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Introduction

A mechanical force transducer converts a force into a displacement. The simplest
formulation of a proportional relation between force and displacement is represented
by Hooke’s law for an ideal spring, and it is extended to solid bodies by the theory of
elasticity. However, the behavior of homogeneous beams with regular geometry can
still be modeled as mass loaded spring system, and therefore as a simple harmonic
oscillator, as long as it remains in the linear-elastic regime (i.e. small enough displace-
ment). Depending on the mechanical oscillator design, its torsional or flexural modes
can couple with great efficiency to external forces, offering a simple and effective in-
terface for interacting and measuring forces of different physical nature.

Historically, the torsion pendulum became one of the most popular scientific instru-
ments for the measurement of weak forces, in the late 18th century and throughout
the following century. Such apparatus consists of a bar suspended from its middle by
a thin fiber, which acts as a very weak torsion spring κ = ω2

0I, where I is the moment
of inertia and ω0 is the pendulum’s natural frequency. Any external force F , acting
normally on the end of one bar’s arm, produces a torque τ = Fl, where 2l is the bar’s
length, and induces a pendulum’s rotation by an angle θ, proportional to it by a factor
κ. Taking advantage of the high force sensitivity of this technique, the first prominent
experimental results were the definition of the inverse-square law of electrostatics by
C. A. Coulomb [1], followed up by the first measurement of the gravity force between
masses in a laboratory setup with a force sensitivity of ∼ 100 nN, which allowed H.
Cavendish to precisely estimate the gravitational constant [2].
Despite the pendulum was mainly used in the ‘static’ mode evaluating the displace-
ment at equilibrium, the dynamics of such mass-spring harmonic oscillator were al-
ready considered to precisely derive the device’s spring constant (i.e. the transduction
factor from a force to a linear/angular displacement), by measuring the period of os-
cillation and the mass/inertia.
Only lately, starting with the measurement of radiation pressure by E. F. Nichols [3]
at the beginning of the 20th century, the ‘dynamic’ force sensing mode was introduced,
by studying the effects of the external force on the resonator’s oscillation amplitude
and frequency, when the system is on resonance rather than at the static equilib-
rium position. Faster oscillation frequencies obtained by reducing the resonator’s
mass (decreasing its size) allowed to average out and decouple the measurement from
quasi-static sources of noise affecting the displacement’s detection, while opening up
a wide spectrum of possibilities for force modulation and detection schemes.
The invention of atomic force microscope (AFM) in 1986 by G. Binnig, C.F. Quate
and C. Gerber [4] showed the first application of the concepts of mechanical force
sensing to the framework of scanning probe microscopy. In AFM, a micro-machined
cantilever with an ‘atomically’ sharp tip is driven on resonance and approached to
a distance of few nanometers or less from the sample’s surface. The tip interacts
locally with the surface’s local ‘atomic’ forces (i.e. Van der Waals and other type
of electrostatic forces), modifying the cantilever’s resonance frequency and oscilla-
tion amplitude. Thanks to the generality of its working principle, which does not
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depend either on the sample’s nature or on the operating conditions, this technique
is nowadays one of the most powerful imaging tools with a broad spectrum of ap-
plications from biological samples in liquid to atomic lattices in ultra-high vacuum
(UHV) environment. Great efforts have been devoted to push the spatial resolution
to unprecedented levels, allowing to achieve subatomic resolution [5] and to image the
chemical structure of a single molecule [6]. However, for such goals, the force sensi-
tivity provided by conventional batch fabricated cantilevers or even by quartz-tuning
forks is usually enough to detect the strong short-range forces, which dominate at
sub-nanometric tip-sample separation.

Nevertheless, sensitivity to small forces is crucial for other applications. These range
from mass detection [7], to cantilever magnetometry [8, 9], to observation of funda-
mental phenomena such as persistent current in normal metal rings [10], to scan-
ning measurements of friction forces [11, 12] and force-detected magnetic resonance
(MRFM) [13, 14]. In the last 20 years, improvements in micro- and nano-fabbrication
and in optical [15] and electromechanical detection of motion, allowed for refined de-
signs and size (mass) reduction of mechanical resonators leading to a dramatic increase
of their force sensitivity [16], down to the mechanical detection of a single electron’s
spin resonance [13] and nanoscale magnetic resonance imaging [14], with ultra-soft
silicon cantilevers (similar to Fig. 1(b)).
More recently, with the rise of nano-technologies, this push towards higher sensitiv-
ity has generated an interest in using even smaller mechanical forces transducers,
especially those made by ‘bottom-up’ techniques. These very light nanometer-scale
structures such as nanowires (NWs) and carbon nanotubes (CNTs) displayed unprece-
dented mechanical properties: CNTs resonators in doubly-clamped geometry reached
a record force sensitivity in the order of 1 zN/

√
Hz1 [17, 18] enabling mass detection

with a resolution of 1.7 yg2 corresponding to the mass of one proton [19].

The trend towards decreasing the size of mechanical transducers is based on fundamen-
tal principles. For a thermally limited mechanical force transducer, the fluctuation-
dissipation theorem implies that the minimum detectable force is limited by the force
noise spectral density SF = 4kBTΓ associated with the Brownian fluctuations of the
oscillator’s position at finite temperatures, where kB is the Boltzmann constant, T
is the resonator’s temperature, and Γ its mechanical dissipation (friction coefficient).
In particular, the transducer’s force sensitivity, intended for a nominal measurement
bandwidth of 1 Hz (not indicated), is given by

Fmin =
√

4kBTΓ =

√
4kBT

Mω0

Q

where Γ = Mω0/Q is expressed in terms of the resonator’s parameters: the motional
mass M , the angular resonance frequency ω0, and the quality factor Q. In practice,
this means that at a given temperature, a well-designed cantilever force transducer
must simultaneously have low Mω0 and large Q.
For a cylindrical cantilever (e.g. a NW) – of length l and diameter d – we can apply
Euler-Bernoulli beam theory to relate its dimensions to force sensitivity, finding that
Mω0 ∝ d3/l. Moreover, for sensitive transducers, experiments show that Q is limited
by surface-related losses [20], which lead to a linear decrease of Q with increasing

11 zeptoNewton = 10−21 N 21 yoctogram = 10−24 g = 10−27 kg
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surface-to-volume ratio, i.e. Q ∝ d. As a result, we see that Γ ∝ d2/l, meaning that
long and thin cantilevers should be the most sensitive. Furthermore, if we fix the
aspect ratio (AR) and scale each dimension of the cantilever uniformly by a factor α,
we find that Γ ∝ α and therefore Fmin ∝

√
α. This implies that given a constant AR,

smaller structures will be sensitive to smaller forces.
High AR and small mass are peculiar features of ‘bottom-up’ cantilevers – reviewed in
Fig. 1 – and they both contribute to enhance the force sensitivity. However, a reduc-
tion of the cantilever’s size guaranties also higher mechanical resonance frequencies
(ω0 ∝ d/l2 ∝ 1/α), which are attractive for force transducers, since they allow for the
measurement of fast dynamics and they decouple the sensor from common sources of
noise. A prominent example is the additional noise experienced by a cantilever as its
tip approaches a surface [27, 28]. This so-called non-contact friction is largely due
to electronic fluctuators on the surface and typically has a 1/f -like frequency depen-
dence. This effect is crucial in scanning probe applications, since the total dissipation
Γ increases as the tip-sample distance is reduced, degrading the measurement force
resolution. In this context, the use of silicon NWs – in Fig. 1(d) – by Nichol et al. [29]
has shown not only ultralow intrinsic dissipation down to 2 × 10−15 kg/s, unaltered
within 10 nm tip-sample spacing, but also a reduced interaction with the surface yield-
ing a factor of 80 less surface dissipation and factor of 250 less total dissipation than
audio frequency cantilevers (similar to Fig. 1(b)) under similar conditions.
Hence, in order to simultaneously maximize ω0 and minimize Fmin, the entire struc-
ture should be scaled down. This necessity for further reduction in cantilever size has

Top - Down Bottom - Up
c d e

f

ba e

Figure 1 | Top-down vs. bottom-up scanning force sensors.
(a) Diamond ‘nanoladder’ as an improved design for rectangular can-
tilevers, with 2 orders of magnitude mass and stiffness reduction
(M ∼ 5 pg), thanks to the high AR given by the two parallel beams
with d = 200 nm. Fmin = 13 aN/

√
Hz at RT [21]. Scale bar 20 µm. (b)

‘State-of-the-art’ ultrasensitive silicon cantilever. Fmin = 3.8 aN/
√
Hz

at 3 K [20]. (c) CVD grown SiC NW mounted on a sharp W sup-
port. The larger motional mass is compensated by a very high AR
= l/d ∼ 850. Fmin = 30 aN/

√
Hz at RT [22, 23]. (d) Au-catalyzed

VLS grown Si NW. Fmin ∼ 10 aN/
√
Hz at RT [24]. Scale bar

10 µm. (e) MBE grown self-catalyzed GaAs NW [25]. M = 780 fg
and Fmin ∼ 3.5 aN/

√
Hz at 4.2 K. Scale bar 10 µm. (f) Singly

clamped CNT (d ∼ 2 nm) with Pt nanoparticle at the tip for op-
tical motion detection. Such devices feature extreme AR & 2000,
while M = 7.9 × 10−19 kg is for 80% given by the Pt scatterer.
Fmin = 0.7 aN/

√
Hz at RT [26].
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positioned ‘bottom-up’ techniques as the fabrication methods of the future.

In this dissertation, we aim to explore the potential of ‘bottom-up’ fabricated de-
vices, such as semiconductor NWs, as scanning force sensors. Their singly clamped
structure makes them ‘easy’ to scan over a sample in the pendulum geometry enabling
the measurement of very weak lateral force gradients, thanks to their remarkable me-
chanical properties [30].
Notably, NWs present spatially nearly degenerate flexural modes, due to their quasi-
symmetrical cross section, resulting into the polarization of each mode along two
orthogonal oscillation directions, with minimal frequency splitting and almost equal
mechanical characteristics. This peculiar ‘bimodal’ feature, unlike multifrequency
force microscopy with conventional AFM cantilevers [31], enables the detection of in-
plane forces along two orthogonal oscillation directions and gives access to the full
vectorial character of force fields. The rotation of the two modes’ orientation in a Si
NW (similar to Fig. 1(d)) has been initially studied by Gil-Santos et al. [32] to radially
locate the position of a carbon adsorbate for mass detection applications. Lately, in
the context of force sensing, a formal description of the evolution of the two modes
in an external force field has been derived by Gloppe et al. [22] and used to measure
the bi-dimensional vectorial map of an optical force field interacting with a SiC NW
(Fig. 1(c)). In Chapter 3, we demonstrate the integration of a self-assembled NW
vectorial force sensor in a cryogenic scanning probe microscope setup with fiber-based
interferometric optical motion detection. By monitoring the frequency shift and direc-
tion of oscillation of both modes as we scan above the sample’s surface, we construct
a map of all spatial static tip–sample force derivatives in the plane. Moreover, we
dynamically probe electric force fields distinguishing between forces arising from the
NW charge and polarizability [33]. Similar measurements of in-plane electrostatic
force fields have been reported by de Lepinay et al. with a SiC NW [23].
Our research is focussed on as-grown self-catalyzed NWs, produced with molecular
beam epitaxy (MBE) techniques, which ensure the highest growth control for almost
defect-free structures on the atomic-scale with perfectly terminated surfaces. Further-
more, epitaxial growth allows the realization of NWs from a number of materials as
well as their combination to form heterostructures, offering the possibility of function-
alizing the mechanical resonator ‘in-situ’, for example with quantum emitters [34] or
with magnetic crystalline tips [35]. The scanning magnetic force sensor based on a
magnet-tipped GaAs NW, presented in Chapter 4, clearly exemplifies the potential
of such growth methods. In addition, the high mechanical force sensitivity of these
compact probes, makes possible the characterization of the nano-metric tip’s mag-
netic properties via dynamic torque magnetometry as well as the resonant detection
of electric currents with a resolution of 63 nA/

√
Hz [25].
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Thesis Outline

Chapter 1 overviews general background notions in the
context of mechanical force detection using NWs as sen-
sors. Starting from Euler-Bernoulli beam theory, the nor-
mal equations of motion for the flexural modes are derived
and the origin of their spacial orthogonal polarization is
discussed. Thermal noise sensitivity Then, the Mie scat-
tering theory, underlying the optical motion detection of
sub-wavelength cantilevers, is briefly presented. Finally,
the growth technique for the NWs used in our experiments
is briefly illustrated.

Chapter 2 describes the main parts and instrumentation
constituting our scanning NW system. In particular, are
shown the main capabilities of the fiber-based confocal mi-
croscope and interferometer, adopted for the motion de-
tection of the NW. Principal techniques for displacement
calibration and 2D motion mapping of the NW are also
introduced.

Chapter 3 reports on the use of an individual as-grown
NW to realize the vectorial scanning force microscopy over
a patterned sample. By monitoring the thermally driven
vibrations of the NW’s fundamental modes, the static tip-
sample force derivatives are mapped in the 2D scanning
plane. Moreover, electrostatic tip-sample interactions are
dynamically probed by measuring the NW’s response to a
driving force generated by an AC voltage on the sample’s
patterned electrodes, revealing the distinct contributions
of NW’s spurious surface charge and polarizability. Finally,
such electrostatic interactions are exploited to strongly cou-
ple the NW’s mechanical modes and to study their coherent
dynamic.

In Chapter 4 we demonstrate the use of as-grown NWs
with crystalline magnetic tips as a magnetic sensor for scan-
ning probe applications. Taking advantage of the excellent
force sensitivity, the magnetic properties of such tips are
studied via dynamic torque magnetometry and precisely
fitted by micro-magnetic simulations, showing vortex and
dipole-like configurations. Finally, we perform dynamic
measurements over a patterned current-carrying wire, char-
acterizing their behavior as current sensors and estimating
their sensitivity.

