of the eigenfunctions of the beam:

Ûx =

∞∑
n=1

anuxn , where
∞∫
0

uxnuxm dz = l3δmn (orthogonality) (3.35)

Then:

EIy

∞∑
n=1

an
∂4uxn
∂z4︸ ︷︷ ︸ − ω2ρA

∞∑
n=1

anuxn = F̂ (ω) (3.36)

From before:
∂4uxn
∂z4

=

(
ρA

EIy

)
ω2
nuxn

ρA

∞∑
n=1

anω
′2
n uxn − ρAω2

∞∑
n=1

anuxn = F̂ (ω) (3.37)
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Integrating through with uxn:

ρA


∞∑

n=1

anω
′2
n

�
�
�
�
�
��>
l3δnm

l∫
0

uxnuxm dz − ω2
∞∑

n=1

an

�
�

�
�
�

��>
l3δnm

l∫
0

uxmuxn dz

 =

l∫
0

uxnF̂ (ω)dz (3.38)

ρAl3an
(
ω′2
n − ω2

)
=

l∫
0

uxnF̂ (ω) dz (3.39)

=⇒ an =
1

ρAl3︸ ︷︷ ︸
m·l2

1

ω′2
n − ω2

l∫
0

uxnF̂ (ω)dz (3.40)

recall from earlier: ω′
n =

(
1 +

i

2Q

)
ωn

In the limit of high Q (i.e., small dissipation):

an =
1

ml2

l∫
0

uxnF̂ (ω) dz

(
1

ω2
n − ω2 + i

ω2
n

Q

)
(3.41)

The response of each mode n - as we will see - looks a lot like the response of a simple driven damped
harmonic oscillator. Let us now specify that our driving force f(t) is a point force applied at z = l:

=⇒ F̂ (ω) = F̂p(ω) δ(z − l) (3.42)

l∫
0

uxnF̂ (ω)dz = uxn(l) F̂p(ω) (3.43)

If we now consider the response of the fundamental mode, n = 1, for our normalization we know that
ux1(l) ≈ 2l.

=⇒ a1 =
1

ml2
2lF̂p(ω)

1

ω2
1 − ω2 + i

ω2
1

Q

(3.44)

a1 =
2F̂p(ω)

ml

1

ω2
1 − ω2 + i

ω2
1

Q

(3.45)

Driven displacement of the n = 1 mode at the end of the cantilever:

a1ux1(l) =
4F̂p(ω)

m

1

ω2
1 − ω2 + i

ω2
1

Q

(3.46)

If ω is close to ω1 and no other mode resonates, then we can say that the Fourier component of the
cantilever’s end deflection is:

x̂end(ω) = a1ux1(l) =
4F̂p(ω)

m

1

ω2
1 − ω2 + i

ω2
1

Q

(3.47)
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x̂end(ω) =
F̂p(ω)

meff

1

ω2
1 − ω2 + i

ω2
1

Q

with meff =
m

4

(3.48)

(3.49)

This expression can be rewritten in terms of a mechanical susceptibility χm(ω):

x̂end(ω) = F̂p(ω) χm(ω) (3.50)

with χm(ω) =
1

meff

1

ω2
1 − ω2 + i

ω2
1

Q

(3.51)

At driving forces matching the resonance frequency ω1:

χm(ω1) = −i ·
Q

meff ω2
1

(3.52)

-90◦ phase shift response multiplied by Q (3.53)

The cantilever behaves as a resonator, responding
only to forces at frequency ω1, within a bandwidth
proportional to 1

Q .

Recall what we derived for the static case: for a point force applied to the end, a cantilever bends:

ux(z) =
Fp

2EIy

(
lz2 − z3

3

)
(3.54)

ux(l) = Fp
l3

3EIy
Iy =

wt3

12
(3.55)

ux(l) = Fp

(
4l3

Ewt3

)
(3.56)

=⇒ Fp = ks · ux(l) (3.57)

static spring constant: ks =
Ewt3

4l3
(3.58)

Compare to the dynamic case:

F̂p(ω) =
1

χm(ω)
x̂end(ω) (3.59)

kD =
1

χ(ω)
(3.60)
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On resonance:

kD =
1

χ(ω1)
= i

meffω
2
1

Q
recall: ω1 =

√
EIy
ρA

β2
n (3.61)

= i
ρwtl

4Q

EIy
ρwt

1.8754

l4
(3.62)

=
i

Q

Ewt3

48l3
1.8754︸ ︷︷ ︸
12.36

(3.63)

≈ i

Q

Ewt3

4l3
=

i

Q
ks (3.64)

dynamic spring constant: kD ≈
i

Q
ks (3.65)

We see that the dynamic spring constant of a cantilever driven at resonance frequency of the first mode
is smaller by a factor Q, i.e., the cantilever is softer in this case.

3.4 Simple Harmonic Oscillator
Let us for a moment consider the simple harmonic oscillator:

Equation of motion:

mẍ+ Γẋ+ kx = F (t) (3.66)

Let us define the Fourier Transform:

x(t) =
1

2π

∞∫
−∞

x̂(ω) eiωt dω (3.67)

If we take the Fourier transform of the equation of motion, we get:

−mω2x̂(ω) + iΓωx̂(ω) + kx(ω) = F̂ (ω) (3.68)

x̂(ω) =
F̂ (ω)

m

1
k
m − ω2 + iΓω

(3.69)

(3.70)

We use these definitions:
k = mω2

0 Γ =
mω0

Q
(3.71)

to obtain

x̂(ω) =
F̂ (ω)

m

1

ω2
0 − ω2 + iω0ω

Q

(3.72)
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This expression is very similar to that of a driven, damped beam. Here, again, we can define a suscepti-
bility:

x̂(ω) = F̂ (ω)χm(ω) (3.73)

with χm(ω) =
1

m

1

ω2
0 − ω2 + iω0ω

Q

(3.74)

On resonance, the harmonic oscillator reacts:

χm(ω0) = −i ·
Q

mω2
0

(3.75)

-90◦ phase shift response multiplied by Q (3.76)

Similarly, the dynamic spring constant is softened by Q:

kD =
1

χm(ω)
= i

mω2
0

Q
(3.77)

kD = i
k

Q
(3.78)

So, the beam and the harmonic oscillator behave almost the same! There are two main differences:

1. m vs. meff = m
4 : when the beam is oscillating, not the whole mass is involved in the movement.

2. i ω0ω
Q vs i ω2

1

Q : this difference is only relevant off resonance and for systems with low Q.
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4 Dissipation and Noise
4.1 Power Spectral Density
We now know how beams - and by extension other continuous objects like strings, membranes, and rods
- behave under both static and dynamic forces. We find that they act as transducers and as resonators
with geometry and losses determining their properties. We have written transfer functions and can solve
for their response to time-varying forces. Now, we must consider the effects of fluctuations.

First, however, we have to discuss how to quantify fluctuations. For this, we begin by defining the
correlation function:

Kx(τ) = lim
T→∞

T/2∫
−T/2

x(t)x∗(t− τ)
T

dt (4.1)

The above function measures how well correlated fluctuations are after a time τ .

If we write the integrand in terms of the Fourier Transforms of x(t) and x∗(t− τ):

Kx(τ) = lim
T→∞

T/2∫
−T/2

1

4π2

∞∫
−∞

∞∫
−∞

x̂(ω) x̂∗(ω′)

T
ei(ω−ω′)t eiω

′τ dω dω′ dt (4.2)

Recall: δ(ω − ω′) =
1

2π

∞∫
−∞

ei(ω−ω′)tdt (4.3)

Kx(τ) = lim
T→∞

1

2π

∞∫
−∞

∞∫
−∞

x̂(ω) x̂∗(ω′)

T
δ(ω − ω′) eiω

′τ dω dω′ (4.4)

Kx(τ) =
1

2π

∞∫
−∞

lim
T→∞

x̂(ω) x̂∗(ω)

T︸ ︷︷ ︸ eiωτ dω (4.5)

Sx(ω) = lim
T→∞

x̂(ω) x̂∗(ω)

T
Power Spectral Density (4.6)

Kx(τ) =
1

2π

∞∫
−∞

Sx(ω) eiωτ dω Correlation Function (4.7)

Correlation function and power spectral density (PSD) are Fourier Transform pairs, and the PSD has
units of [m2/Hz].
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This Fourier relation also means that:

Kx(0) = lim
T→∞

T/2∫
−T/2

x(t)x∗(t)

T
dt = lim

T→∞

T/2∫
−T/2

|x(t)|2

T
dt = ⟨x2⟩ (4.8)

Kx(0) = ⟨x2⟩ =
1

2π

∞∫
−∞

Sx(ω) dω (4.9)

The root-mean-square fluctuations can be expressed as:

xrms =
√
⟨x2⟩ =

√√√√√ 1

2π

∞∫
−∞

Sx(ω) dω (4.10)

What is Sx(ω) for a beam? Well, we take the definition of the PSD and express it in terms of the Fourier
Transforms:

Beam:

Sx,end(ω) = lim
T→∞

x̂end(ω) x̂
∗
end(ω)

T
(4.11)

Sx,end(ω) = lim
T→∞

Fp(ω)F
∗
p (ω)

T

1

m2
eff

1

(ω2
1 − ω2)2 +

ω4
1

Q2

(4.12)

Sx,end(ω) =
SFp(ω)

m2
eff

1

(ω2
1 − ω2)2 +

ω4
1

Q2

(4.13)

Similarly, for the harmonic oscillator:

Sx(ω) = lim
T→∞

x̂(ω) x̂∗(ω)

T
(4.14)

Sx(ω) =
SF (ω)

m2

1

(ω2
0 − ω2)2 +

ω2
0ω

2

Q2

(4.15)

We see that fluctuations in force (SF ) are transduced into fluctuations in displacement (Sx).

Near resonance, i.e., ω0 = ω1 ≈ ω, the beam and the harmonic oscillator respond the same to fluctuations
and drives. From now on we will use this as an excuse to approximate the modes of beams, membranes
etc. as simple harmonic oscillators.
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4.2 Fluctuation - Dissipation
In order to understand the motion of our resonator, we have to understand the force fluctuations that drive
it: SF (ω). Those, it turns out, are tightly related to the dissipation Γ, which the resonator experiences.
Let us consider the harmonic oscillator:

We can re-write the equation of motion to include the random forces:

mẍ+ kx = F (t)︸︷︷︸+ f(t)︸︷︷︸ (4.16)

external driving force force from microscopic collisions

mẍ = F (t)− kx︸ ︷︷ ︸+ f(t)︸︷︷︸ (4.17)

F (t) random forces due to microscopic
slowly varying collisions with heat reservoir at T
external forces

We cannot know f(t) fully, only statistically. f(t) has a correlation time τ∗ which is very short (∼ 10−13 s
for a typical liquid). Consider a macroscopically short time τ such that τ ≫ τ∗:

m (v(t+ τ)− v(t)) = F (t) τ +

t+τ∫
t

f(t′) dt′ (4.18)

Taking an average over the ensemble:

m ⟨v(t+ τ)− v(t)⟩ = F (t) τ +

t+τ∫
t

⟨f(t′)⟩ dt′ (4.19)

Let us consider our small system A within a larger heat bath B at temperature T. The probability of A
being in some state r, Wr, is proportional to the corresponding number of states available to B, Ω. At
time t:

Wr(t) ∝ Ω(E′) , with E′ the energy of both systems (4.20)

After some time τ ′ > τ∗, so that every accessible state is equally likely:

Wr(t+ τ ′) ∝ Ω(E′ +∆E′) , with ∆E′ the energy increase of both systems (4.21)
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From statistical mechanics, we know that:

Wr(t+ τ ′)

Wr(t)
=

Ω(E′ +∆E′

Ω(E′)
= exp

[
∆E′

kBT

]
(4.22)

In other words, the probability that A is found in a given state r at some later time is increased, if more
energy becomes available to B (heat reservoir).