Chapter 5, in conclusion, summarizes the main results presented in this thesis, giving
an outlook on possible future developments and challenges, inspired by the reported
experiments.
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Chapter 1

Force detection with nanowires

This chapter aims to provide a general background of theoretical notions and methods
involved in the experiments presented later on in this thesis. In the main framework
of force detection using a nanowire (NW) as mechanical resonator, we first provide an
analytical model for vibrations of singly-clamped beams, deriving the normal equa-
tions of motion to model the NW’s dynamics and introducing their bi-dimensional
character. We discuss the main limitation to mechanical force sensing and their ori-
gin. Thereafter, the light-nanowire interaction, which allows the optical detection of
NWs is presented. Finally, we briefly describe the fabrication method of the GaAs
NWs used in our force sensing applications.

1.1 Mechanics of nanowires

In this thesis we will focus only on the flexural (transverse) vibrational modes, and
specifically on the fundamental transverse mode, which is the mechanical mode with
the lowest frequency and stiffness, ideal for force sensing applications. In fact, a NW
is highly sensitive to the lateral components of a force, specially when on resonance.
In beams with high aspect ratio, resonances of bending modes are much more ac-
cessible and force-‘sensitive’ than the other mechanical modes. Specifically, torsional
modes and longitudinal (axial or ‘breathing’) modes related to axial forces causing a
compression/extension of the NW.

1.1.1 Flexural vibration of a beam

The mechanics and governing equation of a NW in pure bending are accurately de-
scribed by the Euler-Bernoulli beam theory, formulated in the mid-18th century. Also
known as thin beam theory, it is applicable to beams for which the length L is much
larger than the depth (at least by a factor 10) and for small deflections compared to
the depth. Under these conditions, the following assumptions are valid and simplify
the physical description:

1. the rotation of cross sections of the beam is neglected compared to the trans-
lation (i.e. the effects of the rotatory inertia are neglected compared with those
of the linear inertia);

2. the angular distortion due to shear is considered negligible compared to the
bending deformation. The rotation is such that the cross-sections do not deform
and remain orthogonal to the center axis (pure bending). Hence, shear force is
only produced by the bending moment.

Constitutive and kinematical relations By choosing a proper coordinate sys-
tem, it is possible to reduce the problem of a three-dimensional body under bending
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to the a 1-D representation. The origin of the reference has to be placed at the center
of mass of the cross-section1 with the so-called neutral axis being orthogonal to it; in
this way, a normal force N causes only strain 2 and no curvature (i.e. no moment).
The stress applied to the side the structure causes a linear variation of the axial strain
εzz, which is statically equivalent to only a moment and null at the neutral axis. The
normal stress acting on a cross-section is in turn equivalent to a resultant normal force
N along z and a moment M in the xy-plane [36]. Moreover, by arbitrarily orienting
the xy reference axes on the cross-section, the constitutive equation for bending relates
the moment M to the beam’s curvature κ via the bending stiffness tensor as:[

Mx

My

]
= −

[
EY Ix EY Ixy
EY Iyx EY Iy

] [
κx
κy

]
(1.1)

where EY is Young’s elastic modulus for the beam, Ix and Iy are the cross-sectional
area moment of inertia3 and Ixy = Iyx is the product moment of area4. For any
geometry, it is possible to diagonalize the system and obtain two directions for x and
y which are principal axes of the second moment of area and in respect of which
bending moments are fully uncoupled.

x

y z

A(z)

dz

neutral axis

w(z,t)

T(
z,

t)
dz

f (z,t)

Q

T(
z,

t)
+

   
 d

z
∂z∂T

 

M
(z,

t)

M(z,t)+    dz∂z
∂M 

Figure 1.1 | Singly-clampled beam in pure bending.
On the left: a beam of length L and cross-sectional area A(z) � L2.
It is oriented along its principal axes x and y with the neutral axis
coincident with the z-axis, at rest (in green). In red, bent beam under
an homogeneous load along x, with displacement amplitude w(z, t)�
L. On the right: a force and momentum balance for an infinitesimal
section dz ×A(z) at the point Q on the neutral axis.

With a beam in such coordinate system sketched in Fig. 1.1, we derive the beam
equation for a bending momentMy along the y-axis causing a transverse displacement
w(z, t) of the neutral axis in the x direction.
For pure bending we just have

My(z, t) = −EY Iyκy ' −EY Iy(z)
∂2w(z, t)

∂z2
(1.2)

where the curvature κy can be approximated by the second derivative of the displace-
ment for small and smooth deflections.

It is intuitive to derive the equation of motion through expression of local equilib-
rium, considering the bending and shear resultants M(z, t) and T (z, t), respectively,

1(x0, y0) = 1∫
A dA

(∫
A
xdA,

∫
A
ydA

)
2N = EYAεzz

3Ix =
∫
A
y2dA,Iy =

∫
A
x2dA

4Ixy = Iyx =
∫
A
xydA
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on an infinitesimal beam’s segment subjected to a distributed vertical load f(z, t).
In the limit of dz → 0, the moment balance – neglecting rotatory inertia under
Bernoulli’s beam assumptions – gives

T (z, t) = −∂My(z, t)

∂z
, (1.3)

while the transverse force balance has to be equal to the element’s inertial force gives
f(z, t)− ∂T (z, t)/∂z = ρA(z)ẅ(z, t). The latter, by means of Eqs. (1.2) and (1.3), is
expressed in terms of the displacement and applied load

ρA(z)
∂2w(z, t)

∂t2
+

∂2

∂z2

[
EY Iy(z)

∂2w(z, t)

∂z2

]
= f(z, t) (1.4)

where ρA(z) is mass per unit length. The beam’s density ρ as well as the Young’s
modulus EY are assumed constant under the hypothesis of homogeneous beam.

Free vibration of the beam To calculate the characteristic modes of vibration of
the beam, we need to study the free evolution of the system in absence of an applied
external force, i.e. f(z, t) = 0. Assuming that the cross-section shape and area A(z)
remain constant over the beam length, also the bending stiffness EY Iy will be constant
and the equation of motion reduces to

ρA
∂2w(z, t)

∂t2
+ EY Iy

∂4w(z, t)

∂z4
= 0 (1.5)

This equation can be solved by separation of variables using a Fourier decomposition
of the displacement w(z, t) into the sum of harmonic vibrations:

w(z, t) =

∞∑
n=0

R(wn(z)e−iωnt) (1.6)

where R(· · · ) refers to the real part of the quantity in parentheses, wn(z) describes the
shape and amplitude of the bending and e−iωnt accounts for the oscillatory temporal
evolution. Being NWs highly under-damped resonators, the motion damping term
Γnẇ is neglected for the moment. The separation ansatz leads to a spatial equation
in the form of

d4wn(z)

dz4
− β4

n

L4
wn(z) = 0 with βn = L

(
ω2
n

ρA

EY Iy

) 1
4

(1.7)

which admits an infinite number of solutions wn(z) (i.e. nth flexural mode), each
of them vibrating at a distinct eigenfrequency ωn of the system. We expressed the
parameter βn as a dimensionless quantity to simplify and clarify the calculations.
The dispersion relation for βn in equation (1.7), relates the geometrical and structural
properties of the cantilever to its eigenfrequencies, which can be calculated as:

fn =
ωn
2π

=
1

2π

β2
n

L2

√
EY Iy
ρA

(1.8)
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Mode n βn ωn/ω0

0 1.875 1
1 4.694 6.267
2 7.855 17.547
3 10.996 34.386

n ≥ 3 (n+ 1/2)π [(n+ 1/2)π/β0]2

0

0 2 1084 146 12

Table 1.1 | Solutions of the dispersive equation
Values of βn and of the normalized eigenfrequencies to the fundamental
ω0. For n ≥ 3, the asymptotic values can be expressed in closed
form [37].

The lowest frequency f0 is referred to as the fundamental frequency.
The differential equation (1.7) has a general solution expressed as:

wn(z) = An cos
(
βn
z

L

)
+Bn cosh

(
βn
z

L

)
+ Cn sin

(
βn
z

L

)
+Dn sinh

(
βn
z

L

)
(1.9)

with βn and 3 out of the 4 coefficients (An, Bn, Cn, Dn) defined through the boundary
conditions of the physical problem, up to an arbitrary scaling factor of the eigenfunc-
tion’s amplitude.

In our case, the NW is fixed at one end (z = 0) and free to vibrate at the other
(z = L). This cantilever configuration implies that the deflection and slope must
vanish at z = 0, while at the free end (z = L) the bending moment and shear force
must be zero. That is, respectively:

wn(0) = 0,
dwn
dz

∣∣∣∣
z=0

= 0, EY Iy
d2wn
dz2

∣∣∣∣
z=L

= 0,
d

dz

[
EY Iy

d2wn
dz2

∣∣∣∣
z=L

]
= 0

(1.10)
Applying these mathematical constraints to equation (1.9), allows to define the val-
ues of (An, Bn, Cn, Dn) up to one global parameter and to obtain the characteristic
equation for the single-camped beam problem:

cosβn coshβn + 1 = 0 (1.11)

The infinite countable set of roots (i.e. eigenvalues) of the transcendental expres-
sion (1.11) are summarized in Table (1.1). Each root βn is associated to the mode
shape wn(z) of the nth flexural mode, which is solution of the spatial equation (1.9)
and is determined to be

wn(z) =
1

Kn

{
(cosβn + coshβn)

[
sin
(
βn
z

L

)
− sinh

(
βn
z

L

)]
− (1.12)

(sinβn + sinhβn)
[
cos
(
βn
z

L

)
− cosh

(
βn
z

L

)]}
Following a common choice of normalization [36, 37], we choose solutions un(z) with
Kn = wn(L) = 2(sinβn coshβn − cosβn sinhβn) in order to ensure the condition
|wn(z)|max = 1, which for a cantilever corresponds to wn(L) = 1. Such normalized
vibration profiles un(z) are dimensionless and just describe the mode’s shape, leaving
the amplitude information (and physical unit of distance) to the time-dependent part
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of the general solution. In Fig. 1.2 are shown the mode shapes correspondent to the
first five flexural modes.

0

L

Z

0-1 1 0-1 1 0-1 1 0-1 1 0-1 1
un(z)

n = 0 n = 1 n = 2 n = 3 n = 4

Figure 1.2 | Flexural modes of vibration for a single-clampled beam.
Normalized vibrational profiles un(z) for the first five flexural modes
of a singly-clamped beam. The curves are describes by Eq.(1.12).

Orthogonality of modes and normal equations of motion

The eigenvalue problem for beams in bending can be written in compact form by intro-
ducing two linear differential operators; specifically: the inertial operator m = ρA(z)

and the stiffness operator k = ∂2

∂z2
EY Iy(z)

∂2

∂z2
. In doing so, equation (1.5) resembles

the expression describing lumped-mass systems, where each natural frequency ωn and
modal function un satisfies the relation

(k− ω2
nm)un = 0 (1.13)

By introducing the scalar product defined for continuous functions on [0, L]5, it is
possible to demonstrate that the natural modes un(z) are mutually orthogonal6 [38,
39]. In particular, the orthogonality relations are carried out in terms of the weighted
inner product with respect to the inertial operator m:

〈un, up〉m =

∫ L

0
ρA(z)un(z)up(z)dz = Mnδnp (1.14)

5〈un, up〉 =
∫ L
0
un(z)up(z)dz

6but not ortho-normal since 〈un, up〉 = L
4
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where δnp is the Kronecker delta7 and Mn =
∫ L

0 ρA(z)u2
n(z)dz is the generalized mass

of the nth mode. A dual expression for orthogonality can be derived respect to the
stiffness operator k:

〈un, up〉k =

∫ L

0

d2

dz2

[
EY Iy(z)

d2un(z, )

dz2

]
up(z)dz = Mnω

2
nδnp (1.15)

Since the mutually orthogonal and complete set of modal functions {un} is lin-
early independent, any transverse vibration of the beam w(z, t), which satisfies the
boundary conditions, can be represented as a linear combination of these functions.
That is the convergent series

w(z, t) =
∞∑
n=0

un(z)rn(t) (1.16)

where rn(t) = an sin(ωnt+ φn) are time-dependent harmonic functions at the natural
frequencies of the beam8, with amplitude an and phase φn determined by the initial
conditions on w(z, 0) and ẇ(z, 0). Note that, as a consequence of the expansion theo-
rem, any deformation w(z) of the cantilever is represented as a weighted combination
of the normalized modes of the unforced cantilever w(z) =

∑∞
n anun(z).

These are key concepts that allow to decompose the continuous vibrational prob-
lem into an infinite system of equations of motion with single degree of freedom, whose
displacements correspond to the modal coordinates rn(t) [36]. Replacing the expres-
sion (1.16) into the generic governing equation (1.4), multiplying both sides by up and
integrating over [0, L], then results in the identity∫ L

0

∞∑
n=0

{
r̈n(t)ρAunup + rn(t)

d2

dz2

[
EY Iy

d2un
dz2

]
up

}
dz =

∫ L

0
upf(z, t)dz (1.17)

Interchanging the order of integration and summation and applying the orthogonality
relations (1.14) and (1.15) reduces equation (1.17) to a set of uncoupled differential
equations in rn(t) called normal equations of motion:

Mnr̈n(t) +Mnω
2
nrn(t) = Fn(t) for n = 0, . . . ,∞ (1.18)

Each equation describes the amplitude of an individual mode and is equivalent to the
one of a mass-spring lumped system. To each degree of freedom corresponds a modal
mass Mn = 〈un(z), un(z)〉m and a modal stiffness kn = Mnω

2
n = 〈un(z), un(z)〉k. The

modal forces Fn(t) = 〈un(z), f(z, t)〉 (i.e. the forces acting on the modal masses Mn)
account for the portion of the applied force distributed to each mode.