Wr(t+ τ ′) =Wr(t) exp

[
∆E′

kBT

]
≈Wr(t)

(
1 +

∆E′

kBT

)
(for small changes) (4.23)

⟨f(t+ τ ′)⟩ =
∑
r

Wr(t+ τ ′) fr =
∑
r

Wr(t)

(
1 +

∆E′

kBT

)
fr (4.24)

⟨f(t+ τ ′︸ ︷︷ ︸
t′

⟩ = ⟨f(t)⟩︸ ︷︷ ︸
0

+
1

kBT

〈
∆E′f(t′)

〉
(zero mean force → random) (4.25)

⟨f(t′)⟩ = 1

kBT

〈
∆E′f(t′)

〉
(4.26)

The energy difference ∆E′ can be expressed as:

∆E′ = −
t′∫
t

v(t′′) f(t′′)dt′′ ≈ −v(t)
t′∫
t

f(t′′) dt′′ (4.27)

Using this expression yields

⟨f(t′)⟩ = 1

kBT

〈
−v(t)

t′∫
t

f(t′′) dt′′ f(t)
〉

(4.28)

= −⟨v(t)⟩
kBT

t′∫
t

〈
f(t′′) f(t)

〉
dt′′ (4.29)

= −⟨v(t)⟩
kBT

∫ t−t′

0

〈
f(t) f(t− s)

〉
ds s = t− t′′ , ds = −dt′′ (4.30)

This expressions occurs integrated in equation (4.19), so let us compute this integral:
t+τ∫
t

⟨f(t′)⟩ dt′ = −⟨v(t)⟩
kBT

t+τ∫
t

dt′
0∫

t−t′

ds
〈
f(t) f(t− s)

〉︸ ︷︷ ︸
Kf (s):

correlation function

One aside about the correlation function: Kf (s) is independent of t. Further, it is symmetric:

Kf (s) =
〈
f(t) f(t− s)

〉
=
〈
f(t1) f(t1 − s)

〉
(4.31)

if t1 = t+ s :

Kf (s) =
〈
f(t) f(t− s)

〉
=
〈
f(t+ s) f(t)

〉
(4.32)

=⇒ Kf (s) = Kf (−s) (4.33)
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Also, it drops to zero for s ∼ τ∗:

Let us continue with equations (4.19) and (4.31):

m ⟨v(t+ τ)− v(t)⟩ = F (t) τ − ⟨v(t)⟩
kBT

t+τ∫
t

dt′
0∫

t−t′

dsKs(f)

︸ ︷︷ ︸
I

(4.34)

This integral I can be simplified:

I=

t+τ∫
t

dt′
0∫

t−t′

dsKf (s) (4.35)

=

0∫
−τ

ds
t+τ∫

t−s

dt′Kf (s) (4.36)

=

0∫
−τ

ds (τ + s)Kf (s) (4.37)

Recall: τ ≫ τ∗ and Kf (s)→ 0 for |s| ≫ τ∗

=⇒ I ≈ τ
0∫

−∞

dsKf (s) =
τ

2

∞∫
−∞

dsKf (s) Kf (s) is symmetric (4.38)

Therefore, equation (4.19) can be expressed as:

m
〈
v(t+ τ)− v(t)

〉
= F (t) τ − ⟨v(t)⟩

2kBT
τ

∞∫
−∞

Kf (s) ds (4.39)

Since ⟨v(t)⟩ varies slowly over τ :

m
d⟨v(t)⟩

dt
= m

⟨v(t+ τ)⟩ − ⟨v(t)⟩
τ

(4.40)

=⇒ m
d⟨v(t)⟩

dt
= F (t)︸ ︷︷ ︸−⟨v(t)⟩2kBT

∞∫
−∞

Kf (s) ds (4.41)

Recall: F (t) = F (t)− kx
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Macroscopically, we have:

mẍ = F (t)− kx− ẋ

2kBT

∞∫
−∞

Kf (s)ds (4.42)

mẍ+

 1

2kBT

∞∫
−∞

Kf (s) ds

 ẋ+ kx = F (t) (4.43)

We can identify the term in square brackets to be the dissipation Γ ! The connection between fluctuating
forces f(t) and dissipation Γ is:

Γ =
1

2kBT

∞∫
−∞

Kf (s) ds (4.44)

Since the fluctuating forces are nearly uncorrelated on macroscopic timescales (τ∗ ≪ τ), we can approxi-
mate:

Kf (s) ≈ f20 δ(s) (4.45)

=⇒ Γ =
1

2kBT
f20 =⇒ f20 = 2kBT Γ (4.46)

=⇒ Kf (s) = 2kBT Γδ(s) (4.47)

In this way we retrieve the original equation of motion from (4.43):

mẍ+ Γẋ+ kx = F (t) (4.48)

This also allows us to find the power spectral density (PSD) of the fluctuating forces f(t):

Sf (ω) =

∞∫
−∞

Kf (s) e−iωs ds (4.49)

Sf (ω) = 2kBT Γ Double-sided: −∞ < ω < ∞ (4.50)

Notice that this spectral density is constant in ω, i.e., white!

For real-valued signals S(ω) is even (S(ω) = S(−ω). Therefore, it is sometimes useful to define a single-
sided PSD for only positive ω:

S̄(ω) = S(ω) + S(−ω) (4.51)

Here:
S̄f (ω) = 4kBT Γ Single-sided: 0 < ω < ∞ (4.52)

This can be translated into a thermal force, which simultaneously determines the minimum detectable
force in an experiment with measurement bandwidth ∆ν:

Fmin =
√
4kBT Γ∆ν (4.53)
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Size of thermal displacement fluctuations:

⟨x2⟩ = 1

2π

∞∫
−∞

Sx(ω) dω (4.54)

⟨x2⟩ = 1

2π

∞∫
−∞

Sf (ω)

m2

 1

(ω2
0 − ω2)2 +

ω2
0ω

2

Q2

 dω (4.55)

⟨x2⟩ = kBT Γ

πm2

∞∫
−∞

dω
(ω2

0 − ω2)2 + Γ2ω2

m2︸ ︷︷ ︸
πm

ω2
0Γ

(4.56)

⟨x2⟩ = kBT Γ

πm2

πm

ω2
0Γ

=
kBT

mω2
0

=
kBT

k
(4.57)

(4.58)

This can be expressed as
1

2
k⟨x2⟩ = 1

2
kBT (4.59)

We retrieve the equipartition theorem!
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5 Nanomechanical Measurements
5.1 Review and Analogy to Electronics
A quick review:

The Langevin Equation for a nanomechanical
resonator reads

mẍ+ Γẋ+ kx = F (t) (5.1)

This system has a (single-sided) power spectral
density of thermal forces:

S̄f (ω) = 4kBT Γ (5.2)

These thermal forces set a limit to minimum measurable forces:

Fmin =
√
4kBT Γ∆ν (5.3)

These random force fluctuations drive random displacement fluctuations with a specific spectrum:

Sx(ω) =
2kBT Γ

m2

1

(ω2
0 − ω2)2 + Γ2ω2

m2

(5.4)

The Langevin equation, which we have been discussing is not the only one. Take for example the standard
description of a linear electronic circuit:

−LQ̈+RQ̇+
1

C
Q = V (t) (5.5)

VL = −LdI

dt
VR = RI VC =

Q

C
dI

dt
= Q̈ I = Q̇

The PSD of thermal voltage fluctuations is proportional to T and R:

S̄V (ω) = 4kBTR Johnson Noise (5.6)

Vmin =
√
4kBTR∆ν Johnson voltage noise in bandwidth ∆ν (5.7)
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5.2 Dissipation-induced Amplitude Noise
As we have seen before, the power spectral density of the displacement noise caused by thermal forces is
descried by

Sx(ω) =
2kBT Γ

m2

1

(ω2
0 − ω2)2 + Γ2ω2

m2

(5.8)

So even with a white force PSD (i.e., Sf (ω) = 2kBT Γ),
the displacement PSD has "color" in the sense that it
has a frequency dependence imposed by the mechanical
resonator

On resonance:

Sx(ω0) =
2kBT Γ

m2

m2

Γ2ω2
0

(5.9)

Sx(ω0) =
2kBT

Γω2
0

(5.10)

For practical matters, let us consider the single-sided PSD (i.e., 0 < ω <∞) :

S̄x(ω) =
4kBT Γ

m2

1

(ω2
0 − ω2)2 + Γ2ω2

m2

(5.11)

S̄x(ω0) =
4kBT

Γω2
0

=
4kBTQ

mω3
0

[
m2

Hz

]
(5.12)

xmin =
2

ω0

√
kBT

Γ
∆ν

[
m√
Hz

]
(5.13)

xmin is the displacement due to thermal forces and therefore the minimum detectable displacement.

5.3 Dissipation-induced Phase Noise
Thermal fluctuations will not only induce displacement noise (amplitude noise), but also phase noise. This
is particularly important for time-keeping or for frequency-based measurements, as we will see.

Take a resonator that is driven
by a carrier signal near its reso-
nance frequency ω0 and dissipa-
tion induced thermal force noise:
Sf (ω) = 2kBT Γ.
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Now we could represent the carrier at ω0 and a single spectral component of the noise at ω as:

x(t) = x0 sin(ω0t) + xn sin((ω0 + ω)t+ ϕ) (5.14)

x(t) = x0 sin(ω0t) + xn sin(ω0t) cos(ωt+ ϕ) + xn cos(ω0t) sin(ωt+ ϕ) (5.15)

x(t) = [x0 + xn cos(ωt+ ϕ)]︸ ︷︷ ︸
A

sin(ω0t) + [xn sin(ωt+ ϕ)]︸ ︷︷ ︸
B

cos(ω0t) (5.16)

x(t) = A sin(ω0t) +B cos(ω0t) (5.17)

The resultant time-varying amplitude at ω0 is

R =
√
A2 +B2 =

√
x20 + 2x0xn cos(ωt+ ϕ) + x2n (5.18)

R = x0

√
1 +

2xn
x0

cos(ωt+ ϕ) +
x2n
x20

(5.19)

For a carrier drive much larger than the noise, i.e., x0 ≫ xn :

R ≈ x0 (1 +
xn
x0

cos(ωt+ ϕ)) = x0 (1 +
xn
x0

sin
(
ωt+ ϕ+

π

2

)
)︸ ︷︷ ︸

Amplitude modulation
⟨M2⟩= x2

n
2x2

0

(5.20)

The phase angle of x(t) with respect to the pure carrier sin(ω0t) is:

tan(Θ) =
B

A
=

xn sin(ωt+ ϕ)

x0 + xn cos(ωt+ ϕ)
(5.21)

For x0 ≫ xn:

tan(Θ) ≈ xn
x0

sin(ωt+ ϕ) (5.22)

Θ ≈ xn
x0

sin(ωt+ ϕ)︸ ︷︷ ︸ (5.23)

Phase modulation ⟨Θ2⟩ = x2n
2x20

Phasor representation:
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This means that noise in the sidebands of the carrier (at ω0+ω) can be represented as one half amplitude
modulation noise and one half phase modulation noise. For frequency measurements or clocks, amplitude
modulation is not important, only phase noise.

Averaging over time, we can relate the phase fluctuations at ω with the displacement noise at ω0 + ω:

⟨Θ2⟩ω =
x2n
2x20

=
1

x20
⟨x2⟩ω0+ω (5.24)

Expressed in terms of the power spectral densities:

1

2π
SΘ(ω) dω =

1

x20

[
1

2π
S̄x(ω0 + ω) dω

]
(5.25)

=⇒ SΘ(ω) =
1

x20
S̄x(ω0 + ω) Double-sided (5.26)

S̄Θ(ω) =
2

x20
S̄x(ω0 + ω) Single-sided (5.27)

If we now plug in our thermal PSD for Sx(ω), we can solve for the thermal phase PSD:

SΘ(ω) =
4kBT Γ

x2
0m

2

1

(2ω0ω + ω2)2 +
Γ2(ω2

0+ω2)2

m2

Γ =
mω0

Q
(5.28)

For frequencies that are well off resonance, ω ≫ ω
Q , but small compared to the resonance frequency,

ω ≪ ω0:

SΘ(ω) ≈
kBT Γ

x20m
2

1

ω2
0ω

2
(5.29)

SΘ(ω) ≈
kBT Γ

x20m
2ω2

0

1

ω2
=

kBT

x20mω0Q

1

ω2
Double-sided (5.30)

S̄Θ(ω) ≈
2kBT Γ

x20m
2ω2

0

1

ω2
=

2kBT

x20mω0Q

1

ω2
Single-sided (5.31)

5.4 Dissipation-induced Frequency Noise
Frequency noise and phase noise are closely related. For a phase modulation Θ at frequency ω, we have
a frequency modulation δω0 = ωΘ (→ δν0 = ω

2π Θ).

=⇒ Sν(ω) =

(
∂δν0
∂Θ

)2

SΘ(ω) (5.32)

Sν(ω) =
ω2

4π2
SΘ(ω) (5.33)

Sν(ω) =
kBT Γ

π2x20m
2

ω2

(2ω0ω + ω2)2 + Γ2(ω0+ω)2

m2

(5.34)
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Again, in the limit ω ≫ ω0

Q and ω ≪ ω0:

Sν(ω) ≈
kBT Γ

4π2x20m
2ω2

0

=
kBT

4π2x20mω0Q
Double-sided (5.35)

S̄ν(ω) ≈
kBT Γ

2π2x20m
2ω2

0

=
kBT

2π2x20mω0Q
Single-sided (5.36)

We see that within this approximation, the noise is white again, i.e., has no frequency dependence.

5.5 Measuring using a Harmonic Oscillator
Take a harmonic mechanical mode obeying the usual equation of motion:

mẍ+ Γẋ+ kx = 0 , (5.37)

where no forces are applied. The solution to this differential equation has the form:

x(t) = Aeiωt (5.38)

Therefore:
−mω2 + iΓω + k = 0 (5.39)

ω =
i Γm ±

√
4k
m −

Γ2

m2

2
(5.40)

ω = i
Γ

2m
±
√
k

m
+

Γ2

4m2
(5.41)

These solutions correspond to decaying harmonic oscillations. If we define ω0 =
√
k/m and Γ = mω0/Q,

ω = i
ω0

2Q
± ω0

√
1 +

1

4Q2︸ ︷︷ ︸ (5.42)

This term ≈ 1 for Q ≫ 1, i.e., small Γ

Therefore, for high Q, the resonant frequency is given by

ω0 =

√
k

m
(5.43)

Plugging the result of equation (5.42) within this approximation into equation (5.38) yields:

x(t) = e−
ω0
2Q t
(
Aeiω0t +Be−iω0t

)
(5.44)

The resonator’s resonance frequency can be used to measure changes in mass, spring constant, and force
gradients.
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Measuring Mass

Let us take a small change in mass δm:

ω0 + δω0 =

√
k

m+ δm
(5.45)

ω0 + δω0 = ω0

√
m

m+ δm
(5.46)

ω0 + δω0 = ω0

(
1 +

δm

m

)−1/2

(5.47)

Expanding around small δm/m and keeping only first order terms:

ω0 + δω0 ≈ ω0

(
1− 1

2

δm

m

)
(5.48)

δω0

ω0
= −1

2

δm

m
(5.49)

δν0
ν0

= −1

2

δm

m
(5.50)

We see that the relative frequency shift is proportional to the relative mass change.

Since we now know the relationship between changes in resonance frequency and changes in mass, we can
now write down a thermal limit for a minimum detectable mass, based on thermal frequency fluctuations
Sv(ω). From above:

δm = −2m

ν0
δν0 = −4πm

ω0
δν0 (5.51)

S̄m(ω) =

(
−4πm

ω0

)2

S̄ν(ω) (5.52)

S̄m(ω) =
16π2m2

ω2
0

S̄ν(ω) (5.53)

Again, in the limit ω ≫ ω0/Q and ω ≪ ω0:

S̄m(ω) =
2

x20ω
4
0

S̄f (5.54) PSD of thermal "mass" fluctuations

As a result, the minimum detectable mass due to thermal fluctuations is:

mmin =

√
8kBT Γ∆ν

x20ω
4
0

=
2

x0ω2
0

√
2kBT Γ∆ν [kg] (5.55)

We see that, to improve sensitivity (i.e., make mmin smaller), we have to reduce T , Γ, ∆ν and increase
x0 and ω0 ⇒ Cold, high frequency, low-loss resonators are best.
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Measuring Force Gradients

Similarly, the system can be exposed to an external force gradient, ∂F
∂x , or equivalently a change in spring

constant δk. In each case, the equation of motion becomes:

mẍ+ Γẋ+ kx =
∂F

∂x
x (5.56)

or

mẍ+ Γẋ+ (k + δk)x = 0 (5.57)

In both cases, the analysis is the same, so we will proceed with δk (δk = −∂F
∂x ).

We have:

ω0 + δω0 =

√
k + δk

m
(5.58)

ω0 + δω0 = ω0

(
1 +

δk

k

)1/2

(5.59)

For small δk/k:

ω0 + δω0 ≈ ω0 (1 +
1

2

δk

k
) (5.60)

δω0

ω0
≈ 1

2

δk

k

δω0

ω0
≈ −1

2

∂F
∂x

k
(5.61)

We see, the relative frequency shift is also proportional to force gradients and changes in stiffness.

Now that we have the relationship between changes in k (or external gradients) and frequency, we can
state the thermo-mechanical limits imposed by frequency noise Sν(ω).

δk =
2k

ν0
δν0 =

4πk

ω0
δν0 (5.62)

δk = 4πmω0δν0 (5.63)

S̄k(ω) = 16π2m2ω2
0S̄ν(ω) (5.64)

In the limit ω ≫ ω0/Q and ω ≪ ω0:

S̄k(ω) = 16π2m2ω2
0

kBT Γ

2π2x20m
2ω2

0

=
8kBT Γ

x20
(5.65)

Sk(ω) =
2

x20
S̄f (5.66)

PSD of thermal "spring constant"
or force gradient fluctuations

As a result, the minimum detectable spring constant change or force gradient due to thermal fluctuations
is:

kmin =
2

x0

√
2kBT Γ∆ν

[
N

m

]
(5.67)

To improve sensitivity, the same measures should be taken as for optimizing Fmin: decrease T , Γ, ∆ν.
In addition, the driving amplitude x0 should be increased as much as possible without affecting spatial
resolution and without entering a non-linear regime.
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5.6 Displacement Measurement
I now want to discuss measurements of nanomechanical displacements. Nanomechanical elements are
typically transducers, i.e., devices that convert force, torque, mass change, etc. into a displacement or
phase shift. This displacement or phase shift then has to be measured by a detector. Such detectors of
nanomechanical motion are typically optical or electronic. Together the transducer and the detector make
the force, torque, or mass change sensor.

Now, displacement x must be detected by:

• tunneling
• optical deflection
• optical interferometry
• microwave interferometry
• magnetomotive effect
• piezoelectric effect
• capacitive effect

Many techniques have been developed and are used nowadays. See the lecture slides for examples.

5.7 Fiber Interferometry
We will now examine in detail displacement detection by optical interferometry.

Assume that the reflectivity of the fiber face is R1 and of the cantilever is R2. Assume low reflectivities,
such that R1, R2 ≪ 1. The incident laser power is PI = E2

I , where EI is the electric field magnitude of
the incident laser beam. The power reflected back down the fiber PR depends on the interference between
light reflected at R1 and R2:

PR =
∣∣∣EI

√
R1 eiϕ1 + EI

√
1−R1

√
R2

√
1−R1 eiϕ2

∣∣∣2 (5.68)

ϕ1 and ϕ2 are the phase at R1 and R2, respectively.
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We can rearrange this:

PR = E2
I

[
R1 + (1−R1)

2R2 + 2
√
R1R2(1−R1) cos(ϕ1 − ϕ2)

]
(5.69)

PR = E2
I

[
R1 + (1−R1)

2R2 + 2
√
R1R2(1−R1) cos

(
4πl

λ

)]
(5.70)

If l = x0 + x, with x0 = λ(n+ 3/8), for n = 1, 2, 3, ..., then:

PR = E2
I

[
R1 + (1−R1)

2R2 + 2
√
R1R2(1−R1) sin

(
4πx

λ

)]
(5.71)

Now, let us ignore higher orders of R1 and R2:

PR ≈ E2
I

[
R1 +R2 + 2

√
R1R2 sin

(
4πx

λ

)]
(5.72)

Visibility:
Amplitude
Average

=
2
√
R1R2

R1 +R2︸ ︷︷ ︸ (5.73)

Maximum for R1 = R2 and R1, R2 → 1

For x≪ λ:

PR ≈ E2
I

[
R1 +R2 +

8π

λ

√
R1R2 x

]
(5.74)

For small displacements, this is a proportional detector with efficiency

ϵ =
8πPI

√
R1R2

λ

[
W

m

]
(5.75)

This optical power in Watts is then transformed into an electric current by a photodiode with efficiency
S, such that IPD = SPR. The main sources of noise will be electronic noise Ie, shot noise Ishot, and
mechanical vibration noise Im.

Ie ∝ constant (5.76)

Im = S ϵ xnoise ∝ PI xnoise: mechanical vibrations (5.77)

We see that the current noise Ie is independent of optical power, but the mechanical noise Im is propor-
tional with incident power.
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Aside: Shot Noise

If the electron arrival events N making up a current are uncorrelated, then they are governed by a Poisson
distribution (mean = variance). We have:

• Average current: ⟨I⟩ = K e

• Average number of electron arrivals in τ : ⟨n⟩ = K τ

• Variance: ⟨n2⟩ − ⟨n⟩2 = ⟨n⟩ (Poissonian)

Therefore:

⟨I⟩ = e

τ
⟨n⟩ (5.78)

⟨I2⟩ =
〈(n e

τ

)2〉
=
e2

τ2
⟨n2⟩ (5.79)

⟨∆I2⟩ = ⟨I2⟩ − ⟨I⟩2 =
e2

τ2
(
⟨n2⟩ − ⟨n⟩2

)
(5.80)

⟨∆I2⟩ = e2

τ2
⟨n⟩ = e

τ
⟨I⟩ (5.81)

∆I =

√
e

τ
⟨I⟩ (5.82)

If we consider a bandwidth ∆f = 1/2τ for an averaging filter and I = ⟨I⟩, then

Ishot =
√

2e I∆f (5.83)

So the current shot noise in our photodetector will depend on the photodiode current IPD:

Ishot =
√

2e IPD∆f =
√
2e SPR∆f (5.84)

Ishot ∝
√
PR ∝

√
PI (5.85)

The signal-to-noise ratio (SNR) of our displacement detection will depend on what kind of noise dominates.