Effective mass The modal mass or effective mass Mn is a fundamental quantity
in describing the dynamical behavior of a continuum system with position-dependent
inertia. In fact, each volume element of the beam reacts to a transverse load with
increasing inertia the closest it is to the free-end point.

By virtue of our normalization condition |un(L)| = 1, the equations of mo-
tion (1.18) describe the time evolution of the displacement rn(t) at the tip and the

7δnp :=

{
1 for n = p

0 for n 6= p

8Can bee seen as a generalized Fourier Series
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effective mass are measured at the position of maximum displacement z = L. From
equation (1.14) it follows that:

Mn

Mtot
=

1

L

∫ L

0
|un(z)|2dz =

1

4
∀n (1.19)

Given the total potential energy of the mode EP = 1
2Mnω

2
n|rn(t)|2, it is important

to underline that, if the displacement is probed at another position z = z0 6= L, the
correspondent effective mass value renormalized by a factor |un(z0)|2 as [37]:

Mn(z0) =
Mn

|un(z0)|2 ≥
1

4
for 0 ≤ z0 ≤ L (1.20)

This follows from the fact that, for the same energy, the modal displacement scales
as rn(z0, t) = rn(t)un(z0).

Since the modal mass is constant and equal to 1/4 of the total mass – indepen-
dently of the mode n –, in the following will be indicated as M .

Mechanical dissipation The equations of motion in (1.18) describe the ideal case
of a non-dissipative perfectly elastic cantilever. However, real resonators are non
conservative systems and dissipate energy with consequent damping of their motion.

A common framework to introduce dissipation is to account for the internal damp-
ing of a viscoelastic material [40, 41]. Using Hooke’s law for solids, the strain ε is
linearly related to the applied stress σ via the Young modulus EY = σ

ε . While for
elastic material (i.e. conservative case) EY is constant and real, in the viscoelastic
case the relation depends on the excitation’s frequency and the strain is phase-lagged
with respect to stress as

EY (ω) = EY,eff (ω)[1 + iφ(ω)] (1.21)

The loss angle φ(ω) represents a rate of energy loss meaning that a fraction 2πφ
of energy stored in the oscillatory motion Etot is being dissipated during each cycle.
EY,eff and φ are assumed to be constant over the frequency range of interest ω ≥ ω0.
We also introduce the quality factor Q as a figure of merit of the resonator according
to its standard definition:

Q−1 = φ =
∆Eloss
2πEtot

=
Im(EY )

Re(EY )
(1.22)

By replacing the complex Young modulus (1.21) in equation (1.7), the eigenfre-
quencies ωn of the system are determined by a complex-valued dispersion relation for
βn. For good resonators such NW cantilevers, operating in the low dissipation regime
(i.e. φ � 1 and Q � 1), it is possible to approximate the complex expression (1.8)
as ωdissn ∝

√
EY,eff (1 + iφ) ≈

√
EY,eff (1 + iφ2 ) and define the eigenfrequencies for an

under-damped resonator

ωdissn ≈
(

1 + i
1

2Q

)
ωn (1.23)

As a consequence, the full displacement solution for a free vibrating beam with very
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low damping maintains the mode shapes and the oscillating frequencies of the un-
damped case with the only addition of a characteristic exponential decay term

w(z, t) =
∞∑
n=0

un(z)rn(t)e
−ωn

2Q
t (1.24)

Finally, the expression of the normal equations of motion can be rederived by using
the complex frequencies 9 in (1.23) and expressed as:

Mr̈n(t) + Γnṙn(t) +Mω2
nrn(t) = Fn(t) for n = 0, . . . ,∞ (1.25)

where Γn = Mωn
Q is the resonator’s mechanical dissipation. This equation, correspond-

ing to a damped harmonic oscillator (mass-damper-spring system), will be used in the
following to describe the linear response of a flexural mode of the NW.

Note that, since M is identical for all the modes and we assumed the quality fac-
tor Q−1 = φ constant, Γn appears to increase proportionally to the mode’s frequency.
This is not generally true because Q is function of ωn and higher order modes tend
to have higher quality factors. In reality, the sources of mechanical dissipation are
multiple, difficult to model individually and they all add up as Q−1 =

∑
iQ
−1
i [41].

In our case, since the NWs are operated in vacuum at 10−6 mbar, the acoustic dissi-
pation is negligible 10 and Q is limited by intrinsic dissipation mechanisms. Mainly,
vibrational energy can be dissipated by internal friction and via coupling to the sub-
strate (clamping losses), due to the time-varying strain radiating elastic energy into
the substrate at the clamping (i.e. point of maximum strain). Internal friction is as-
sociated with the viscoelastic model we adopted previously, and accounts for defects
in the crystalline NW bulk (e.g. stacking faults) [42] and surface losses [20, 43]. The
latter are related to the high surface-to-volume ratio of nano-mechanical resonators
which amplifies the role of surface defects and impurities over the bulk’s properties.

1.1.2 Mechanical polarizations

Up to this point, we gave the description of the flexural normal modes {un} of a
NW and its natural frequencies {ωn} along one of the two centroidal principal axes
of the generic NW’s cross-section (i.e. x-axis) – concept we introduced at the begin-
ning of subsection 1.1.1. The same equations apply to the NW bending along the
other principal axis (i.e. y-axis): its displacement is still described by the same set
of mode shapes {un}, while the natural frequencies might differ. In fact, from the
eigenfrequency expression (1.8) follows that ωn,x ∝

√
Iy with the second moment of

area being the only parameter responsible – in case of if Iy 6= Ix – for a difference of
the natural frequencies sets {ωn,x} 6= {ωn,y}. Note that the eigenfrequency spacing is
conserved since it depends on βn, which is set by the mode shape’s solution.

In general, the natural response of a NW to a transverse displacement in the
xy-plane is oriented along the centroidal principal axes for which the bending mo-
ments result uncoupled. These two directions correspond to the axis of minimum and
maximum moment of inertia for the cross-section.

9〈un, un〉k = Mω2
n(1 + i/2Q)2 ≈

Mω2
n(1− i/Q) = Mω2

n + Mωn
Q

d
dt

10Below 10−3 mbar Q is not pressure limited
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If the NW’s cross-section shows any symmetry, the natural directions of vibration
can be determined by simple geometrical considerations [44]:

• Singly symmetric cross-section: the axis of symmetry is one
of the centroidal principal axes of the cross section; the other
principal axis is perpendicular to the axis of symmetry at the
centroid.

• Doubly symmetric cross-section: the two axes of symmetry
are centroidal principal axes (e.g. rectangle, ellipse, elon-
gated hexagon).

• Multiple non-orthogonal symmetry axes: the moments of
area are invariant respect to rotation around the centroid.
The modes are degenerate and the NW will vibrate without
preference in all planes of flexural vibration with the same
eigenfrequencies {ωn} (e.g. n-sided regular convex polygon,
circle).

C

C

C

b

a

s

The III-V semiconductor NWs studied in this thesis are grown by Molecular Beam
Epitaxy (MBE) – as will be discussed later in section 1.4.1 – along the [111] direction
of a Si or GaAs substrate, which ideally leads to regular hexagonal cross-sections.
However, due to unavoidable asymmetries, a non degenerate set of orthogonal modes
is commonly observed, with consequent splitting of the frequencies [25, 33, 45–49].
An analogous behavior has been reported for circular cross-sections in NWs [22, 24,
32, 50] and carbon nanotubes (CNT) [26, 51].

For the rest of the manuscript, we will focus exclusively on the two polarizations
of the fundamental flexural mode, directed along the unitary vectors r̂i for
i = 1, 2, as sketched in Fig. 1.3. For the sake of brevity, we will refer to them as
‘modes’ and where needed, the subscripts i, 1, 2 will be used to refer to them.
The axis r̂1 is always assigned to the slowest mode with frequency f1 < f2.

The vibration spectrum of all the investigated as-grown NWs has shown a well de-
fined frequency splitting ∆f = f2− f1. The lifting of the mode degeneracy can be at-
tributed to several kinds of inhomogeneities (e.g. material and clamping anisotropies)
and the effect of a slight cross-sectional asymmetry is very effective and plausible for
a self-assembled growth process [47, 48]. Fig.1.3 shows the result of such asymme-
try, parametrized by the aspect ratio (AR) between the major axis a and the minor
axis b. Assuming all the other quantities homogeneous and constant, follows from
equation (1.8) that the relative frequency split can be expressed as:

∆f

f1
=
f2

f1
− 1 =

√
I1√
I2
− 1 (1.26)

where I1 and I2 are the moments of area11 calculated with respect to the principal
axis r1 and r2, respectively.

11For a regular hexagon of side s = a
2
:

I1 = I2 = 5
√
3

16
s4
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Figure 1.3 | Fundamental mode splitting for an asymmetric hexagonal
NW.
The relative frequency split ∆f/f1 = (f2 − f1)/f1 (grey filled line) is
calculated analytically as a function of the increasing hexagon aspect
ratio keeping a constant area A = 3

4ab (i.e. elongation along r2 and
shrinking along r1). For a regular hexagon a

b = 2/
√

3. As an example,
the corresponding evolution of the first mode frequencies (blue and red
line) are calculated using equation (1.8) for a typical GaAs NW with
starting major diagonal a = 240 nm, L = 16µm, ρ = 5320 kg/m3 and
EY = 141 GPa [52]. Typical splitting values are indicated by the red
shaded area.

In Table 1.2 are reported the frequency split and aspect ratio statistics for the
NWs studied in the next chapters. Note that – in general – the frequency difference
is enhanced for shorter beams since ∆f ∝ L−2.

NW sample: GaAs # tot. L× a (µm) ∆f (kHz) ∆f/f1 (%) AR

w/ AlGaAs shell (Ch. 3) 4 25× 0.35 9 2.3± 0.7 1.17
w/ MnAs tip (Ch. 4) 52 17× 0.23 20 5± 4.3 1.2

Table 1.2 | Frequency split and aspect ratio statistics on measured NW
samples

Finally, we want to remark that such slight asymmetries entail the orthogonality
of the flexural modes and separate their frequencies by few percentage points, which
in turn keeps their modal stiffnesses ki = Mω2

i almost identical (k1 ≈ k2). These
are the essential features that enable the use of NWs as bi-dimensional force sensor.
Since the NWs are driven at very small deflection angles, the vertical component of
the displacement at the tip ∆h ≈ r2

i /le results a thousand times smaller than the
transversal oscillation amplitude ri. Therefore, only the 2-D motion of the NW in the
r1r2-plane is considered. In the small deflection limit, effective length le is a frequently
used quantity to describe the cantilever motion. In fact, the tangent to the end of
the NW is tilted by and angle θ and always intersects the same point along the rest
axis. The effective length is defined to be the distance from this point to the end of
the NW and for the first flexural mode le = L/1.38. As described in Section 4.3, in
dynamic torque magnetometry, the cantilever motion is often expressed as a function
of the tilt angle θ ≈ ri/le.
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1.2 Force Detection

1.2.1 Mechanical susceptibility

The modal decomposition reduces the mechanical problem to the evaluation of in-
dependent equations of motion in the form of damped harmonic oscillators. Linear
response theory provides powerful mathematical tools to describe the input/output
(i.e. force/displacement) relation of each mode. The time dependent solution given in
(1.25) corresponds to the free evolution of the system also equivalent to the response
h(t) to an impulsive force F (t) = δ(t), with δ(t) being the Dirac delta function12.
In the linear regime, for any driving force F (t), the resulting displacement can be cal-
culated as r(t) = h(t) ∗ F (t), where the symbol ∗ denotes the convolution operation.

Fourier analysis greatly simplifies the characterization of linear systems such the
damped harmonic oscillator: by Fourier transforming Eq. (1.25), the input/output
relation is expressed as the system’s transfer function or mechanical susceptibility

χ(ω) =
r̂(ω)

F̂ (ω)
=

1

M(ω2
n − ω2)− iωΓ

(1.27)

where ·̂ indicates the Fourier transformed13 function and χ(ω) = ĥ(ω).
The temporal convolution is replaced by a multiplication in the frequency domain and
the resonator’s response can be simply expressed using the polar representation14

r̂(ω) = χ(ω)F̂ (ω) = |χ(ω)|
∣∣∣F̂ (ω)

∣∣∣ ei[arg(χ(ω))+arg(F̂ (ω))] (1.28)

When the oscillator is driven with a monochromatic force F (t) = Fd cos(ωdt+φd)
– equivalent to an impulse in frequency F̂ (ω) = Fde

iφdδ(ω − ωd) – it responds at
the same frequency of the drive with amplitude and phase modified by its transfer
function according to equation (1.28): r̂(ω) = Fd|χ(ωd)|ei[φd+arg(χ(ωd))]δ(ω − ωd).
From the transfer function plotted in Fig. 1.4 it is possible to highlight the ‘amplifi-
cation’ characteristic of a resonator used as a force transducer : in the non-resonant
case ωd � ωn the oscillation follows adiabatically the driving force with almost zero
lag (i.e. arg(χ(ω)) → 0) and the amplification factor drops to the inverse of the
spring-constant kn (Hooke’s law) for a constant force (ωd → 0). Conversely, in case of
resonant driving at ωd = ωn, the displacement gets enhanced by a factor Q and lags
the driving force by −π/2.

A high-Q oscillator is therefore an extremely sensitive force sensor when operated
close to resonance and acts like a very narrow band-pass filter at ωn with bandwidth
∆ω = ωn/Q.

As a concluding remark, linear response theory has been adopted throughout this
work since the vibration of the NWs has been always found proportional to the mag-
nitude of the applied driving force, with a frequency dependence entirely described by
|χ(ω)|.
For stronger driving, the small angle assumption for NWs in pure bending breaks

12δ(t) :=

{
∞ for t = 0

0 for t 6= 0∫ +∞
−∞ δ(t)dt = 1

∫ +∞
−∞ δ(t− t0)f(t)dt = f(t0)

13r̂(ω) = F{r(t)} =
∫ +∞
−∞ r(t)eiωtdt

and r(t) = F−1{r̂(ω)} = 1
2π

∫ +∞
−∞ r̂(ω)e−iωtdω

14|χ(ω)| =
√
χ(ω)χ?(ω)

arg(χ(ω)) = Im(χ(ω))
Re(χ(ω))
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Figure 1.4 | Mechanical susceptibility
Mechanical transfer function for a damped harmonic oscillator for a
Q = 10. (a) Amplitude response with a −3dB bandwidth ∆ω = ωn/Q.
(b) Phase response with characteristic −π/2 phase shift on resonance.
At ω � ωn the system does not respond anymore, being in anti-phase
to the driving force.

down and more complex geometrical nonlinearities rise from large deformations. The
motion of GaAs NWs in the nonlinear regime has been extensively studied [47, 48]
and requires the extension of Eq. (1.25) with an additional cubic term (Duffing term)
αr3

1 and a non-linear coupling term αr1r
2
2, where r2 is the displacement of a flexural

modes oscillating in the orthogonal direction.

Bi-dimensional sensing

Taking advantage of the two mechanical polarizations featured by quasi-symmetrical
beams, we can expand the in-plane dynamics of the NW r(t) subjected to a force
F(t) on the modes’ basis (r̂1 ,̂r2). Therefore, the general equation of motion for r(t) ≡
[r1(t), r2(t)]T can be written in vectorial form in terms of two independent damped
harmonic oscillators (Eq. (1.25)):

M r̈(t) +

[
Γ1 0
0 Γ2

]
ṙ(t) +

[
Mω2

1 0
0 Mω2

2

]
r(t) = F(t) (1.29)

In the frequency domain, the equation has the more compact form r(ω) = χ(ω) ·F(ω)
by defining the bi-dimensional mechanical susceptibility as

χ−1(ω) =

[
M(ω2

1 − ω2)− Γ1ω 0
0 M(ω2

2 − ω2)− Γ2ω

]
(1.30)
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1.2.2 Thermal noise

A mechanical oscillator is not an isolated system, but it interacts with the environ-
ment. The sources of such interaction are mainly random collisions with gas molecules
and the phonons of the substrate coupled via the clamping point. The cumulative ac-
tion of these random processes can be statistically modeled as a heat bath with many
microscopic degrees of freedom, coupled to the resonator and in thermal equilibrium
with it.
Therefore, even in absence of an external drive, a linear resonator (i.e. nth flexural
mode) in equilibrium at temperature T > 0 experiences displacement fluctuations
rn = δrn about its rest position and equation (1.25) can be written in form of the
so-called Langevin equation:

Mδ̈rn +Mω2
nδrn = −Γnδ̇rn + δF (1.31)

which describes the Brownian motion of a particle (i.e. effective mass along the normal
coordinate) subject to a stochastic force δF (t) in a harmonic potential EP = 1

2Mω2
nr

2
n.

The presence of a damping Γn in the system suggests that any oscillation would
continue to decrease in amplitude endlessly. The inclusion of the fluctuating force δF
essentially prevents the system temperature from dropping below that of the system’s
surrounding [53].

On the time scale of the oscillator’s dynamics, the randomly fluctuating force δF
is modeled as an uncorrelated Gaussian process with zero mean15. This assumption
is reasonable since the mass of the mode has a much larger inertia compared to the
single excitations (e.g. colliding gas molecules) and its motion is a result of a great
number of events separated on a time scale much shorter then the Brownian motion
itself [54, 55]. Hence, δF has a memoryless autocorrelation function

RδF (τ) ≡ 〈δF (t), δF (t− τ)〉 = lim
T→∞

1

T

∫ T/2

−T/2
δF (t)δF (t− τ)dt = Nthδ(τ) (1.32)

where 〈. . . 〉 indicates a time average (i.e. equivalent to the expectation E[. . . ] for an
ergodic process) and δ(t) is the Dirac delta function.
For convenience, we consider the Fourier transformed thermal fluctuations ˆδF (ω) =
F{δF (t)} and we analyze such stationary process in terms of its double-sided power
spectral density (PSD) defined as

SδF (ω) ≡ 〈 ˆδF (ω)2〉 (1.33)

which is related by the Wiener-Khinchin theorem to the autocorrelation function in
the time domain as

SδF (ω) = F{RδF (τ)} =

∫ +∞

−∞
RδF (τ)eiωτdτ = R̂δF (ω) (1.34)

Taking τ = 0 in equation (1.34) yields Parseval’s theorem[56]:

RδF (0) = 〈δF (t)2〉 = F−1{SδF (ω)}
∣∣
τ=0

=
1

2π

∫ +∞

−∞
〈 ˆδF (ω)2〉dω (1.35)

15Additive Gaussian White Noise (AGWN)



28 Chapter 1. Force detection with nanowires

that demonstrates the equivalence of the total energy for the two dual representations,
whereas the square signal averaged over time is equal to the integral of the PSD.
Since the thermal force has been modeled as white noise, it has zero mean 16 and
its mean-square value corresponds to an infinite variance 17 〈δF 2〉 = Nthδ(0) = σ2

δF

(i.e. infinite noise power). In a reciprocal way, relation (1.34) shows that the noise PSD
has a constant power density SδF (ω) = F{Nthδ(τ)} = Nth over the entire frequency
spectrum.
Note that, despite an infinite variance in the time domain, the finite bandwidth of any
real resonator will roll off the frequency response, and hence determine the variance
of the measured signal.

At thermal equilibrium18, the equipartition theorem provides an elegant result to
quantify the magnitude of the thermal fluctuations associated with energy storage in
independent degrees of freedom of the resonator {rn}. Each mode splits off additively
in energy due their mutual orthogonality and has an average energy equal to

〈En〉 = 〈En,K〉+ 〈En,P 〉 =
1

2
M〈ṙ2

n〉+
1

2
Mω2

n〈r2
n〉 =

1

2
kBT +

1

2
kBT = kBT (1.36)

where kB is the Boltzmann’s constant and T is the absolute temperature. Accordingly
to the previous relation and to (1.35), the displacement variance of an oscillator’s mode
in equilibrium with a heat bath at finite temperature T is

σ2
δr = 〈δr2

n〉 ≡
1

2π

∫ +∞

−∞
Sδr(ω)dω =

kBT

Mω2
n

(1.37)

By recalling the linear relation between force and displacement in the frequency
domain r̂n(ω) = χn(ω)F̂n(ω) introduced previously, we can use the theorem in (1.34)
to express the mean-square vibrations as the integral over all frequencies of the force
noise spectral density multiplied by the square of the mechanical transfer function

〈δr2
n〉 =

1

2π

∫ +∞

−∞
|χn(ω)|2SδF (ω)dω =

Nth

2π

∫ +∞

−∞
|χn(ω)|2dω (1.38)

where – from definition (1.27) – the mechanical power transfer function19 is

|χn(ω)|2 = χn(ω)χ?n(ω) =
1/M2

(ω2
n − ω2)2 + ω2

nω
2/Q2

(1.39)

and its integral admits a closed form solution for under-damped resonators20 [57] equal
to ∫ +∞

−∞
|χn(ω)|2dω =

π

ω2
nΓnM

=
πQ

ω3
nM

2
(1.40)

16lim|τ |→∞RδF (τ) = 〈δF 〉2 = 0
17σ2

δF = 〈δF 2〉 − 〈δF 〉2
18For kBT � ~ωn

19Sr = |χ(ω)|2SF
20For cantilevers: Q−1 < β2

n

√
EY IρA
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Finally, by equating expressions (1.38) and (1.37), a relation between the force noise
PSD and the properties of the resonator is found:

SδF (ω) = 4kBTΓn = 4kBT
ωnM

Q
(1.41)

where SδF is the single-sided PSD of the force noise. Although the double-sided
PSD SδF used so far has best use for mathematical analysis involving Fourier trans-
formations, the single-sided PSD is preferable for experimental measurements where
the power is integrated only on the positive frequencies’ semi-axis. For real-valued
quantities, the PSD is an even function i.e. SδF (−ω) = SδF (ω), and therefore σ2 =∫ +∞
−∞ SδFdω = 2

∫ +∞
0 SδFdω =

∫ +∞
0 SδFdω.

Displacement noise The displacement spectral density Sδr for a resonator in pure
Brownian motion shown in Fig. 1.5(a) can be calculated as the product between the
power transfer function (1.38) and the force noise PSD (1.41)

Sδr(ω) = |χn(ω)|2SδF (ω) =
4kBTωn

MQ [(ω2
n − ω2)2 + ω2

nω
2/Q2]

(1.42)

The correspondent autocorrelation function (Fig. 1.5(b)) for the position is obtained
by applying the inverse Fourier transform to the PSD [54]

Rδr ≡ F−1{Sδr(ω)} =
kBT

Mω2
n

e
−ωn

2Q
τ
(

cosωRτ +
ωn

2QωR
sinωRτ

)
(1.43)

with ω2
R ≡ ω2

n

(
1− 1

4Q2

)
.

0 1 2 0 1 432 5

0

TC

aa ab

Figure 1.5 | Power spectral density and autocorrelation of a resonator
driven by Gaussian white noise.
(a) Displacement noise PSD for Q = 10. The area under the curve
equals to the variance of the displacement. The −3dB bandwidth
corresponds to the Full Width Half Maximum (FWHM) of the peak.
(b) Corresponding auto-correlation function. The correlation of the
displacement noise in a resonator decays exponentially with a time
constant TC = 2Q/ωn. On a time scale of τ = 5TC the noise results
uncorrelated.

The important relations obtained for the thermal force and displacement power
densities may be found using the fluctuation-dissipation theorem of Callen et al. [58],
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formulated as a generalization of Nyquist-Johnson noise21 [59] for linear dissipative
systems . In case of a viscous force, it is possible to define for the system a mechanical
impedance as

Z(ω) ≡ F
{
F (t)

ṙ(t)

}
=

F̂

−iωr̂ =
i

ωχ(ω)
= Γ + iMω

(
1− ω2

n

ω2

)
(1.44)

Then, the PSD in (1.41) and (1.42) can be calculated respectively in terms of the
mechanical resistance R = R(Z(ω)) and conductance σ = R(Z−1(ω))[60]:

SδF (ω) = 4kBTR(ω) = −4kBT

ω
Im(χ−1(ω)) (1.45)

Sδr(ω) = 4kBT
σ(ω)

ω2
=

4kBT

ω
Im(χ(ω)) (1.46)

The intrinsic relation between fluctuations and dissipation, is guaranteed by the pres-
ence of damping, which provides both the path for mechanical energy loss and the
coupling to the environment. Ultimately, an ideal undamped resonator would result
in an inoperable isolated system.

According to the modal description of NW cantilevers given previously, it is pos-
sible to extend formula (1.42) to the total three-dimensional displacement fluctua-
tion. In analogy with equation (1.24), the noise spectra add in quadrature along each
mechanical polarization direction r̂i (for i = 1, 2) and are rescaled along the axial
z-direction by the mode shape squared

Sδr(r1, r2, z, ω) =
∑
i=1,2

( ∞∑
n=0

Sδrin(ω)u2
n(z)

)
r̂i (1.47)

For the scope of this thesis, only the fundamental mode is taken into account (i.e. n = 0
and the subscript is dropped); by measuring the displacement at the tip (i.e. z = L
and u(L) = 1), the former expression reduces to

Sδr(r1, r2, ω) = Sδr1(ω)r̂1 + Sδr2(ω)r̂2 (1.48)

Despite the pronounced bi-dimensional nature of the NW displacement noise, in our
setup the motion is optically detected by laser interferometry, which probes the com-
ponent of the NW’s trajectory collinear to the direction of the local optical gra-
dient, as illustrated in Section 2.2.3. Therefore, the measured displacement con-
sists of a projection of the vibrations onto a measurement vector eβ and is equal to
rβ(t) = r(t) · eβ = cosβ r1(t)r̂1 + sinβ r2(t)r̂2.
The correspondent PSD, in absence of coupling between the modes, is a sum of the
single noise spectrum in Eq. (1.42) for each polarization, weighted by their overlap on
the measurement vector eβ

Sδrβ (ω) = cos2 β Sδr1(ω) + sin2 β Sδr2(ω) = (1.49)

=
4kBT

M

[
cos2 β ω1

Q1

[
(ω2

1 − ω2)2 + ω2
1ω

2/Q2
1

] +
sin2 β ω2

Q2

[
(ω2

2 − ω2)2 + ω2
2ω

2/Q2
2

]]

21〈δV 2
th〉 = SδV (ω) = 4kBTR
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Such expression fits the calibrated displacement noise spectrum of a GaAs NW shown
in Fig. 1.6.
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Figure 1.6 | Thermal noise spectral density of a GaAs NW
Measured thermal displacement noise (light gray) at room tempera-
ture in the frequency region of the two orthogonal polarizations of the
fundamental flexural mode. The fitted line (black) is given by an inco-
herent sum of two Lorentian peaks (blue and red dashed lines) and the
detection noise floor Sn = 1.2× 10−26 m2/Hz (dashed gray line). Ac-
cording to Eq. (1.42), the extracted parameters areM = 1×10−16 kg,
f1 = 665 kHz, Q1 = 5425, f2 = 682 kHz, Q2 = 5705. The inset in
the top-right corner shows the orientation of the modes respect to the
measurement direction eβ . The fit returns an angle β = 36◦.