Ie dominates:

SNR =
Isig
Inoise

=
S ϵ xsig

Ie
(5.86)

SNR =
8π

λ

√
R1R2

S PI

Ie
xsig (5.87)

SNR ∝ PI → linear with laser power (5.88)

Im dominates:

SNR =
Isig
Inoise

=
S ϵ xsig

S ϵ xnoise
(5.89)

SNR =
xsig

xnoise
→ independent of laser power (5.90)
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Ishot dominates:

SNR =
Isig
Inoise

=
S ϵ xsig√
2e SPR∆f

(5.91)

SNR ∝ PI√
PI

∝
√
PI → dependent on square root of laser power (5.92)

Therefore, the type of limiting noise can be determined by the dependence of SNR on the laser power PI .
Ideally, shot noise dominates the noise, as it is a fundamentally unavoidable source of noise. In shot noise
limit, the ultimate noise floor of the detector is given by:

Isig = Ishot (5.93)

S ϵ xshot =
√
2e SPR∆f (5.94)

S
8π

λ
PI

√
R1R2 xshot =

√
2e S PI(R1 +R2)∆f (5.95)

Therefore, the shot-noise floor for interferometric detection is given by:

xshot =
λ

8π

√
2e∆f

SPI

√
R1 +R2

R1R2
(5.96)

with signal to noise ratio (in the shot noise limit)

SNR =
xsig

xnoise
∝
√
PI (5.97)

Increasing PI leads then to:
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5.8 Interferometric Detection in Fabry-Perot Limit

Consider large R1 and R2,
where multiple reflections can-
not be ignored:

Again, the laser power is given by the amplitude square of the electric field:

PI = |EI |2 PR = |ER|2 PT = |ET |2 (5.98)

Focusing on the transmitted electric field:

ET = EI

[√
T1
√
T2 ei

2πl
λ +

√
T1
√
R2

√
R1

√
T2 ei

6πl
λ + ...

]
(5.99)

ET = EI

√
T1T2 ei

2πl
λ

[ ∞∑
n=0

(√
R1R2 ei

4πl
λ

)n]
︸ ︷︷ ︸ (5.100)

1

1−
√

R1R2 ei
4πl
λ

ET = EI

√
T1T2 ei

2πl
λ

1−
√
R1R2 ei 4πl

λ

(5.101)

This results in a transmitted laser power:

PT = |ET |2 = E2
I

T1T2

1 +R1R2 − 2
√
R1R2 cos

(
4πl

λ

)
︸ ︷︷ ︸

(5.102)

1−2 sin2( 2πl
λ )

PT = |ET |2 = PI
(1−R1)(1−R2)

(1−
√
R1R2)2 + 4

√
R1R2 sin2

(
2πl
λ

) (5.103)

PT = PI

(1−R1)(1−R2)

(1−
√
R1R2)2

1 +
4
√
R1R2

(1−
√
R1R2)2︸ ︷︷ ︸ sin2

(
2πl
λ

) (5.104)

Finesse F

PR = PI − PT (5.105)
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Finally, we arrive at the expression for the reflected power:

PR = PI

1− (1−R1)(1−R2)

(1−
√
R1R2)2

1 + F sin2
(
2πl
λ

)
 (5.106)

This expression depends sensitively on cavity length l !

For small x around x0:

PR = PR(x0) +
∂PR

∂l
(x0) · x (5.107)

=⇒ Isig = S
∂PR

∂l
(x0) · xsig (5.108)

In the shot noise limit:

Ishot ≈
√

2e SPR(x0)∆f (5.109)

Isig = Ishot (5.110)

S
∂PR

∂l
(x0) · xshot =

√
2e SPR(x0)∆f (5.111)

xshot =

√
2e PR(x0)∆f

S

1
∂PR

∂l (x0)
(5.112)
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6 Cooling Mechanical Resonators - Basics
With mechanical resonators, cooled to ultra-low temperatures, the ultimate force resolution can be
achieved. Also, one can reach the quantum regime, with interesting properties as mechanical superposi-
tions and coherences. To this end, the following relation between resonance frequency ω and temperature
T should be met:

ℏω ≫ kBT (6.1)

Then, the system is in its quantum mechanical ground state. What does that mean?

Let us first think of our mechanical mode of interest in our resonator as a harmonic oscillator, as usual. We
can then calculate its zero-point energy using principles of statistical mechanics and quantum mechanics.

6.1 Zero-point Energy: Quantum Harmonic Oscillator
Recall the energies of quantum harmonic oscillators:

En = ℏω0

(
n+

1

2

)
for n = 0, 1, 2, ... (6.2)

E0 =
ℏω0

2
←− zero-point energy (6.3)

The expectation value of x2 is given by:〈
x2
〉
= ⟨n|x̂2|n⟩ = ℏ

mω0

(
n+

1

2

)
(6.4)

For n = 0, i.e., in the ground state:〈
x2
〉
0
=

ℏ
2mω0

= x2ZPF ←− Zero-point fluctuations (6.5)

From here, we can obtain the Standard Quantum Limit :

∆xSQL = xZPF =
√
⟨x2⟩0 (6.6)

with the wave function for n = 0 of the harmonic oscillator:

Ψ0(x) =

(
1

2πx2ZPF

)1/4

exp

[
−
(

x

2xZPF

)2
]

(6.7)
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According to statistical mechanics, the mean energy Ē in a quantum harmonic oscillator at temperature
T is given by:

Ē =

∞∑
n=0

e−βEn En

∞∑
n=0

e−βEn

withβ =
1

kBT
(6.8)

Ē = − 1

Z

∂Z

∂β
= −∂ lnZ

∂β
, (6.9)

where we used the partition function

Z =

∞∑
n=0

e−βEn (6.10)

= e−
1
2βℏω0

∞∑
n=0

e−nβℏω0 (6.11)

= e−
1
2βℏω0

(
1 + e−βℏω0 + e−2βℏω0 + ...

)
(6.12)

= e−
1
2βℏω0

(
1

1− e−βℏω0

)
(6.13)

Therefore:
lnZ = −1

2
βℏω0 − ln

(
1− e−βℏω0

)
(6.14)

Plugging this result into equation 6.9 yields

Ē = −∂ lnZ

∂β
= −

(
−1

2
ℏω0 −

e−βℏω0ℏω0

1− e−βℏω0

)
(6.15)

Ē = ℏω0

(
1

2
+

1

eℏω0/kBT − 1

)
(6.16)

For kBT ≫ ℏω0:

Ē ≈ ℏω0

(
1

2
+
kBT

ℏω0

)
(6.17)

Ē ≈ kBT ←− Equipartition (6.18)

For kBT ≪ ℏω0:

Ē ≈ ℏω0

(
1

2
+ e−ℏω0/kBT

)
←− lim

T→0
Ē = E0 (6.19)

6.2 Zero-point motion: Quantum Harmonic Oscillator
For the harmonic oscillator, we have:〈

x2
〉
= ⟨n|x̂2|n⟩ = ℏ

mω0

(
n+

1

2

)
=

En

mω2
0

(6.20)

⟨x2⟩ = Ē

mω2
0

(6.21)
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⟨x2⟩ = x2ZPF + 2x2ZPF

(
1

eℏω/kBT − 1

)
(6.22)

So how do we put nanomechanical oscillators into a quantum state, specifically, the ground state? One
way is by brute force: picking a high-frequency mode and putting it in a cold fridge, such that:

ℏω0 ≫ kBT (6.23)

This comes with some technical challenges, as the resonator fabrication (high frequency, low dissipation,
low mass), then the displacement sensing (very low measurement imprecision, i.e., low noise floor), and
also the refrigeration (reaching and maintaining mK temperatures).

Alternatively, one can try to cool the mechanical mode of interest - rather than the entire bath - by a
number of techniques. One of these is feedback cooling, which we will discuss in the next chapter.
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7 Feedback Cooling
Take the equation of motion for the harmonic oscillator as our model for e mechanical mode:

mẍ+ Γẋ+ kx = f(t) ←− thermal force (7.1)

with Γ =
mω0

Q
, k = mω2

0 (7.2)

We now implement a detection and feedback setup:

Feedback gives a modified equation of motion:

mẍ+ Γẋ+ kx = f(t)− gΓ(ẋ+ ẋn) , (7.3)

with xn the measurement noise.

Let us look at one Fourier component:

−mω2x̂(ω) + iωΓx̂(ω) + kx̂(ω) = f̂(ω)− igΓω[x̂(ω) + x̂n(ω)] (7.4)

=⇒ x̂(ω) =
f̂(ω)− igΓωx̂n(ω)

(k −mω2) + iωΓ(1 + g)
(7.5)

Since
∣∣∣∣a+ ib

c+ id

∣∣∣∣2 =
a2 + b2

c2 + d2
and Sx(ω) = lim

T→∞

x̂(ω) x̂∗(ω)

T
:

S̄x(ω) =
S̄f + g2Γ2ω2S̄xn(ω)

(k −mω2)2 + ω2Γ2(1 + g)2
(7.6)
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The power spectral density of the mode’s displacement can be expressed as:

S̄x(ω) =

[
1

(k −mω2)2 + ω2Γ2(1 + g)2

]
S̄f (ω)

+

[
g2Γ2ω2

(k −mω2)2 + ω2Γ2(1 + g)2

]
S̄xn

(ω)

(7.7)

What do we measure?

x̂meas(ω) = x̂(ω) + x̂n(ω) (7.8)

x̂meas(ω) =
f̂(ω)− igΓωx̂n(ω)

(k −mω2) + iωΓ(1 + g)
+ x̂n(ω) (7.9)

x̂meas(ω) =
f̂(ω) +

[
(k −mω2) + iωΓ

]
x̂n(ω)

(k −mω2) + iωΓ(1 + g)
(7.10)

Assume the thermal force noise f̂(ω) and the measured displacement noise x̂n(ω) are uncorrelated. There-
fore, the noises add in quadrature, yielding the power spectral density of the measured signal:

S̄meas(ω) =
S̄f(ω) +

[
(k −mω2) + ω2Γ2

]
S̄xn

(ω)

(k −mω2)2 + ω2Γ2(1 + g)2
(7.11)

S̄meas(ω) =

[
1

(k −mω2)2 + ω2Γ2(1 + g)2

]
S̄f (ω)

+

[
(k −mω2)2 + ω2Γ2

(k −mω2)2 + ω2Γ2(1 + g)2

]
S̄xn

(ω)

(7.12)

Recall from earlier: S̄f (ω) = 4kBTΓ (7.13)

S̄xn
(ω) = constant ←− typically from shot noise (7.14)

By damping with gain g we reduce the fluctuations in the mode of interest. This means that we cool the
mode. Recall: 〈

x2
〉
=

1

2π

∞∫
0

S̄x(ω) dω (7.15)

Equipartition says:

1

2
kBTmode =

1

2
k
〈
x2
〉

(7.16)

Tmode =
k

kB

〈
x2
〉

(7.17)

=⇒ Tmode =
k

2πkB

∞∫
0

S̄x(ω) dω (7.18)

Inserting (7.12) into (7.18) and integrating yields:

Tmode =
T

1 + g
+

kΓ

4kBm

(
g2

1 + g

)
S̄xn

(7.19)
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Minimizing this expression with respect to g results in

Tmode,min

√
kΓT

kBm
S̄xn

(ω) = ω0

√
ΓT

kB
S̄xn

(7.20)

This is equivalent to a minimum phonon number:

Nmode, min =
kBTmode, min

ℏω0
=

1

ℏ

√
ΓkBT︸ ︷︷ ︸S̄xn

(7.21)

1/4 S̄f

Nmode, min =
1

2ℏ

√
S̄f S̄xn

=
1

ℏ
√
SfSxn

(7.22)

From equation (7.21), we see that for minimal phonon numbers, we want low T , Γ, and S̄xn
. I.e., a cold

fridge, good resonators, and a sensitive measurement.