Effective temperature At equilibrium, the temperature of the resonator is pro-
portional to the variance of its Brownian motion as indicated by Eq. (1.37). However,
out of equilibrium the force noise expression given in Eq. (1.41) is no longer valid
and the resonator temperature can differ from the bath temperature T . The effective
resonator temperature Tn can still be quantified as:

Tn ≡
Mω2

n

kB
〈r2
n〉 =

Mω2
n

kB

1

2π

∫ +∞

0
Sδr(ω)dω (1.50)

where the actual displacement variance is proportional to Tn and is experimentally
determined by calculating the area between the spectral density Sδr(ω) and the mea-
surement noise floor [61]. Note that, from a practical point of view, a correct mode
temperature estimation is linked to a correct estimation of the modal mass.
The presence of additional mechanical noise in the system at the mode’s frequency or
local heating due to the optical laser power used for the NW motion’s readout, can
be responsible of a NW’s temperature higher than the environment (Tn > T ). Con-
versely, cooling techniques can be applied to reduce the resonator’s mode temperature
below the one of the bath by active feedback cooling [62] or more elaborated schemes
– namely, back-action and sideband cooling – requiring an optomechanical coupling
to an optical cavity [61, 63].
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1.2.3 Force Sensitivity

We have shown that the fundamental limit to the detection of small forces is imposed
by thermomechanical force noise – the mechanical analog of Nyquist-Johnson noise –
which is governed by temperature and dissipation of mechanical energy.
If we consider our signal to be a monochromatic force F̂d(ω) = Fdδ(ω − ωd), taking
into account the force noise ˆδF (ω), the oscillator’s displacement can be expressed
according to (1.27)

r̂i(ω) = χi(ω)( ˆδF (ω) + F̂d(ω)) (1.51)

The associated motional spectral power is obtained as Pr(ω) = 1
2π

∫
BW Sr(ω)dω by

integrating the PSD over a bandwidth of interest, called resolution bandwidth (BW).
By choosing a BW centered around ωd, the total power results a sum of the signal
and noise power

Pr(ωd) = |χi(ωd)|2SδF × BW + |χi(ωd)|2F 2
d (1.52)

Following the standard definition, we can define the signal-to-noise ratio (SNR) for a
force signal as the ratio of signal to the noise power SNR = F 2

d /(SδF × BW).
The limit condition for the detection of force signal is conventionally referred to a
SNR = 1. Since the force SNR is independent of the driving frequency, the minimum
detectable force is equal to

Fd,min =
√
SδF × BW =

√
4kbTΓi × BW =

√
4kbT

Mωi
Qi
× BW (1.53)

The resonator’s force sensitivity is the main figure of merit in sensing applications and
is usually expressed in units of N/

√
Hz as Fmin =

√
SδF . In this way, it is independent

from the specific resolution bandwidth, and, conversely, from the adopted integration
time.

1.3 Light-nanowire interaction

The displacement detection of a NW is performed by fiber-optic interferometry as
will be illustrated in Section 2.2.2. We measure the interference between the light
back-reflected by the vibrating NW and a fixed reference given by the reflection at
the fiber/vacuum interface.
Therefore, we want to briefly discuss the theoretical background behind the light-NW
scattering mechanism. Light-matter interaction for objects of size R comparable to
the wavelength of the incident light (R ≈ λ) cannot be simplified by applying the so
called dipole approximation (Rayleigh) for point-like scatterers (R� λ), but require
the more general treatment provided by Lorenz-Mie theory.
Conversely to sub-wavelength spherical particles, the optical response of one-dimensional
structures like NWs is strongly polarization dependent, offering an additional degree
of freedom, supplementary to their material and geometrical features [64].
The Mie scattering theory has also been applied to optimize the motion detection of
SiNWs by coupling the resonant leaky modes to a Fabry-Perot cavity [65] or to tailor
absorption properties for optoelectronic applications [66].
We present in the following the standard formalism for a cylindrical NW, which rep-
resents a very good approximation of a hexagonal NW, specially infrared wavelengths
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and under normal illumination [64, 67]. To be more quantitate, the scattering prob-
lem for a NW with hexagonal cross-section can be approximated by Discretized Mie
Formalism [68] or solved numerically.

1.3.1 Scattering of an infinitely long cylinder

In Mie theory, the Maxwell’s equations are used for the mathematical derivation of
the incident, scattered and internal fields. The analytical solution is expressed in form
of an infinite series expansion of vector spherical or cylindrical harmonics.
Due the high aspect ratio of NWs, i.e. L � 2R, it is possible to follow the formal
solution developed by Mie for infinitely long cylinders. Such solution does not apply
when detecting the motion at the base and at the tip of the NW.

We consider an infinite cylindrical NW of homogenous dielectric material, with
complex relative refractive index22 m̄; centered in the origin and aligned along the
z-direction.
Assuming the light waves to be periodic with time dependence e−iωt and propagating
in a linear, isotropic and homogeneous medium, the electromagnetic field (E,H) must
satisfy Helmholtz wave equation (e.g. ∇2E + k2E = 0), together with the boundary
conditions at the vacuum/NW interface (i.e. conservation of the tangential compo-
nent). If ψn is solution of the correspondent scalar wave equation23, then it can be
the generating function of vector harmonics

Mn = ∇× (ezψn) and Nn = ∇×Mn/k (1.54)

which are orthogonal basis of solutions of the vector wave equation; ez is called pilot
vector and k is the wave vector24. For an infinite cylinder, the solutions of the scalar
wave equation25 are separable in the cylindrical coordinates, ψn(ρ, φ, z). The scalar
problem is then written in form of a Bessel equation whose linearly independent solu-
tions are the Bessel functions of first and second kind, Jn and Yn (order n), and their
linear combination Hn = Jn + iYn (Hankel functions) [69].

Given the geometry of our detection scheme, using a laser beam focused on the
side of the NW, we consider the case – sketched in Fig. 1.7 – of an incident planar
wave polarized orthogonally respect to the NW axis (i.e. Ei ⊥ Hi ⊥ eρ):

Ei(ρ, φ) = Eie
−ikρ cosφ (1.55)

The incident electromagnetic field can be decomposed in cylindrical harmonics
and resolved into two main components:

I - Transverse Magnetic (TM) mode. The magnetic field of the incident wave is
perpendicular to the cylinder axis. This implies that, in general, the electric
field lies in the ρz-plane. In our case, ETMi = Eiez.

II - Transverse Electric (TE) mode. The electric field is perpendicular to the cylin-
der axis, ETEi = Eieφ.

22ε̄r = εr + iε̃r ≡ m̄2 = (m− iκ)2

23∇2ψn + k2ψn = 0

24k = k0m = 2π
λ

= ω
√
εµ

25 1
ρ
∂
∂ρ

(
ρ ∂ψn
∂ρ

)
+ 1

ρ2
∂2ψn

∂φ2 + ∂2ψn

∂z2
+ k2ψ = 0
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Figure 1.7 | Scheme for the Mie scattering problem.

For an arbitrary elliptically polarized incident wave the solutions can be found by an
appropriate superposition of the two polarizations Ei =

∑+∞
−∞[AnM

i
n +BnN

i
n], with

coefficients An and Bn obtained projecting Ei on the vectors of the basis.
For this configuration, the incident wave (1.55) can be expanded in vector har-

monics (Mi
n,Ni

n) in the form of Eqs.(1.54) and generated by ψin(ρ, φ) = Jn(kρ)einφ

as

Mi
n(ρ, φ) ≡ keinφ

(
in
Jn(kρ)

kρ
eρ − J ′n(kρ)eφ

)
Ni
n(ρ, φ) ≡ −keinφJn(kρ)ez

(1.56)

On this basis the incident field26 can be expanded for both polarizations as [69]

I: ETMi (ρ, φ) =
∞∑

n=−∞
EnN

i
n , HTM

i (ρ, φ) = −i k
ωµ

∞∑
n=−∞

EnM
i
n (1.57)

II: ETEi (ρ, φ) = −i
∞∑

n=−∞
EnM

i
n , HTE

i (ρ, φ) = − k

ωµ

∞∑
n=−∞

EnN
i
n (1.58)

where En = E0(−i)n/k.
The full solution to the Maxwell equation requires an additional field (scattered

field) to satisfy the tangential component continuity of the external and internal field27

at the cylinder surface (NW’s conductivity is supposed to be zero).
The scattered field (Es,Hs) needs to be expanded on a basis (Ms

n,Ns
n) calculated as

in (1.54), with a generating function ψsn(ρ, φ) = Hn(kρ)einφ.

26H = − i
ωµ
∇×E 27Internal generating function is ψn =

Jn(mkρ)einφ
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Under our simplifying assumption of normal incidence, is found

I: ETMs (ρ, φ) = −
∞∑

n=−∞
EnbnN

s
n , HTM

s (ρ, φ) = i
k

ωµ

∞∑
n=−∞

EnbnM
s
n

(1.59)

II: ETEs (ρ, φ) = i
∞∑

n=−∞
EnanM

s
n , HTE

s (ρ, φ) =
k

ωµ

∞∑
n=−∞

EnanN
s
n

(1.60)

with the Mie scattering coefficients bn and an obtained by imposing the boundary
conditions at ρ = R

bn = b−n =
Jn(mkR)J ′n(kR)−mJ ′n(mkR)Jn(kR)

Jn(mkR)H ′n(kR)−mJ ′n(mkR)Hn(kR)
(1.61)

an = a−n =
mJn(mkR)J ′(kR)− J ′n(mkR)Jn(kR)

mJn(mkR)H ′n(kR)− J ′n(mkR)Hn(kR)
(1.62)

Each coefficient sets the contribution of the respective mode n to the total field. Since
Hn = H−n, the basis functions are usually considered as (N s

n + N s
−n) to obtain to

eigenfunctions of increasing order n ≥ 0. From the normalized modulus of the first
five modes shown in Fig. 1.8, is possible to recognize a progression in the spatial
profiles similar to a multipolar expansion (i.e. monopole, dipole, quadrupole etc. ).
The complexity and confinement in the near-field of the modes increases with n, with
the number of lobes scaling up as 2n.

n = 0 n = 4n = 3n = 2n = 1

Figure 1.8 | Mie scattering modes.
Rescaled modulus of the first five modes (Ns

n +Ns
−n) for a cylinder of

radius R = 115 nm. Domain size is 1µm× 1µm.

Far-field scattering The light back-scattered by the NW is detected at large dis-
tance (kρ� 1), therefore we are interested in an asymptotic expression for the scat-
tered field.
The relation between the incident field in Eq. (1.55) with Ei = ETMi ez +ETEi eρ and
the correspondent scattered field Es = ETMs ez + ETEs eρ is given by the amplitude
scattering matrix T [69]:[

ETMs
ETEs

]
= ei3π/4

√
2

πkρ
eikρ

[
T1 0
0 T2

] [
ETMi
ETEi

]
(1.63)

with T1 = b0 + 2
∑∞

n=1 bn cos(nΘ) and T2 = a0 + 2
∑∞

n=1 an cos(nΘ).
The scattering angle Θ = π − φ is the deviation with respect to the incident wave,
e.g. forward scattering for Θ = 0 (see Fig. 1.7). In far-field, the scattered wave has
an ideal cylindrical front (surface of constant phase). Note that, if the NW is not
normally illuminated, the T-matrix is not diagonal.
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Poynting vector and scattering efficiency One of the most important properties
of electromagnetic waves is the flux of energy through a certain area. The Poynting
vector S = 1

2Re(E ×H?), defines the magnitude and direction of the time-averaged
flux of energy crossing a unit area (Wm-2). As a consequence, the rate of energy W
crossing a surface A with normal unit vector n̂ is equal to

∫
A S · n̂dA.

At any point outside the cylinder the total energy flux can be expressed as

S =
1

2
Re{(Ei + Es)× (H?

i + H?
s)} = Si + Ss + Sext (1.64)

The extinction term Sext = 1
2Re{Ei × H?

s + Es × H?
i } arises from the interference

between the incident and scattered waves.
In case of an infinite cylinder, the rate of energy flow per length,enclosed (absorbed)
in a cylindrical surface around the NW of height L and radius R′ > R, is equal to
Wabs = −L

∫ 2π
0 S(R′, φ)R′dφ = Wi −Ws + Wext. For a non-absorbing medium (vac-

uum) Wi = 0, and the extinction is therefore the sum of energy scattering rate and
absorbing rate Wext = Ws +Wabs. Note that, as expected, Wabs does not depend on
R′ since the far-field solution in Eq. (1.63) scales with √ρ.

A more common quantity in scattering theory is the scattering efficiency factor Q
which represents the energy rate normalized by the power of the incident wave on the
NW’s vertical cross-section 2RL. In case of a planar wave the intensity is Ii = 1

2
|Ei|2
η ,

where η is the characteristic impedance28 of the medium.
The scattering efficiency factorQs = Ws/(2RLIi) can be derived integrating Eq. (1.63)
for both polarizations [69] and are valid in far-field:

QTMs =
2

kR

(
|b0|2 + 2

∞∑
n=1

|bn|2
)

and QTEs =
2

kR

(
|a0|2 + 2

∞∑
n=1

|an|2
)

(1.65)

Fig. 1.9 shows Qs in the case of GaAs NW for both polarizations, as a function of
the NW radius and wavelength. For the sake of generality, the imaginary part of m̄
(i.e. absorption index k) is momentarily neglected to show the richness of the features
provided by high order Mie resonances at shorter wavelengths.
The spectra show a series of optical resonances where strong scattering of light takes
place. The resonances arise from light trapped in circulating orbits by multiple internal
reflections as it occurs in whispering-gallery micro-resonators.

For TM polarized light, the NW exhibits better scattering characteristics, as
clearly stated in [24]. Hence, such polarization is adopted in our detection setup
using an infrared laser at λ = 1550 nm into a polarization maintaining (PM) fiber (as
described in Section 2.2.2).
At this wavelength, the scattered signal is given by the first two terms of the expansion
(see Fig.1.9(c)). The resonant modes arise due to the wavelengths in the cross section
of the cylinder match their circumference.