The optimum in Nmode, min is achieved, as will be discussed, when S̄f is dominated by detector back-action
and S̄xn is quantum limited. More on this to come.
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8 Cavity Cooling
So far, we have encountered brute-force cooling, and feedback cooling. Another method is cooling of a
mechanical mode by an optical cavity. Recall our Fabry-Perot cavity:

The power in the cavity is given by

PC = PI

 1−R1

(1−
√
R1R2)

2

1 + F sin2
(
2πl
λ

)
 , where the Finesse F =

4
√
R1R2(

1−
√
R1R2

)2 (8.1)

Optical forces act on the compliant mirror. Most prominently, these are photo-thermal and radiation
pressure. Both forces act with a characteristic time delay. We will now consider only the radiation
pressure force.

8.1 Semi-classical Picture Cavity Cooling
As a first step, we consider a quantization of the photons, but treat the cantilever classically.

The momentum kick to the lever for each photon:

∆p = 2
hν

c
(8.2)

∆p =
2n∆thν

c
←− momentum in ∆t with photon flux n (8.3)

∆p

∆t
=

2nhν

c
(8.4)

Radiation force → F =
2P

c
←− P : power (intensity) (8.5)
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The force F is not instantaneous. The finesse F introduces a time lag in the radiation force. We can
therefore write that the actual radiation force Fopt lags F a little bit:

Ḟopt(t) =
F (x)− Fopt(t)

τ
(8.6)

where τ is a time delay introduced by the optical cavity. Rearranging yields:

τḞopt(t) + Fopt(t) = F (x) (8.7)

Let us focus on the Fourier component at ω:

iωτF̂opt(ω) + F̂opt(ω) = F̂ (ω) (8.8)

F̂opt(ω) =
F̂ (ω)

1 + iωτ
(8.9)

Linearizing with respect to small displacements x from the equilibrium position x0 results in

F̂opt(ω) =
F ′(x0) x̂(ω)

1 + iωτ
(8.10)

If we now put this optical force into our equation of motion for the harmonic oscillator, we have:

mẍ+ Γẋ+ kx = f(t) + Fopt (8.11)

For one Fourier component at ω:

−mω2x̂(ω) + iωΓx̂(ω) + kx̂(ω) = f̂(ω) +
F ′(x0) x̂(ω)

1 + iωτ︸ ︷︷ ︸ (8.12)

F ′(x0) x̂(ω)

1 + ω2τ2
− i ωτF

′(x0) x̂(ω)

1 + ω2τ2

−mω2x̂(ω) + iω

[
Γ +

τF ′(x0)

1 + ω2τ2

]
︸ ︷︷ ︸

change in
damping (Q)

x̂(ω) +

[
k − F ′(x0)

1 + ω2τ2

]
︸ ︷︷ ︸

change in spring
constant (freq.)

x̂(ω) = f̂(ω) (8.13)

Optical spring: − F ′(x0)

1 + ω2τ2
= kopt (8.14)

Optical damping:
τ ′(x0)

1 + ω2τ2
= Γopt (8.15)

We can now go through the same analysis as with the feedback cooling. We simply use a renormalized
spring constant k′, which includes the optical spring effect and we use g = 1

Γ
τF ′(x0)
1+ω2τ2 . The analysis follows

exactly the analysis for feedback cooling. In the limit where the measurement noise xn is negligible:

Tmode ≈
T

1 + g
(8.16)

Tmode ≈ T
1

1 + 1
Γ

τF ′(x0)
1+ω2τ2

(8.17)

Tmode ≈ T
(

Γ

Γ + Γopt

)
(8.18)
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8.2 Quantum Picture - Power Spectral Densities
In order to discuss cavity cooling - and any other cooling for that matter - which reaches kBT ∼ ℏω0, we
have to introduce a quantum mechanical treatment of the oscillator as well. First of all, we have to define
a quantum analogue to the classical spectral density, i.e., the quantum spectral density. For example for
quantum noise on the displacement of an oscillator, given by the quantum operator x̂, we define:

Sxx(ω) =

∞∫
−∞

⟨x̂(t) x̂(0)⟩ eiωt dt , (8.19)

where the double subscript indicates the quantum nature of the PSD.

Compare to the classical analogue: Sx(ω) =

∞∫
−∞

⟨x(t)x(0)⟩ eiωt dt (8.20)

Here, x̂ is a quantum operator and ⟨...⟩ is a quantum statistical average using a density matrix.

Let us first consider a simple harmonic oscillator with no dissipation, with momentum operator p̂, mass m,
angular frequency ω0, and position operator x̂. The Hamiltonian for this system reads:

Ĥ =
p̂2

2m
+
mω2

0 x̂
2

2
(8.21)

Using the Heisenberg picture we have for any operator Â :

dÂ

dt
=
i

ℏ

[
Ĥ, Â

]
+
∂Â

∂t
(8.22)

=⇒ dx̂

dt
=
i

ℏ

[
Ĥ, x̂

]
+
∂x̂

∂t
=

p̂

m
Recall: [x̂, p̂] = iℏ (8.23)

=⇒ dp̂

dt
=
i

ℏ

[
Ĥ, p̂

]
+
∂p̂

∂t
= −mω2

0 x̂ (8.24)

Additional differentiation with respect to time yields

d2x̂

dt2
+ ω2

0 x̂ = 0
d2p̂

dt2
+ ω2

0 p̂ = 0 (8.25)

Solution take the form:

x̂(t) = x̂(0) cos(ω0t) +
p̂(0)

m
sin(ω0t) (8.26)

p̂(t) = p̂(0) cos(ω0t)−mω0x̂(0) sin(ω0t) (8.27)

The correlation function thus looks like:〈
x̂(t) x̂(0)

〉
=
〈
x̂(0) x̂(0)

〉
cos(ωt) +

〈
p̂(0) x̂(0)

〉 1

mω0
sin(ωot) (8.28)
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Let us now introduce the creation and annihilation operators â+ and â:

x̂ = xZPF(â
+ + â) p̂ =

iℏ
2xZPF

(â+ − â) , (8.29)

where x2ZPF = ⟨0|x̂2|0⟩ = ℏ
2mω0

(8.30)

and
[
â, â+

]
= 1 , n̂ = â+â (8.31)

In thermal equilibrium, we have:

⟨x̂ p̂⟩ =
〈 iℏ
2

(
â+â+ − â+â+ ââ+ − ââ

) 〉
=
iℏ
2

(8.32)

⟨p̂ x̂⟩ =
〈 iℏ
2

(
â+â+ + â+â− ââ+ − ââ

) 〉
= − iℏ

2
(8.33)

⟨x̂ x̂⟩ =
〈
x2ZPF

(
â+â+ + â+â+ ââ+ + ââ

) 〉
(8.34)

=
〈
x2ZPF (2n̂+ 1)

〉
(8.35)

As a result: 〈
x̂(t) x̂(0)

〉
=
〈
x̂(0) x̂(0)

〉︸ ︷︷ ︸
(8.35)

eiω0t + e−iω0t

2
+
〈
p̂(0) x̂(0)

〉︸ ︷︷ ︸
(8.33)

1

mω0

eiω0t − e−iω0t

2i
(8.36)

= x2ZPF

[
⟨2n̂+ 1⟩ eiω0t + e−iω0t

2
− ⟨1⟩ eiω0t − e−iω0t

2

]
(8.37)

= x2ZPF

[
⟨n̂⟩ eiω0t + ⟨n̂+ 1⟩ e−iω0t

]
(8.38)

The quantum spectral density of the harmonic oscillator is then:

Sxx(ω) = 2πx2ZPF

[
⟨n̂⟩ δ(ω + ω0)︸ ︷︷ ︸+ ⟨n̂+ 1⟩ δ(ω − ω0)︸ ︷︷ ︸

]
(8.39)

oscillator emits energy oscillator absorbs energy

Note: The quantum spectral density is asymmetric! This is because the autocorrelation function is
complex, since x̂ does not commute with itself at different times.

In the high temperature limit, kBT ≫ ℏω0, we retrieve a symmetric and purely classical spectral density:

⟨n̂⟩ ∼ ⟨n̂+ 1⟩ ∼ kBT

ℏω0
(8.40)

=⇒ lim
kBT≫ℏω0

Sxx(ω) = π
kBT

mω2
0

[δ(ω + ω0) + δ(ω − ω0)] = Sx(ω) (8.41)
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In the classical limit, we should retrieve the equipartition theorem:

〈
x2
〉
=

1

2π

∞∫
−∞

(
lim

kBT≫ℏω0

Sxx(ω)

)
dω =

1

2

kBT

mω2
0

· 2 (8.42)

〈
x2
〉
=
kBT

mω2
0

(8.43)

1

2
mω2

0

〈
x2
〉
=

1

2
kBT ✓ (8.44)

In the low temperature limit, kBT ≪ ℏω0. In that case:

⟨n̂⟩ ∼ 0 , ⟨n̂+ 1⟩ ∼ 1 (8.45)

=⇒ lim
kBT≪ℏω0

Sxx(ω) = 2πx2ZPFδ(ω − ω0) (8.46)

Deep in the quantum regime:

〈
x2
〉
=

1

2π

∞∫
−∞

(
lim

kBT≪ℏω0

Sxx(ω)

)
dω = x2ZPF (8.47)

〈
x2
〉
= x2ZPF ✓ (8.48)

8.3 Quantum Picture Cavity Cooling
Now that we have seen how quantum spectral densities look, let us get back to a quantum treatment of
cavity cooling. Let us suppose that our mechanical mode (harmonic oscillator) is coupled to the radiation
field of a cavity:

The coupling goes through a radiation pressure force F̂ , whose spectral density is:

SFF (ω) =

∞∫
−∞

〈
F̂ (t) F̂ (0)

〉
eiωt dt (8.49)
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Noise in F̂ at the oscillator frequency ω0 can cause transitions between its harmonic oscillator eigenstates.
If F̂ is small and the noise has a short correlation time, we can use perturbation theory to derive the
transition rates. One finds that the transition rate from |n⟩ to |n+ 1⟩ is:

Γn→n+1 =
x2ZPF

ℏ2
(n+ 1)SFF (−ω0) (8.50)

and from |n⟩ to |n− 1⟩:

Γn→n−1 =
x2ZPF

ℏ2
nSFF (ω0) (8.51)

This is according to Fermi’s Golden Rule. For further details, see Review of Modern Physics 82, 1155
(2010).