The complete scattering efficiency map of a GaAs NW is shown in Fig. 1.10(b)
and accounts for the high absorption index of the direct band-gap semiconductor in
the visible range.
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Figure 1.9 | Scattering efficiencies of a transparent dielectric NW.
(a,b) Scattering efficiency for the two main polarization under normal
illumination. At low wavelength the resonance lines bend upwards due
to the non-monotonic refraction index of GaAs (see m in Fig. 1.10(a)).
Note that in case of unpolarized incident light, the scattering efficiency
is the average of the two maps Qunps = 1

2 (QTMs +QTEs ). (c) dependence
of QTMs on NW radius at typical wavelength value λ = 1550 nm. For
sufficiently small NWs and/or high enough wavelength only the the
first two orders of the Mie expansion contribute significantly to the
scattering. (d) QTMs wavelength dependence at typical radius R =
115 nm. Each colored dashed line is associated with the m-order Mie
resonance contribution (∝ |bm|2).
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Figure 1.10 | Effective scattering efficiency of a lossy dielectric NW
(a) Complex refractive index m̄ = m − iκ for GaAs [70]. Optical ab-
sorption goes to zero over the bandgap energy of GaAs Eg = 1.42 eV
for GaAs, i.e. where the imaginary part of the refractive index goes to
zero. This correspond to a wavelength λ = 873 nm; for longer wave-
lengths the material is transparent. (b) Complete scattering efficiency
map for a GaAs NW obtained for m̄. Above the bandgap the map
corresponds to Fig. 1.9(a).

Back-scattered light We detect the NW’s motion via the back-scattered light. As
a consequence, the incident wave is completely decoupled from the measured signal
(Ss is anti-parallel to Si), in contrast with ‘transmission’ techniques where the sum
of both components is measured [22, 71].
The collected intensity is limited by the effective numerical aperture NA = sin(φc/2) of
the confocal microscope of our system (see Section 2.2.2). For this reason, even though
the scattering efficiency Qs gives a nice insight on the interplay between NW radius,
wavelength and polarization, is more interesting to evaluate the angular distribution
of the scattered light via the differential (angular) efficiencies

dQTMs
dφ

=
1

πkR
|T1(Θ)|2 and

dQTEs
dφ

=
1

πkR
|T2(Θ)|2 (1.66)

obtained from Eq. (1.63).
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Figure 1.11 | Angular scattering efficiency for a GaAs NW
The total scattering efficiency QTMs (dark blue) is calculated for a
wavelength of λ = 900 nm. The light blue line shows the differential
angular efficiency integrated over the angle of collection φc = 54◦ of the
objective with numerical aperture NA = 0.45 mounted in our setup.
For each peak of the spectrum is shown the correspondent angular
scattering efficiency. Θ = π − φ is the back scattering angle and the
polar plot edge corresponds to dQTMs = 3.5.

1.4 Nanowires fabrication

In this thesis, we study the mechanical characteristics of NWs and their applications
as scanning probes. In particular, we focus on NWs grown by bottom-up processes,
in contrast to other variety of NWs and nano-mechanical devices fabricated with top-
down micro-machining techniques (e.g. Si or diamond cantilevers [21, 72]).
The term bottom-up refers to a progressive epitaxial formation of the nanostructure
from a nucleation point on a substrate. Starting from the first seminal work in the 60’s
on Si ‘whiskers’ created via Vapor-Liquid-Solid (VLS) crystal growth mechanism [73],
several synthesis methods exploiting VLS have been developed; in particular Metal
Organic Chemical Vapor Deposition (MOCVD), Metal Organic Vapor Phase Epitaxy
(MOVPE) and Molecular Beam Epitaxy (MBE).
The VLS mechanism, as the name suggests, involves three different phases: liquid,
solid and vapor. A liquid droplet catalyzes the growth by adsorbing a vapor to su-
persaturation levels and enabling the formation of a solid phase from nucleated seeds
underneath the droplet.
Historically, Au catalyzed growth has been developed and established first. One of
main advantage is that the diameter of the NW can be controlled just by adjusting
the size of the initial Au nanoparticle and the substrate role is only limited to provide
the epitaxial orientation to the NWs in order to grow them in the desired direction.
In the last ten years, self-catalyzed techniques have been introduced to avoid the pres-
ence of the metallic droplet at the tip of the NW and to overcome major disadvantages
such as incorporation of Au at the impurity level in the NW and the difficult growth
of sharp axial heterostructures.



40 Chapter 1. Force detection with nanowires

1.4.1 Self-catalyzed MBE grown GaAs nanowires

Both experiments – presented in Chapter 3 and 4 – make use of GaAs NWs grown from
a Ga catalyst droplet by molecular beam epitaxy [74]. They have a predominantly
zinc-blende crystalline structure and display a regular hexagonal cross-section.
Gallium catalyst nano-droplets form by diffusion of Ga adatoms on the surface of the
substrate, coated by a very thin layer of silicon oxide. In self-catalyzed growth, the
substrate not only sets the NW direction but is crucial to allow the formation of the
catalytic Ga droplets (on Si substrate it is possible to use directly the native oxide).
A growth without the oxide layer produces a 2D polycrystalline growth.
The main steps A MBE setup operates in ultra-high vacuum at a base pressure below
10−10 mbar, these environmental conditions are fundamental to fulfill the molecular
beam conditions, since the atoms’ mean free path has to be bigger than the growth
chamber. The extreme purity of the elemental sources and the low deposition rates
guarantee the highest quality of crystal structure and composition.
The key parameters of the growth process are the flux rates of the gasses targeting
the surface and the substrate temperature, which maintains a high mobility of the
incoming atoms.
By properly tuning these parameters – specially the As4/Ga ratio – it is possible
to stabilize the crystal phase during the growth to minimize the density of defects
such as stacking faults and rotational twins. Also the cross-section shape of the NWs
can be influenced: for example, a higher As4 flux rate leads to a high NW growth
rate, inducing a progressive reduction of the catalyst droplet during the NW growth
and therefore creating a slightly tapered cross-section. Conversely, a stronger feed

Catalyst
deposition

Supersaturation
nucleation

Growth Catalyst
consumption

Shell (radial)
growth

GaAs(111) or Si(111)
SiOx

Figure 1.12 | VLS mechanism for self-catalyzed NWs growth
The substrate is heated up at a temperature of ∼ 650◦C. When the
material fluxes are started, Ga (in purple) diffuses forming droplets on
the surface. The As atoms (in magenta) impinging onto the droplet
surface are adsorbed and start to diffuse inside the droplet due to a
concentration gradient. Since As has a higher vapor pressure than Ga,
it tends to stay in the vapor phase through adsorption and desorp-
tion. Once the adsorbed atoms reach supersaturation, the material
precipitates underneath the droplet in solid form, starting the NW
growth. In this stage Ga is fed to the catalytic droplet by diffusion
and As directly via flux adsorption. Finally, the vertical growth can
be terminated by interrupting the both fluxes or by consuming the Ga
left in the droplet keeping a As flow. The last optional step is the
shell growth (e.g. passivation layer, heterostructure) by Vapor-Solid
mechanism.
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of Ga to the system causes droplet to increase in volume, leading to an increase in
diameter. Finally, also the NW density (average number of NWs per µm2) can be
tuned (e.g. average length and density increase with substrate temperature).

MBE grown NWs as force sensors In contrast with top-down fabricated devices,
bottom-up grown beam resonators present in general a larger statistical distribution of
geometrical parameters such as length, diameter and cross-sectional shape. In return,
nano-beams such as NWs or Carbon Nanotubes (CNT) lead to the miniaturization of
the mechanical resonator which can improve the force sensitivity thanks to a drastic
reduction in motional mass, yet preserving high mechanical quality factors.
MBE grown NWs have extremely pure chemical composition and very low defect
density, beneficial for their stiffness properties. The NWs are singly-clamped by their
crystalline relation to the substrate and their growth location can be controlled via
selective beam epitaxy by pre-patterning nano holes into the oxide layer. MBE is also
an extremely versatile technique, allowing for additional modification to the main
GaAs NW core. For force scanning probe application, the tip can be tapered up to
few nanometers by a controlled consumption of the liquid Ga catalyst [75]. Moreover,
the tip can be functionalized to detect magnetic forces by turning the liquid Ga droplet
into a ferromagnetic MnAs nano-crystal by exposing the NW to a strong Mn flux [35].
The main limitation of MBE grown NWs concerns the aspect ratio. In contrast to
NWs obtained with industrial methods like Chemical-Vapor-Deposition (CVD), which
can have aspect ratios up to 1000 to the detriment of the total mass [22], the axial and
radial epitaxial growth rate are intimately linked. The aspect ratio of our GaAs NWs
are 10 times smaller, which prevent to obtain modal stiffnesses in the µN/m range.
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Chapter 2

Experimental setup

In this chapter we introduce the fundamental tools and techniques at the base of the
experiments presented in this work.

We first present the main parts and instruments of the measurement setup, then,
we discuss the design of the actual low temperature scanning probe microscope and
its specifications.

The second section is dedicated to the optical detection and characterization of
the nanowire’s motion. After the characterization of the fiber-based reflection confocal
microscope, we analyze interaction between light and sub-wavelength objects such as
NWs in the framework of our fiber-optic interferometer setup. Finally, we present the
main aspects of the displacement detection and calibration, introducing basic practices
functional to the study the NW’s 2D motion.

2.1 Instrumentation

Figure 2.1 gives an overview of the main elements used to carry out the work presented
in this thesis.

A 4He bucket dewar cryostat 1 with LN2/vacuum shielding is fixed in the center
of an optical table leaning on a 3-post passive vibration isolation system.
At the bottom of the cryostat, a superconducting magnet allows to apply a static
magnetic field along the z-axis up to B = ±8 T. The cryostat probe consists of a
stainless steel tube with baffling matching the ones of the magnet support assem-
bly: the ‘warm’ side is terminated by a set of CF flanges with optical and electrical
feedthroughs, while on the ‘cold’ side is welded to a custom copper flange.
As shown in Fig. 2.2(a), the microscope is bolted to the center of the copper flange
which provides the thermal contact with the liquid helium bath as well as an interface
to indium seal the probe with the bottom vacuum can.
The vacuum in the probe can reach a base pressure of 10−7 mbar with a turbo pump-
ing station2 and can be maintained at 10−6 mbar just by using an ion pump3 to
perform measurement at room temperature, thanks to the absence of vibrations in
such pumps.

The setup for the optical detection of the nanowire’s motion (see Section 2.2.2)
is entirely fiber-based (red path in Fig. 2.1). Light from a 35 mW fiber-coupled
distributed-feedback diode laser4 with λ = 1550 nm is launched along the slow-axis
into one arm of a 95 : 5 polarization maintaining (PM) fiber-optic coupler5. The long
5% coupling branch is fed into the probe down to the optical microscope titanium

1CRYOMAGNETICS Inc.
2Agilent TPS - Compact
3Agilent VacIon Plus 40

4TOPTICA DFBpro
5Evanescent Optics 954P
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case (Fig. 2.3(a)). The 95% coupling branch, instead, can be connected to an optical
power meter to monitor the power incident on the NW. All the optical fibers used are
single-mode.
The light that is scattered from the NW back into the fiber interferes with the one
reflected at the fiber/vacuum interface and it is converted into a voltage signal V by a
variable gain (102 to 108 V/A) and wide bandwidth (up to 200 MHz) photo-receiver6.
The system is equipped with an additional optical fiber-based setup for a laser light
source at λ = 635 nm, similar to the one just described.
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Figure 2.1 | Schematic representation of the measurement setup.

The voltage signal Vout is sent to a fast data acquisition card 7 to calculate full
bandwidth power spectral densities (PSD) and to a lock-in amplifier8 to acquire and
process the signal around the nanowire’s resonance frequency (i.e. demodulation fre-
quency). The ‘DC’-filtered signal VDC is also connected to an auxiliary input of the
lock-in and it is streamed to the PC synchronously together with the demodulated
signals.
The nanowires’ mechanical resonance is driven by the lock-in oscillators’ voltage out-
puts either via a dither piezo disk located in proximity of the nanowire’s chip, or by
modulating other physical quantities which can couple to the nanowire (e.g. electro-
static forces).

The microscope hangs on 4 beryllium-copper springs (non-magnetic) to further
decouple it from vibrations (Fig. 2.2(a)); additionally, 4 soft and loose copper braids,
mounted in parallel to the springs, provide proper thermal anchoring as well as damp-
ing of the springs’ low frequency resonance.