What is SFF from radiation pressure in the optical cavity? Classically, we wrote:

F =
2nhν

c
=

2Nhν

c∆t
n : photons per time, N/∆t (8.52)

F =
ℏωc

c∆t
2

N =
ℏωc

L
N L : cavity length (8.53)

Quantum:

F̂ =

(
ℏωc

L

)
n̂c ←− number operator for cavity photons (8.54)

For a fluctuating force F̂ acting on a quantum harmonic oscillator, we can say that we have an extra term
in the Hamiltonian:

Û = −x̂F̂ = −xZPF(â
+ + â) F̂ (8.55)

This fluctuating force will cause transitions between oscillator eigenstates. The corresponding Fermi
Golden Rule rates come from an application of time-dependent perturbation theory and are related to
SFF (ω). As shown before, the transition rate from oscillator eigenstate |n⟩ to |n+ 1⟩ is:

Γn→n+1 =
x2ZPF

ℏ2
(n+ 1)SFF (−ω0) = (n+ 1) Γ↑ (8.56)

and from |n⟩ to |n− 1⟩ the rate is:

Γn→n−1 =
x2ZPF

ℏ2
nSFF (ω0) = n Γ↓ (8.57)
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Given these rates, we can write a master equation for the probability of being in oscillator state |n⟩: pn(t).

dpn
dt

=
[
nΓ↑pn−1 + (n+ 1)Γ↓pn+1

]︸ ︷︷ ︸
transitions into |n⟩

− [nΓ↓pn + (n+ 1)Γ↑pn]︸ ︷︷ ︸
transitions out of |n⟩

(8.58)

Note that the average energy of the oscillator is:

⟨E(t)⟩ =
∞∑

n=0

ℏω0

(
n+

1

2

)
pn(t) (8.59)

Its time derivative is then:

d ⟨E⟩
dt

=

∞∑
n=0

ℏω0

(
n+

1

2

)
dpn
dt

(8.60)

d ⟨E⟩
dt

=

∞∑
n=0

−ℏω0

(
n+

1

2

)
(nΓ↓pn + (n+ 1)Γ↑ pn) (8.61)

+

∞∑
m=0

ℏω0

(
m+

1

2
+ 1

)
(m+ 1)Γ↑ pm

we replaced m = n− 1 ⇒ n = m+ 1

+

∞∑
q=0

ℏω0

(
q +

1

2
− 1

)
qΓ↓ pq

we replaced q = n+ 1 ⇒ n = q − 1

d ⟨E⟩
dt

=

∞∑
n=0

ℏω0(n+ 1)pnΓ↑ −
∞∑

n=0

ℏω0npnΓ↓ (8.62)

d ⟨E⟩
dt

=

∞∑
n=0

ℏω0

(
n+

1

2

)
pn︸ ︷︷ ︸

⟨E⟩

[Γ↑ − Γ↓] +

∞∑
n=0

ℏω0pn
1

2︸ ︷︷ ︸
ℏω0

2

[Γ↑ + Γ↓] (8.63)

d ⟨E⟩
dt

=
ℏω0

2
[Γ↓ + Γ↑] − ⟨E⟩ [Γ↓ − Γ↑] (8.64)

d ⟨E⟩
dt

=
ℏω0

2

x2ZPF

ℏ2
[SFF (ω0) + SFF (−ω0)]− ⟨E⟩

x2ZPF

ℏ2
[SFF (ω0)− SFF (−ω0)] (8.65)

d ⟨E⟩
dt

=
1

4m
[SFF (ω0) + SFF (−ω0)]︸ ︷︷ ︸

P

− ⟨E⟩
m

1

2ℏω0
[SFF (ω0)− SFF (−ω0)]︸ ︷︷ ︸

Γ

(8.66)

d ⟨E⟩
dt

= P −
(
Γ

m

)
⟨E⟩ (8.67)

We can see that P represents the heating of the oscillator by the noise source, and Γ/m represents the
damping of the oscillator by the noise sourve. The heating effect is the result of a random force causing
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the oscillator’s momentum to diffuse, causing ⟨E⟩ to grow linearly in time. This is due to the symmetry in
the frequency part of the quantum spectral density (SFF (ω0)+SFF (−ω0)). The damping effect is caused
by the net tendency of the noise to absorb energy from, rather than emit energy to the oscillator. This is
due to the asymmetry in the frequency part of the quantum spectral density (SFF (ω0)− SFF (−ω0).

This yields the quantum version of the fluctuation dissipation theorem. If the system is in thermal
equilibrium, then the transition rates must satisfy the detailed balance relation:

Γn→n+1 = Γn→n−1 (8.68)

(n̄+ 1)SFF (−ω0) = n̄ SFF (ω0) (8.69)

n̄+ 1

n̄
=

SFF (ω0)

SFF (−ω0)
(8.70)

1 +
1

n̄
=

SFF (ω0)

SFF (−ω0)
(8.71)

Recall that at thermal equilibrium:

⟨E⟩ = ℏω0

1

2
+

1

eℏω0/kBT − 1︸ ︷︷ ︸
 = ℏω0

(
n̄+

1

2

)
(8.72)

n̄ (8.73)

Therefore:
eℏω0/kBT =

SFF (ω0)

SFF (−ω0)
(8.74)

This allows us to relate the symmetric and asymmetric spectral densities:

SFF (ω0) + SFF (−ω0)

SFF (ω0)− SFF (−ω0)
=

1 + e−ℏω0/kBT

1− e−ℏω0/kBT
= coth

(
ℏω0

2kBT

)
(8.75)

=⇒ [SFF (ω0) + SFF (−ω0)]︸ ︷︷ ︸
S̄FF (ω0)

symmetric quantum
spectral density

= coth

(
ℏω0

2kBT

)
[SFF (ω0)− SFF (−ω0)]︸ ︷︷ ︸

2ℏω0Γ(ω0)
quantum definition

of dissipation

(8.76)

The symmetric quantum spectral density S̄FF (ω0) is the quantum version of a classical single-sided power
spectral density S̄f (ω0). Equation (8.76) can then be expressed as:

S̄FF (ω0) = coth

(
ℏω0

2kBT

)
2ℏω0Γ(ω0) (8.77)

This signifies that noise and dissipation are related by temperature in equilibrium. This is the quantum
version of the Fluctuation-Dissipation theorem.

For high temperatures, kBT ≫ ℏω0, we recover the classical fluctuation-dissipation theorem:

S̄FF (ω0) =
1 + e−ℏω0/kBT

1− e−ℏω0/kBT
2ℏω0Γ(ω0) (8.78)

≈ 2

��ℏω0

kBT

2��ℏω0 Γ(ω0) (8.79)

S̄FF (ω0) ≈ 4kBT Γ(ω0) ✓ (8.80)
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Note that the quantum version of the Fluctuation-Dissipation theorem can be rewritten in terms of the
average occupation number n̄, since:

n̄ =
1

eℏω0/kBT − 1
(8.81)

2n̄+ 1 =
2 + eℏω0/kBT − 1

eℏω0/kBT − 1
=

eℏω0/kBT + 1

eℏω0/kBT − 1
(8.82)

2n̄+ 1 = coth

(
ℏω0

2kBT

)
(8.83)

=⇒ S̄FF (ω0) = 2ℏω0(2n̄+ 1)Γ(ω0) (8.84)

This expression also allows us to solve for the average occupation number given a known quantum spectral
density of force fluctuations:

2n̄+ 1 =
1

2ℏω0

S̄FF (ω0)

Γ(ω0)
(8.85)

2n̄+ 1 =
SFF (ω0) + SFF (−ω0)

SFF (ω0)− SFF (−ω0)
(8.86)

n̄ =
SFF (−ω0)

SFF (ω0)− SFF (−ω0)
(8.87)

1

n̄
=

SFF (ω0)

SFF (−ω0)
− 1 (8.88)

Given a quantum force noise spectral density, we can now see what its effect will be on the mechanical
mode’s average occupation number n̄.

The noise spectral density of this optical force is given
by:

SFF (ω) =

(
ℏωc

L

)2

n̄c
κ

(ω +∆)2 +
(
κ
2

)2︸ ︷︷ ︸
photon shot

noise spectrum

(8.89)

• κ is the cavity decay rate
• ∆ = ωL − ωc is the cavity detuning

Assuming that the force noise due to the cavity dominates our other sources (this implies that optical
damping dominates over intrinsic damping: Γopt ≫ Γ), we can use equations (8.88) and (8.89) to solve
for the equilibrium occupation number n̄:

1

n̄
=

(−ω0 +∆)2 − (ω0 +∆)2

(ω0 +∆)2 +
(
κ
2

)2 (8.90)

n̄ = −
(ω0 +∆)2 +

(
κ
2

)2
4ω0∆

(8.91)
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The phonon occupation n̄ is minimum for a cavity detuning given by solving dn̄/d∆ = 0 for ∆:

∆min = −
√
ω2
0 +

(κ
2

)2
(8.92)

For high-finesse cavities, we have the so-called "resolved sideband" regime: ω0 ≫ κ:

∆min ≈ −ω0

=⇒ n̄min =

(
κ

4ω0

)2

(8.93)

(8.94)

Therefore, to cool the mechanical resonator, the linewidth κ should be small and the mechanical frequency
ω0 should be large.

Graphical Explanation

A laser photon (ωl) is combines with a phonon from the resonator (ω0) to produce a cavity photon (ωc).
This extracts phonons from the resonator and releases photons in the cavity:

The reverse can also be done for a detuning of ∆ = +ω0. Here a laser photon (ωl) excites a phonon from
the resonator (ω0) and a cavity photon (ωc):
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9 Standard Quantum Limit
9.1 Zero-point motion
In earlier lectures, we have considered a quantum mechanical harmonic oscillator without dissipation. The
resulting quantum spectral density of its displacement x(t) was found to be:

Sxx(ω) = 2πx2ZPF [⟨n̂⟩ δ(ω + ω0) + ⟨n̂+ 1⟩ δ(ω − ω0)] (9.1)

where x2ZPF =
ℏ

2mω0

If we now introduce a mechanical dissipation Γ, we can simply replace the delta functions by properly
normalized Lorentzian functions with spectral width proportional to Γ (this approximation is valid for
weak Γ). Then:

Sxx(ω) = 2πx2ZPF

[
⟨n̂⟩ Γ

2πm

1

(ω0 + ω)2 +
(

Γ
2m

)2 + ⟨n̂+ 1⟩ Γ

2πm

1

(ω0 − ω)2 +
(

Γ
2m

)2︸ ︷︷ ︸
L(ω)

∞∫
−∞

L(ω) dω=1

]
(9.2)

In the classical high-temperature limit (kBT ≫ ℏω0), we have:

⟨n̂⟩ ∼ ⟨n̂+ 1⟩ ∼ kBT

ℏω0
(9.3)

lim
kBT≫ℏω0

Sxx(ω) = π
kBT

mω2
0

Γ

2πm

[
1

(ω0 + ω)2 +
(

Γ
2m

)2 +
1

(ω0 − ω)2 +
(

Γ
2m

)2
]

(9.4)

= Sx(ω) ←− Classical PSD (9.5)

We should retrieve the equipartition theorem:

〈
x2
〉
=

1

2π

∞∫
−∞

(
lim

kBT≫ℏω0

Sxx(ω)

)
dω =

kBT

2mω2
0

· 2 (9.6)

〈
x2
〉
=
kBT

mω2
0

(9.7)

1

2
mω0

〈
x2
〉
=

1

2
kBT ✓ (9.8)

In a measurement, we couple to the symmetric-in-frequency single-sided spectral density:

S̄xx(ω) = Sxx(ω) + Sxx(−ω) (9.9)

S̄xx(ω) ≈
Γx2ZPF

m

[
⟨n̂⟩+ ⟨n̂+ 1⟩

] 1

(ω0 − |ω|)2 +
(

Γ
2m

)2 (9.10)
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Classical Limit:

At T = 0, in the quantum limit, i.e., ⟨n̂⟩ = 0, the power spectral density of the resonator motion is given
by:

S̄0
xx(ω) =

Γx2ZPF

m

1

(ω0 − |ω|)2 +
(

Γ
2m

)2
S̄0
xx(ω0) =

4mx2ZPF

Γ
=

2ℏ
ω0Γ

(9.11)

(9.12)

9.2 Measurement Imprecision

One might therefore expect to measure the spectral density S̄0
xx(ω) for a nanomechanical resonator cooled

to its ground state. However, this ignores both the spectral density of the measurement imprecision (in the
case of an interferometric displacement detector, this comes from the shot noise) and the spectral density
of the back-action force due to the measurement (in the case of an interferometer, this comes from the
photon pressure). Let us now consider the imprecision and the back-action of an optical interferometry
measurement. The results from this analysis will be generalized to other types of displacement detectors.