The core of the microscope (Fig. 2.2(b)) is fully machined in titanium for its low
magnetism and low thermal contraction at cryogenic temperatures. The fiber-based
confocal microscope shown in Fig. 2.3(a) is held in place by a dedicated chuck in the
middle of the frame. The two stacks of piezo motors are mounted symmetrically with
respect to the optical system’s axis and allow coarse and fine 3D positioning. The

6FEMTO OE-300-IN-01
7National Instruments PXI-6115
8Zurich Instruments UHFLI

9Attocube ANPx311
10Attocube ANSxy100
11Attocube ANPxyz100\lr
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y

z

Figure 2.2 | Low temperature nanowire scanning probe microscope.
3D CAD model of the microscope (actual photographs in Appendix
A). (a) Overview of the microscope enclosed in the terminal part of
the cryostat probe (sketched by black lines except for the copper flange
brown colored).
(b) Titanium central core. Each stack of piezo motors is formed by
a y-axis and z-axis linear positioner9(stepper) 1 connected via an
L-shaped mount to a x-axis linear positioner 2 . On top of it, a 2D-
scanner10 3 allows for a 10× 10µm (@ 4 K) fine positioning window
on the xy-plane. Vertical fine movement is obtained by applying a DC
voltage on the z-axis linear positioner, though limited to a small range
of 1.75µm. Just recently, the top stack scanner has been replaced with
a large range xyz-scanner11 30×30×15µm (@ 4 K) making it possible
to image the nanowires for almost their entire length. Both top and
bottom samples’ supports are designed with a dovetail slide for an easy
installation and removal.
(c) Close up on lens(left)/NW(top)/sample(bottom). The NWs’ chip
on the top stack (in violet) is glued on a L-shaped support with a
2◦ tilt respect to the xy-plane. Such a tilt is crucial to prevent any
unwanted contact against the bottom sample while scanning. A small
piezo disk (3 mm diameter 0.5 mm thickness) is mounted just behind
the L-shaped holder (its position is indicated by the gray dashed line)
to drive the NWs’ mechanical resonances.
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top piezo stack is dedicated to the placement of the NWs in the focused light beam,
whereas the bottom one brings the sample under investigation close to the nanowire’s
tip and performs the scan (Fig. 2.2(c)).
The fine motion of piezo-stacks is controlled from the PC via 3 × 2 analog voltage
outputs of a dedicated 16-bits DAQ card12. The imaging of the NW (top-stack) or of
the sample (bottom-stack) can be performed in two modes:

· · · Point-by-point : a fine-movement array of 2D coordinates (points) is generated
by defining the scan trajectory with a space resolution much higher than the
final image for a smoother motion of the piezo. A boolean array of the same
size distinguishes between simple movement points (false) and acquisition points
(true) forming the final matrix of m×n points. This mode is indicated for time-
consuming measurement routine at each point, such as thermal noise, static
optical gradient, frequency sweeps or a sequence of these.

/// Line-by-line: similarly to raster-scan in conventional AFM, each line-scan is
sampled at high rate upon a digital trigger, which starts the data acquisition
and the analog voltage ramp controlling the ‘fast-axis’ piezo. This mode exploits
the functionalities of the Data Acquisition module available for the Zurich In-
struments lock-in, which allows to define triggered acquisitions, of user-defined
duration, for several quantities such as: tracked frequencies of the NW’s modes
(i.e. PLLs control), modes’ oscillation amplitudes (i.e. demodulators R signal)
and auxiliary inputs (e.g. DC reflection).

2.2 Motion detection of a nanowire

The motion detection of mechanical resonators represents a key aspect for every force
microscopy application. In conventional scanning probe setups, due to the resonator’s
dimensions typically ranging from hundreds of microns to few millimeters, the dis-
placement’s readout is mainly carried out either optically by detecting the deflection
of a laser beam reflected by the backside of an AFM cantilever [76] or electrically by
measuring the piezoelectric signal produced by a resonating quartz tuning fork [77,
78].
Scaling down the dimensions to nano-resonators, a large variety of techniques has been
employed to study the mechanical properties of nanobeams, nanowires and nanotubes.
In the case of doubly-clamped geometry, the resonator can be directly integrated in an
electronic circuit so that its mechanical motion modulates – via capacitive coupling
– the frequency of a microwave cavity [79, 80] or the AC-current flowing through the
beam [17, 81].
More generally, displacement can be probed ‘locally’ by recording the intensity modu-
lation of a focused beam interacting with the resonator: either in form of scattered free
electrons using a scanning electron microscope [45, 51, 82] or with a laser measuring
the transmitted [22, 71] or reflected [23] optical power. Such methods, despite being
compatible with the singly-clamped geometry required in scanning probe applications
and ensuring sensitive displacement detection, impose very tight constraints on the
setup design.
Conversely, fiber-optic interferometry [15] keeps the design simple, compact and me-
chanically robust, while still providing very high sensitivity; it has been used with
micrometer-scale cantilevers [13] as well as with NWs [24].

12National Instruments PXI-6733
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2.2.1 Fiber-based confocal reflection microscope

A fiber-optic interferometer is integrated in our cryogenic scanning microscope encas-
ing the fiber’s terminal part and the lenses in a titanium frame as shown in Fig. 2.3(a).
Given the tiny amount of optical power interacting with the NW, a high numerical
aperture (NA) focusing lens is desirable to keep the displacement detection as local-
ized as possible along the NW. The tightly focused spot also maximizes the scattered
light collection efficiency [83]. The effective NA of the objective sketched in Fig. 2.3(b)
is 0.45 due to the slight mismatch in NAs between the fiber and the collimating lens.
Before describing the inferometrical technique, it is worth to illustrate the imaging
capabilities of our device, which allow for the NWs’ sample navigation and beam
positioning along the selected NW. The confocal arrangement of the lenses – with
the fiber’s mode field diameter (MFD) acting as a pinhole – allows for high imaging
resolution and optical sectioning. In confocal microscopy, in fact, the final image is

NAfiber = 0.13 NAcoll = 0.16 NAfoc = 0.58

fcoll = 5 mm ffoc = 1.45mm
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Figure 2.3 | Fiber-based confocal reflection microscopy setup.
(a) 3D CAD model of the confocal microscope. (b) Sketch of the
optical setup. An aspheric lens with an outer diameter of 2 mm and
a clear aperture of 1.6 mm is used for beam collimation13, while an
aspheric lens with an outer diameter of 2.4 mm and a clear aperture
of 1.6 mm for focusing14. Einc is the incident electric field at the
fiber/vacuum interface where a part gets reflected back as Er. The
transmitted field gets scattered by the NW and partially recollected
by the fiber as ENW . The distance between the fiber’s cleaved facet
and the NW corresponds to the Fabry-Perot cavity length lc. The
PM fiber is rotated and then fixed to the frame with a drop of epoxy
glue on the cladding, in order to align the slow-axis (i.e. E-field axis)
parallel to the NW axis.

13Thorlabs 354430-C 14Thorlabs 354140-C
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constructed by measuring an intensity for every scanning position in the plane. The
total coherent spread function (CSF) is given by CSFtot = CSFillum×CSFdet, where
the former term is determined by the field distribution of the focused excitation Gaus-
sian beam and the latter by the spatial filtering properties of the pinhole (i.e. fiber’s
mode field) in the image plane [84].
The intensity map in Fig. 2.4(a) is obtained by scanning the NW in the beam’s waist
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Figure 2.4 | Optical microscope characterization at λ = 1550 nm
(a) Measured 2D map of the reflected light intensity VDC(x, y) as a
function of NW position in the beam’s waist, with an incident power
of 25 µW. The plot has been straightened by a clockwise rotation of
2◦, due to a small misalignment between the xy-scanners and the opti-
cal axis. The white lines show the fitted width ±w(y) of the detected
Gaussian beam. Scale bar 2µm. (b) Voltage (i.e. optical power) linecut
along the x-axis at the focal plane (dashed vertical line in (a)). The
red line fitting the measured points (gray dots) consists of a Gaus-
sian curve summed with a 0.11 V offset (dashed black line), given by
the first reflection at the fiber (∝ |Er|2). (c) Comparison between
CSFtot (red line) and CSFillum (orange line). The CSFtot is taken
as the normalized fitted Gaussian profile in (b) and the CSFillum as
its squared root. The measured characteristics of the incident laser
beam are a waist winc0 = 1.65 µm – at which the intensity drops by a
factor of 1/e2 – and a full width at half maximum FWHM = 2 µm.
The waist of the detected beam (CSFtot) is w0 = 1.2 µm. (d) Voltage
linecut along the optical axis i.e. y-axis (dashed horizontal line in (a)).
The measured data (gray dots) are fitted as the response of a two-
component interferometer in Eq. (2.6) (red line). The fitted average
voltage (dashed black line) is expressed as the Gaussian beam inten-
sity along the optical axis Vavg(y) = V0/(1+(y/yR)2) (Lorentian peak)
plus a 0.11 V offset (back-reflection at fiber). The Rayleigh length is
yR = πw2

0/λ = 2.9 µm. The fringe visibility is V = 70% and the
highest y-displacement sensitivity, in focus, is ∂VDC/∂y = 1.65 V/µm.
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area (xy-plane) and measuring theDC component of the reflected signal on the photo-
receiver (VDC(x, y)). Such maps show interference fringes superimposed to a typical
Gaussian waist profile. The linecut along the x-axis at the focal plane in Fig 2.4(b)
allows to directly image the CSFtot itself and fit it with a Gaussian curve, due to
sub-wavelength width of the NW along the scanning direction. The profile of the
beam incident on the NW, since in our case illumination and detection CSFs coincide,
corresponds to CSFillum =

√
CSFtot and has a waist w0 = 1.65µm (see Fig. 2.4(c)).

The measured waist is close to the theoretically calculated value of 1.52 ± 0.15 µm
for a polarization maintaining fiber15 with MFD= 10.5 ± 0.5 µm. Deviations in the
MFD and diffraction account for the slight magnification measured when defocusing
with respect to the collimating lens.

2.2.2 Fiber-optic interferometer

Adopting the notation introduced in the sketch of Fig. 2.3(b), the interferometer
response can be treated as a two-component collinear interference between Er and
ENW . In fact, due to the poor reflectivity of the NW and fiber’s cleaved facet,
multiple reflections in such low-finesse cavity can be neglected [15, 85]. The detected
voltage output Vout of the photo-receiver, proportional to the optical power Pout, is
given by

Vout ∝ Pout = |Er|2 + |ENW |2 + 2Re(Er ·ENW ) (2.1)

where Er =
√
Rf Einc due to Fresnel reflection, ENW is the field scattered by the

NW and recollected by the fiber, and Re(· · · ) refers to the real part of the quantity in
parentheses. The optical reflectivity of the fiber Rf = Pr/Pinc = (nf−nv)2/(nf+nv)

2

is typically around 3%, being the refractive indexes of the fiber’s core and vacuum,
nf ≈ 1.46 and nv = 1, respectively.
The expression of ENW as a function of Einc can be obtained in terms of the detected
back-scattered field by the NW in the framework of the Mie theory (Section 1.3)
and therefore depends on its optical and geometrical properties in relation with the
incident field’s wavelength.
As illustrated in Fig. 2.3(b) PM panda fiber is used to illuminate the NW with TM
polarized light. As shown in Fig. 1.9 and reported in previous works on optical
detection of NWs [24], aligning the incident electric field to the NW’s axis greatly
enhances the scattering efficiency. We consider a TM-polarized focused Gaussian
beam Et = Etzẑ, in paraxial approximation, propagating along the y-axis (i.e. incident
normally on the NW). The electric field magnitude transmitted after the fiber on the
xy-plane is

Etz(x, y) = Einc
√

1−Rf
w0

w(y)
exp

[
− x2

w2(y)

]
exp [−iφ(x, y)] (2.2)

15PM15-U25D
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Figure 2.5 | Scattered Gaussian beam by a nanowire
Calculated magnitude and real part of the total electric field (a,d) for
an incident Gaussian beam with λ = 1550 nm (b,e), scattered by a
GaAs NW with εr = 12.9 and diameter 240 nm (c,f). The circles
indicate the NW’s position in the focus, while the dashed cone in (c)
shows the 54◦ acceptance angle of the effective NA. Scale bars 1 µm.

where the phase φ(x, y) and the beam width w(y) are determined by the focal length
f and numerical aperture (NA) of the optical setup and are defined as

w(y) = w0

√
1 +

(
y

yR

)
φ(x, y) = ky + k

x2

2y
[
1 +

(
y
yR

)]2 − tan−1

(
y

yR

) (2.3)

where the depth of focus (Rayleigh length) is yR = πw2
0/λ. For λ = 1550 nm, in

Fig. 2.4 we obtained an incident beam waist w0 = 1.65 µm.
In order to make use of the Mie scattering solution in Eq. (1.59), we follow the
approach of Kozaki et al. [71, 86] to calculate the scattering of a Gaussian beam by
an homogeneous dielectric cylinder, through a planar wave expansion of the incident
field in Eq. (2.3). Considering a GaAs NW with a diameter of d = 240 nm, Fig. 2.5
shows the calculated total field and its two components: the normalized incident beam
and the scattered field. The theoretical result supposes an infinitely long cylinder and
therefore is valid along the NW, except for the base and tip of the NW, since w0 is
much smaller than the NW’s length. However, at large wavelength with w0 � d,
the laser spot may be approximated as a simple plane wave with normal incidence
Einc ≈ E0ẑ. The scattered field at the fiber can be then expressed by integrating the
scattered field at the NW propagated over the cavity length and integrated over the
effective NA as ENW =

∫
NAEscattered(lc, θ)dθ.

Low-finesse Fabry-Pérot interferometer We introduce an effective reflectivity
RNW for the NW, which allows us to write the NW’s field component as ENW =
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(1 − Rf )
√
RNW Einc, reducing Eq. (2.1) to the standard expression for conventional

cantilevers [34]:

Pout = E2
inc

[
Rf + (1−Rf )2RNW + 2

√
RfRNW (1−Rf )Re

(
ei

2π
λ

2lc
)]
≈ (2.4)

≈ E2
inc

[
Rf +RNW + 2

√
RfRNW cos

(
2π

2lc
λ

)]
(2.5)

where lc is the cavity length (see Fig. 2.3(b)), eiky is the relative phase picked up by
the second component on the path fiber-NW and back (i.e. k = 2π/λ and y = 2lc).
The approximated expression (2.5) neglects second order terms in reflectivity, since
Rf , RNW � 1.
In Fig. 2.4(d), the cavity is scanned by moving the NW along the optical axis (i.e. y-
axis) through the focal point. The measured output voltage can be described by
Eq. (2.5), which can be reformulated by defining an average envelope term Pavg =
E2
inc(Rf +RNW ) and a fringe amplitude term Pamp = 2E2

inc

√
RfRNW

Pout(y) ∝ V (y) = Vavg(y)

[
1− V cos

(
2π

2y

λ

)]
(2.6)

where the fringes have period λ/2 and the interferometer’s visibility is

V =
Pamp
Pavg

=
2
√
RfRNW

Rf +RNW
=

1
2(Vmax − Vmin)
1
2(Vmax + Vmin)

(2.7)

For all the NWs studied, with diameters ranging from 200 to 400 nm, the measured
fringe visibility was above 65% up to 90%. This high interference contrast indi-
cates that RNW ≈ Rf , meaning that the optical power PNW , scattered at the NW
and guided back into the fiber’s core, is close 3% of the power incident on the NW
i.e. (1−Rf )Pinc.