In a cavity displacement detector, changes in the displacement x of the mechanical element leads to
changes in phase of the cavity’s reflected carrier signal. The changing phase shift is then converted to a
changing intensity by the interference effect. A coherent photon state within the cavity contains a Poisson
distribution of the number of photons, implying that

fluctuations −→ (∆N)2 = N̄ ←− mean (9.13)

The uncertainty in any measurement of the phase of this state for large N̄ is

(∆Θ)2 =
1

4N̄
(9.14)

For more details, see Rev. Mod. Phys. 82, 1155 (2010), app. G. Therefore, large-N̄ coherent states obey
the number-phase uncertainty relation:

∆N ∆Θ =
1

2
, (9.15)
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which is analogous to the position-momentum uncertainty relation. In terms of spectral densities, this
leads to:

SṄṄ︸ ︷︷ ︸
spectral density
of photon flux

· SΘΘ︸ ︷︷ ︸
spectral density

of phase fluctuations

=
1

4
(9.16)

=⇒
√
SṄṄ SΘΘ =

1

2︸ ︷︷ ︸
wave-particle relation

for coherent beams

(9.17)

Taking the case of light reflecting off a mirror. The beam will have a phase shift 2kx if the mirror moves
by x. Thus, a position uncertainty x is equivalent to phase uncertainty 2kx. In spectral densities:

imprecision of displace-
ment measurement −→ SI

xx =
1

4k2
SΘΘ ←− corresponding imprecision

of phase measurement (9.18)

At the same time, the back-action imported by a photon hitting the mirror corresponds to a momentum
2ℏk per photon. Therefore, the photon shot noise SṄṄ will correspond to a random back-action force:

back action
force −→ SI

FF = 4ℏ2k2 SṄṄ ←− photon flux spectral density
(shot noise) (9.19)

Together, these relations give:

SFF S
I
xx = ℏ2SṄṄ SΘΘ =

ℏ2

4
(9.20)

The quantum limit on the noise of a displacement detector is then:√
SFF SI

xx =
ℏ
2

(9.21)

This is the minimum product of back-action and imprecision for an ideal apparatus. In general, the
product is larger than this.

9.3 Total Measurement Noise
Now that we understand the quantum limits of displacement measurements, let us go back to the spectral
density of our harmonic oscillator at T = 0. The spectral density that we will measure is the sum of the
zero-point fluctuations plus the measurement uncertainty plus the displacement fluctuations cased by the
measurement back-action:

S̄xx,tot = S̄0
xx(ω)︸ ︷︷ ︸

zero-point
motion

+ S̄I
xx(ω)︸ ︷︷ ︸

measurement
imprecision

+ |χm(ω)|2 S̄FF (ω)︸ ︷︷ ︸
back-action

(9.22)

S̄I
xx(ω) = SI

xx(ω) + SI
xx(−ω) (9.23)

S̄FF (ω) = SFF (ω) + SFF (−ω) (9.24)

χm(ω) is the mechanical susceptibility of the harmonic oscillator: It gives the displacement in response
to a driving force:

x(ω) = χm(ω)F (ω) (9.25)

with χm(ω) =
1

m

1

ω2
0 − ω2 + iΓωm
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Let us assume that we have a quantum-limited (best possible) detector, i.e., with SFF · SI
xx = ℏ2

4 . If the
shot noise spectral density of our detector is symmetric in frequency, then

S̄I
xx(ω) = 2SI

xx(ω) (9.26)

S̄FF (ω) = 2SFF (ω) (9.27)

−→ S̄I
xx =

ℏ2

S̄FF (ω)
(9.28)

=⇒ S̄xx,tot(ω) = S̄0
xx(ω) +

ℏ2

S̄FF (ω)
+ |χm(ω)|2 S̄FF (ω)︸ ︷︷ ︸
S̄xx,add(ω)

this is the additional
position-uncertainty noise

(9.29)

For high back-action (more photons) im-
precision is low, while for low back-action
(fewer photons), imprecision is high.

The minimum added noise S̄xx,add is obtained for an optimal back-action S̄FF,opt, which corresponds to
a particular photon intensity (laser power):

S̄FF,opt(ω) =
ℏ

|χm(ω)|
(9.30)

If we tune our cavity for minimum additional noise at the resonator resonance frequency ω0, the we have:

S̄FF,opt(ω0) =
ℏ

|χm(ω0)|
= ℏω0Γ (9.31)

For this optimal force, the additional noise is:

S̄xx,add(ω) = ℏ
(
|χm(ω0) +

|χm(ω)|2

|χm(ω0)|

)
(9.32)

So the total noise is then:

S̄xx,tot(ω) = S̄0
xx(ω) + ℏ

(
|χm(ω)| + |χm(ω)|2

|χm(ω0)|

)
(9.33)
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Exactly on resonance, this results in:

S̄xx,tot(ω0) = S̄0
xx(ω0) + ℏ|χm(ω0)|+ ℏ|χm(ω0)|

=
2ℏ
ω0Γ

+
ℏ
ω0Γ

+
ℏ
ω0Γ

= S̄0
xx(ω0)

[
1 +

1

2
+

1

2

]

= 2S̄0
xx(ω0) =

4ℏ
ω0Γ

(9.34)

(9.35)

(9.36)

(9.37)

We see that half of the measured noise is from the resonator itself, and half is from the added noise of the
measurement. This is known as the standard quantum limit on position detection. Therefore, to reach the
quantum limit, one must cool the resonator into the ground state and use a quantum limited detector.
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10 Nanowires
10.1 Why Nanowires
Nanowires are heavily investigated objects for several reasons. First of all, they can be fabricated in a
very controlled manner, from all kinds of materials. Second, they are excellent mechanical oscillators with
low-dissipation (Γ) and high resonance frequency (ω0). The second point we can show by proportionality
analyses of a beam with length l, width w, thickness t, and quality factor Q:

m ∝ w t l ω0 ∝ t/l2 Q ∝ t known from
experience (10.1)

Γ =
mω0

Q
∝ wt

l
(10.2)

If we scale all dimensions l, w, t by a factor β:

Γ ∝ β ω0 ∝ β−1 (10.3)

We see, that smaller objects have lower dissipation Γ and higher resonance frequencies ω0. Similarly, the
limits of various measurements scales in different order with β:

Amplitude Measurements (10.4)

Fmin =
√
4kBTΓ ∝

√
wt

l
∝ β1/2 (10.5)

τmin = le
√

4kBTΓ ∝
√
wtl ∝ β3/2 (10.6)

Frequency Measurements (10.7)(
∂F

∂x

)
min

=
1

xosc

√
4kBTΓ ∝

wt2

l2
∝ β (10.8)

(
∂τ

∂Θ

)
min

=
le

Θosc

√
4kBTΓ ∝ wt2 ∝ β2 (10.9)

Note however:

xth =

√
kBT

mω2
0

∝
√

l3

wt3
∝ β−1/2 (10.10)

10.2 Duffing Equation
The typical simple equation of motion of a harmonic oscillator is only valid for very small deflections of a
nanowire. A better model to describe the motion mathematically is the Duffing Oscillator. Its equation
of motion has the following form (mind the division of both sides of the equation by m):

ẍ(t) + γẋ(t) + ω0x(t) + αx3(t) = F (t) (10.11)

Rearranging yields:
ẍ(t) + γẋ(t) + x(t)

(
ω0 + αx2(t)

)
= F (t) (10.12)

A positive value of α can be seen as a hardening of the spring constant, and a negative value as a softening
of the spring constant. The general solution to this equation is given by

x(t) = Z cos(ωt− ψ) (10.13)
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An interesting feature of this system is the occurrence of a hysteresis:

10.3 Two-Mode Equation of Motion
Let us return to the more basic description of a nanowire as a simple harmonic oscillator. Generally, the
equation of motion for a harmonic oscillator is given by:

mẍ+ Γẋ+ kx = Fth + F0 (10.14)

The nanowire has two degrees of freedom for oscillations. Therefore, there are two equations of motion:

mr̈1 + Γ1ṙ1 + k1r1 = Fth,1 + F0,1 (10.15)

mr̈2 + Γ2ṙ2 + k2r2 = Fth,2 + F0,2 (10.16)

This can be generalized to

mr̈i + Γiṙi + kiri = Fth + Fi (10.17)

where Fi = F0,i +
∂Fi

∂ri
ri +

∂Fi

∂rj
rj + ... (10.18)

Keeping only terms up to first order of Fi, we obtain:

mr̈i + Γiṙi + kiri = Fth + F0,i +
∂Fi

∂ri
ri +

∂Fi

∂rj
rj for i=1,2

i ̸=j (10.19)

This can be expressed using vectors and matrices:

m¨⃗r + Γ̃ ˙⃗r + k̃ r⃗ = F⃗th + F⃗0 ,

Γ̃ =

(
Γ1 0
0 Γ2

)

k̃ =

(
k1 − ∂F1

∂r1
−∂F2

∂r1

−∂F1

∂r2
k2 − ∂F2

∂r2

)
(10.20)

(10.21)

(10.22)
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11 Dissipation and Quality Factor
11.1 Dissipation
Mechanical dissipation (or the friction coefficient) quantifies the energy loss to the environment by an
oscillator. Recall our harmonic oscillator equation of motion:

mẍ+ Γẋ+ kx = F (t) , with Γ =
mω0

Q

[
kg

s

]
︸ ︷︷ ︸

typical definition
in force microscopy

, k = mω2
0 (11.1)

Equivalent to:

ẍ+ γẋ+ ω2
0x =

1

m
F (t) , with γ =

ω0

Q
[Hz]︸ ︷︷ ︸

typical definition
in optomechanics

(11.2)

The energy lost from time t = 0 to t is given by:

∆E =

x(t)∫
x(0)

(−Γẋ) dx =

t∫
0

(−Γẋ)
(
dx

dt

)
dt (11.3)

∆E =

t∫
0

(
−Γ ẋ2

)︸ ︷︷ ︸
rate of

energy loss

dt (11.4)

=⇒ dE

dt
= −Γẋ2 (11.5)

The energy of the harmonic oscillator is:

E(t) =
1

2
mẋ2 +

1

2
kx2 (11.6)

Using the solution to the harmonic oscillator equation of motion x = x0 eiωt, where ω =
√

k
m + i Γ

2m =

ω0 + i Γ
2m and the system dissipation is low Γ

2m ≪ ω0:

E(t) = E0 e−Γt/m with E0 =
1

2
kx20 (11.7)

=⇒ dE

dt
= − Γ

m
E Recall the same formula as in the

quantum definition of dissipation (11.8)

This formula also allows us to understand the quality factor Q. Q is, in fact, sometimes defined as:

Q = 2π
Energy stored in oscillator

Energy dissipated in one period
(11.9)

Q = 2π
�E(

Γ
m�E

)
T

T =
2π

ω0
(11.10)

Q =
mω0

Γ
As before: Γ =

mω0

Q
(11.11)
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11.2 Sources of Dissipation
Now that we have a clear idea of what Γ and Q represent, we should understand their origin in real
nanomechanical resonators. As we already discussed, these terms determine the fundamental sensitivity
limits of nanomechanical sensors.

The total dissipation in a resonator is the sum of dissipation from various sources:

Γ = Γmedium︸ ︷︷ ︸
losses due to

interactions with
fluid or ballistic

medium

+ Γclamping︸ ︷︷ ︸
energy radiation
into environment
through clamping

point

+ Γintrinsic︸ ︷︷ ︸
losses within
the resonator

itself

+ Γother︸ ︷︷ ︸
the rest

(11.12)

Equivalently, we can write this in terms of Q:

1

Q
=

1

Qmedium
+

1

Qclamping
+

1

Qintrinsic
+

1

Qother
(11.13)

Medium Dissipation
This dissipation depends on the medium surrounding the resonator, i.e., either a liquid or gas. The highest
sensitivity applications are carried out in high vacuum, in which Γmedium = 0. In general, in a gas, there
are two regimes: the fluidic regime and the ballistic regime. The value of the Knudsen number sets which
regime applies to the system:

K =
λf
L

, (11.14)

where λf is the mean free path of the gas, and L is the representative physical length scale of the resonator.
If K < 1 (λf < L), the system is in the fluidic regime. If K > 1 (λf > L), then the system is in the
ballistic regime. In air at atmospheric pressure, k = 1 for L ≈ 70 nm.

Therefore, to reduce Γmedium, one should minimize the pressure and the size of the resonator.

Clamping Dissipation
This mechanism descries losses due to the radiation of vibrational energy through the resonators anchoring
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point to the environment. In general, the clamping points need to be designed in order to minimize such
radiative losses, if this term is to be made negligible. In the specific case of cantilever beams, Γclamping is
minimized for long and thin beams clamped to a semi-infinite body.

For membranes, a successful way to suppress radiation losses is to locate the vibrating structure within
an appropriately designed phononic bandgap structure. This will remove free frame modes around the
membrane, suppressing radiation loss. For a recent publication, see Yu, P-L., et al. "A phononic bandgap
shield for high-Q membrane microresonators." Applied Physics Letters 104.2 (2014): 023510.

Intrinsic Dissipation
This category includes all energy losses that take place within or on the mechanical resonator. These
losses can be divided into frictional losses from material imperfections in the bulk or on the surface, and
fundamental losses, occurring even in an ideal frictionless material due to phonons and electrons.

Frictional losses come from irreversible motion of atoms during vibration, e.g.g, from defect dislocations
in a crystal, grain boundary slipping in a metal, phase boundary slipping in layered structures, or molecular
chain motion in an amorphous solid. Such losses can be described by Zener’s model for an anelastic solid,
which we discussed in chapter 3.2. There we introduced the possibility of time lag in the stress-strain
relationship. Ultimately, this resulted in a frequency dependent Q:

1

Qfriction
=

ωT

1 + ω2T 2
∆ (11.15)

with T =
√
Tσ TΣ and ∆ =

Tσ − TΣ
T

, (11.16)

where Tσ and TΣ are the relaxation times at constant stress and strain, respectively. This results in a
frictional dissipation (proportional to 1/Qfriction) peaked at ω = 1/T .
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Fundamental losses include thermoelastic loss and phonon-phonon interaction loss. Like frictional loss,
both can be modelled by Zener’s approach and therefore have a similar dependence on ω.

• Thermoelastic loss: Mechanical motion generates local differences in temperature and therefore heat
flow between these points. This process results in dissipation of energy.

• Phonon-phonon loss: Oscillating strain field changes normal mode frequencies of atomic vibrations
in a crystal. Temperature differences in these normal modes result in heat flow and energy loss.

Other Dissipation
This term includes all remaining losses, including dissipation due to electrical charges trapped on the
resonator, eddy current damping, magnetic dissipation due to magnetic impurities, etc.

11.3 Damping Dilution
In recent years, a scheme for achieving very high Q resonators has been developed for strings and mem-
branes. In a cantilever, the energy stored and lost over an oscillation cycle is related to its bending.
For strings and membranes, energy can also be stored and lost in lateral elongation. Also, strings and
membranes can build up a lot of potential energy when vibrational deflection works against high lateral
tensile stress.

Q = 2π

stored energy per cycle︷ ︸︸ ︷
Wtension +Welongation +Wbending

∆Welongation +∆Wbending︸ ︷︷ ︸
lost energy per cycle

(11.17)

If we increase the tension on the object (→ Wtension), we increase the stored energy without increasing
loss.

Let Qintrinsic = 2π
We +Wb

∆We +∆Wb
, then:

Q =
Wt +We +Wb

We +Wb
· Qintrinsic (11.18)

If we increase the tension such that Wt ≫We,Wb:

Q ≈ Wt

We +Wb
· Qintrinsic (11.19)

Q ≈ αdd ·Qintrinsic

where αdd =

[
We

Wt
+
Wb

Wt

]−1

︸ ︷︷ ︸
Damping Dilution factor

(11.20)

For both strings and membranes, one can calculate the energy stored in elongation, bending, and tension
from the mode shapes (see Fund. Nanomech. Resonators, p.81-87). In both cases Wb

Wt
is independent of

the vibration amplitude, while We

Wt
depends on the square of the ratio between the vibrational amplitude

and the resonator thickness. Since in most cases, the amplitude is much smaller than the thickness, we
have:

Wb

Wt
≫ We

Wt
=⇒ αdd ≈

[
Wb

Wt

]−1

(11.21)
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The ration Wb

Wt
can be separated into two terms:

αdd ≈

[
c1

(
h

L

)2

︸ ︷︷ ︸
bending
at center

+ c2

(
h

L

)
︸ ︷︷ ︸
bending
at edge

]−1

(11.22)

c1 and c2 are constants depending on the mode number, geometry, and material. h is the thickness of the
string or membrane and L is its lateral dimension (length for a string; length and width for a membrane).

Given that h
L ≪ 1, the bending at the edge dominates this effect. Therefore, in order to obtain the highest

possible Q, one should apply high tension and minimize bending of the resonator near the clamping points,
i.e., realize "soft clamping".

Note: damping dilution increases Q which is useful for frequency standards and optomechanics. It does
not decrease Γ! Recall that Γ = mω0

Q . Increasing tension, increases stored energy and also the resonant
frequency: ω0 ∝Wt. Damping dilution gibes Q ∝Wt, as well.

=⇒ Γ =
mω0

Q
∝ Wt

Wt
= const. (11.23)

Therefore, for example, force and torque sensitivity cannot be improved by damping dilution.
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12 Revision
This chapter gives a brief overview over all the main topics discussed in this lecture. It also summarizes
the contents and formulas which should be known for the exam (!).

We encountered:

• General principles of stress-strain

• Force & torque balance

• Application of boundary conditions

• Flexural vibrations (of a cantilever)

• Zener’s model for an anelastic solid

• Correspondence between beam dynamics and the harmonic oscillator:

Beam

x̂end︸︷︷︸
motion at end
of cantilever

=
4

force at end
of cantilever︷ ︸︸ ︷
F̂p(ω)

m

1

ω2
i − ω2 + i

ω2
i

Q

(12.1)

x̂end(ω) = F̂p(ω) χm(ω) (12.2)

Harmonic Oscillator

x̂(ω) =
F̂ (ω)

m

1

ω2
0 − ω2 + iω0ω

Q

(12.3)

x̂(ω) = F̂ (ω) χm(ω) (12.4)

• Static & dynamic spring constant:

kD ≈
i

Q
kS (12.5)

• Concept of power spectral density (PSD):

Sx(ω)︸ ︷︷ ︸
Power Spectral
Density (PSD)

=

∞∫
−∞

⟨x(t)x(0)⟩︸ ︷︷ ︸
correlation
function

eiωtdt (12.6)

〈
x2
〉
=

1

2π

∞∫
−∞

Sx(ω) dω (12.7)

Sx(ω) =
SF (ω)

m2

(
1

(ω2
0 − ω2)2

+
ω2
0ω

2

Q2

)
(12.8)
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• Fluctuation-dissipation theorem and the limits of measurements:

S̄f (ω) = 4kBTΓ (12.9)

−→ Fmin =
√
4kBTΓ

[
N

√
Hz

]
(12.10)

−→ mmin =
2

x0ω2
0

√
2kBTΓ

[
kg

√
Hz

]
(12.11)

From
δν0

ν
= −

1

2

δm

m

−→ kmin =
2

x0

√
2kBTΓ

[
N

m
√
Hz

]
(12.12)

From
δν0

ν
=

1

2

δk

k

• Transducers (typically nanomechanical elements) and Detectors (many different kinds for displace-
ment)

• Motivations for ground-state cooling (hω0 ≫ kBT ):

– ultimate force resolution

– quantum regime for "macroscopic" objects

– Measure mechanical superpositions and coherences

• Methods for ground-state cooling:

– "Brute force"

– Damping (feedback cooling)

– Cavity cooling

• Standard Quantum Limit:

∆xSQL = xZPF =
√
⟨x2⟩0 =

√
ℏ

2mω0
(12.13)

• How to achieve cooling by damping?

Nmode, min =
1

ℏ

√
Γ kBT S̄xn

=
1

2ℏ

√
S̄F S̄xn

(12.14)

reduce
dissi-
pation

reduce
starting
tempe-
rature

reduce
detector

noise

• Cavity cooling & Quantum treatment of fluctuation and dissipation: quantum power spectral den-
sity:

Sxx(ω) =

∞∫
−∞

〈
x̂(t) x̂(0)

〉
eiωt dt (12.15)

• Quantum limit on the noise of a displacement detector:

ℏ
2
=
√
SFF SI

xx (12.16)
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• Total measurement noise:

S̄xx,tot = S̄0
xx(ω)︸ ︷︷ ︸

zero-point
motion

+

S̄xx,add︷ ︸︸ ︷
S̄I
xx(ω)︸ ︷︷ ︸

measurement
imprecision

+ |χm(ω)|2 S̄FF (ω)︸ ︷︷ ︸
back-action

(12.17)

On resonance:

S̄xx,tot(ω0) = S̄0
xx(ω0)

[
1 +

1

2
+

1

2

]
(12.18)

= 2S̄0
xx(ω0) (12.19)

=
4ℏ
ω0Γ

(12.20)

• Mechanical dissipation:

dE

dt
= − Γ

m
E (12.21)

Γ =
mω0

Q
(12.22)

Definition of Q −→ Q = 2π
Energy stored

Energy dissipated in one period
(12.23)

• Concept of damping dilution: increase energy stored, keep energy loss per cycle the same

• Why nano? For small Fmin, kmin, we need small Γ = mω0

Q .

Beam: ωo ∝
t

l2
(12.24)

Q ∝ t experimentally
observed (12.25)

m ∝ wtl (12.26)

=⇒ Γ ∝
wtl · t

l2

t
(12.27)

Γ =
wt

l︸ ︷︷ ︸
lowest dissipation for long

and thin cantilevers

(12.28)

Further, if we scale uniformly each dimension by β:

Γ ∝ β ←− smaller, less energy loss (12.29)
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