The cavity length is set by the position of the NW y0 and modulated by the
projection of its vibrations along the y-direction, δy(t). Evaluating Eq. (2.6) for y =
y0 +δy(t), the maximum sensitivity to the oscillations δy(t) is obtained at quadrature
for y0 = λ

8 + nλ4 , n ∈ Z. At these optimal positions, the interferometer response is
linearized around Vavg (for δy � λ/4) with a displacement sensitivity

dV

dy

∣∣∣∣
y=y0

= ±4π

λ
VavgV = ±2π

λ
(Vmax − Vmin) (2.8)

which is precise voltage-to-displacement conversion factor, only limited by uncertain-
ties on λ and on Vavg (i.e. set-point position). Eq. (2.8) also shows that the sensitivity
can be optimized both by simply increasing the laser power (Pavg), which ultimately
causes the heating of the resonator, and by optimizing the fringe visibility close to its
maximum value Vmax = 1, achieved for RNW = Rf ∼ 3%. More generally, Pavg is
maximized by always positioning the NW in focus, while the ‘working-point’ on the
linear region of the fringe is set by tuning the laser wavelength to shift accordingly the
interference pattern. As shown in Fig. 2.6, the wavelength is tuned by changing the
operating temperature set-point of the laser diode, which is stabilized by thermoelec-
tric Peltier elements (TEC). For our DFB laser at 1550 nm the emission wavelength
shifts 0.099 nm/K. The interferometer response to a λ sweep has a period called free
spectral range (FSR) of 0.12 nm. The measurement of the FSR allows to precisely
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Figure 2.6 | Wavelength/temperature cavity scan
Cavity scan by detuning the laser nominal wavelength λ = 1550 over
a 2◦C temperature sweep around room temperature. FSR’= 120 pm
Inset: zoomed region. The very small amplitude of the spurious os-
cillation indicates a large reflectivity mismatch between the reflecting
surfaces involved. FSR = 0.5 pm.

calculate the cavity length as

lc =
λ2

2nvFSR
(2.9)

which returns lc ∼ 9.2 mm. Due to the laser’s coherence length of several meters,
the scan presents a faint modulation at higher frequency, which indicates the presence
of much a larger cavity of about 2.25 m corresponding to the fiber optical path up
to the photo-detector. These unwanted resonances are suppressed by using PM fiber
pigtailed isolators 16 on the return path to the photo-detector and/or by shortening
the coherence length via modulation of the laser current (RF tone of few MHz or
broadband white noise).
The fringe can be locked to its optimal value Pavg to compensate for possible time-
drift of wavelength and cavity length (i.e. NW position), by means of a proportional-
integral-derivative (PID) controller integrated in the laser controller unit17. The
photo-receiver voltage is kept at the set-point adjusting the laser wavelength, both by
controlling temperature (slow drifts) and laser current (fast transients).
Finally, cavity effects are excluded since the same quality factor is always obtained
whether the measurement is performed on the positive (red-shifted) or negative (blue-
shifted) side of the interferometer fringe.

2.2.3 Displacement calibration and 2D angular mapping

Given the peculiar 2D nature of the oscillations in NWs, it is important to generalize
the interferometrical technique of motion detection, described in the previous section.
In the VDC map of Fig. 2.4(a), for each direction the intensity is varying on a much
larger scale compared to the typical NW displacements of few nanometers at most.
For this reason, it is always possible to linearize the interferometer response at every
position xNW = [x0, y0, z0]T and extend the expression of motion detection sensitivity

16Thorlabs IO-G-1550 17TOPTICA DLC pro
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Figure 2.7 | Measurement vectors and displacement sensitivity maps
(a) Measurement vectors sampled over a two fringes region (black
boxed area of Fig. 2.4(a)). The measurement sensitivity (i.e. vectors’
magnitude) is color-coded. (b,c) Maps for the gradient’s y- and x-
component, scaled evenly to highlight the different detection efficiency
for the two directions. White dashed lines at x = ±xa indicate the
optimal offset from the optical axis to change the measurement angle
β0 by moving in y. Scale bars 500 nm.

in Eq. (2.8) to

‖∇VDC(xNW )‖ with eβ =
∇VDC(xNW )

‖∇VDC(xNW )‖ (2.10)

The unit vector eβ indicates the direction along which the NW’s modes motion
is projected. It forms an angle β0 with the microscope’s optical axis which is
collinear with the y-axis of the piezo scanner. The direction of the first mode
is rotated by an angle β respect to the measurement vector, i.e. eβ · r̂1 = cosβ.

When the NW is positioned on the optical axis, Eq. (2.10) reduces to Eq. (2.8) and
therefore eβ = ±ŷ (i.e. β0 = 0). In this case, the measurement is totally insensitive
to the motion along the x-direction (i.e. ∂VDC/∂x = 0) and the detection sensitivity
is maximum (optimizing y0); typically on the order of units of V/µm for few tens of
µW of incident power.
Fig. 2.7(a) shows the calculated gradient field (i.e. measurement vectors) for a re-
duced region of the voltage map in Fig. 2.4(a) (black boxed area). The map of the
gradient’s y-component in Fig. 2.7(b) confirms how the presence of the interference
pattern enhances the detection sensitivity along the optical axis. Nevertheless, by
displacing the NW off-axis, it is possible to rotate the measurement vector to probe
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Figure 2.8 | Tip displacement calibration
(a) Calculated plot of the first mode displacement profile u0(z) (gray
line) probed with a focus laser beam of waist w0 ∼ 1.25 µm (red curve)
at each position zmeas along the NW’s axis (blue line). Such curve
can obtained by driving one of the modes in resonance and recording
the induced displacement at its resonance frequency for each point
[24]. (b) Relative position (gray points) and magnitude (blue dots) of
the signal maximum value, for typical NW lengths. The dashed gray
line indicates the case plotted in (a). For longer NWs with L � w0,
the measured displacement curve approaches u0, as in the punctual
readout limit case.

the x-component of the NW’s motion at the price of a reduced sensitivity (3 to 4
times worse), as displayed in Fig. 2.7(c).

Another important practical aspect concerns the estimation of the modes’ ampli-
tude of motion ri, which is intended as the displacement at the NW’s tip. Despite the
detected spot size has a waist of w0 ∼ 1.25 µm (see Fig. 2.4(b)), which is smaller than
the NWs length, the measurement of the displacement is not exactly punctual, but
is averaged over a Gaussian profile along the NW’s length. In Fig. 2.9(a) the mode
shape u0(z) is compared to the normalized measured displacement rmeas, modeled as
a function of the Gaussian beam’s position along the NW

rmeas(zmeas) =
1√
w2

0π

∫
u0(z) exp

(
(z − zmeas)2

w2
0

)
dz (2.11)

The spatial extent of the laser spot, causes the signal to be maximum at zmax < L,
which depends on the NW’s length L. The coefficient rmax/rtip ≈ u0(zmax) in
Fig. 2.9(b). can be used to convert the maximum measured motion at zmax into
the real motion at the tip, which is crucial to correctly estimate the effective mass M .
In alternative, the tip height z = L can be located by acquiring a VDC map in the plane
coplanar to the NW (ideally xz-plane), and de-convolving the intensity linecut along
the NW’s axis with the laser Gaussian spot. The measurement of the NW motion
exactly at the tip, though, suffers from low SNR due to a poor displacement sensitivity.
If the position along the NW is known, the tip’s motion is given by rtip = rmeas/u0(zmeas)
and the photo-receiver voltage PSD SV (ω) can be converted into the displacement
noise PSD in Eq. (1.49) as

Sδrβ (ω) =
SV (ω)|z=zmeas

‖∇VDC(xNW )‖2 u2
0(zmeas)

= cos2 β Sδr1(ω) + sin2 β Sδr2(ω) (2.12)
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It is important to remark that the factor u−2
0 (z) rescales the effective mass to its nom-

inal value M (see Eq. (1.20)) and requires a proper estimation of the measurement
position. This term contributes, together with the effective temperature T and mass
M in Eq. (1.49), to the overall amplitude of the two Lorentians peaks and therefore
only one of them can be set as fit parameter. However, the thermal noise PSD can
be acquired in several positions along the NW to extract M , constant and dependent
on the NW’s geometry and material properties, and for different laser powers, the fit
temperature value T and highlight any deviation from base temperature.

Finally, in a scanning application, a NW sensor presents additional challenges and
constraints. The scanned sample at the bottom should not cut-off the laser beam’s
power once approached to the NW nor modulate it while moving. At the same time,
the NW’s deflection amplitude reduces as one moves from its tip towards its clamping
point. Given these two competing requirements, the ‘measurement-point’ on the NW
has to be ensure a good SNR, while being far enough from the sample. Once the T
andM have been estimated, Eq. (2.12) can be used to fit the distance of the detection
point from the NW’s tip.

Static and dynamical measurement of the local gradient In order to cal-
ibrate the voltage-to-displacement gain and the direction of the motion’ projective
measurement of Eq. (2.10), we use two alternative methods to estimate the gradient
of the reflected optical power at the NW’s rest position xNW :

Static mode – Fig. 2.9(a) – the voltage-position map VDC(x, y) is averaged and
acquired on a grid of 1 + 8 points around the rest position (x0,y0). The data are

x y
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x y
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Figure 2.9 | Static and dynamic optical gradient measurement
The sketches are not properly scaled for the sake of clarity. (a) Static
mode. (b) Dynamic mode. Two analog waveforms synchronized to
a digital TTL reference are generated by the DAQ-card and sent out
on the DC-in inputs of the piezo xy axes controller and to the lock-in
external reference input, respectively. The windowing of the two sinu-
soidal signals ensures a smooth transition to and from the limit cycle.
The demodulated signals are averaged over the duration indicated by
the gray region.
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interpolated by a second order polynomial, which is then used to analytically
calculate the local gradient’s magnitude and angle respect to ŷ. The spacings
between the grid’s points, dx and dy, are chosen in relation with the signal’s
typical variation lengths in the two directions (dx = 20 nm, dy = 10 nm).

Dynamic mode – Fig. 2.9(b) – the NW’s position is oscillated at low-frequency
(fmod < 70 Hz) on an ellipsoidal trajectory x(t) = x0 + Ax sin(ωmodt) and
y(t) = y0 + Ay cos(ωmodt), by modulating the x- and y-piezo control voltage
in quadrature. The reflected signal is demodulated with a lock-in amplifier
using an external reference synchronized with the in-phase component X (y-
piezo voltage). Being the in-phase (X) and quadrature (Y ) signals associated
to the detected motion along y- and x-direction, respectively, the gradient can
be calculated as

‖∇VDC(xNW )‖ =

√√√√( X

Ay/
√

2

)2

+

(
Y

Ax/
√

2

)2

(2.13)

β0 = tan−1

(
Y

X

Ay
Ax

)
(2.14)

for a circular trajectory (A = Ay = Ax), by using the polar representation
(R,φ) it reduces to R/(A/

√
2) and β0 = φ, respectively. This mode result much

faster and robust of the static method. The main limitation is set by the low
bandwidth of the piezo scanners; in fact, at constant displacements Ax and Ay
(typically ∼ 20 nm), the measured gradient magnitude starts decreasing for
fmod > 70 Hz.

Note that both methods depend on a previous calibration of the piezo scanners dis-
placement. Exploiting the interferometric signal, we can precisely calibrate the dis-
placement of the y-scanner (see Fig. 2.4(d)), while assuming the same conversion
factor for the x-scanner.

2D thermal noise map and orthogonality of the modes To perform an angular
scan of the NW’s displacement [22], it is possible to find an optimal x-offset x = ±xa,
which allows to span the angles β0 ∈ [0,±π], by moving the NW across a single fringe
(∼ λ/2), and ensures a good read-out of the motion at each angle. In Fig. 2.10 is
reported a complete 2D map of the thermally driven motion of a GaAs NW, which
provides a direct proof for the orthogonality of modes’ oscillation directions.
In practice, it is possible to extract independently the orientation of each mode respect
to the optical axis by acquiring just two projective measurements along non-collinear
measurement vectors eβ′ ,eβ′′ . For each mode, its orientation can be expressed as a
function of the projected power of the relative Lorentian peak along each measure-
ment direction and the angle difference ∆β0 = β′0 − β′′0 .
As described in Chapter 3, in the case of a NW interacting with an external non-
conservative force field the modes’ orthogonality is not preserved. This behavior has
been shown in the context of strong optical forces acting on a NW being scanned in
a tightly confined laser focal waist [22, 87]. These experiments benefit from a free-
space optical setup and use a two quadrant photodiode to obtain two signals (sum
and difference of voltage of quadrants) with distinct gradient maps of the detected
optical power. Hence, by properly positioning in the focal waist, projected thermal
noise spectra along two orthogonal directions can be simultaneous acquired.
Conversely, in our cryogenic setup, due to the fiber-based structure of the optical
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detection system, we rely on a single measurement channel and such simultaneous
measurements are not accessible [88]. In analogy with Fig. 2.10, probing the NW’s
motion at two distinct position of the NW in the focal waist (e.g. (xa, 0) and (xa,λ/4))
is a possible solution, although not feasible for scanning applications, since it requires
preserving the relative positioning of the NW with respect to the bottom sample. A
better protocol consists of measuring the motion at two slightly detuned laser wave-
lengths, leaving the NW at (xa,0).

In the following, for practical reasons, we use the NW as a scanning probe at fixed
wavelength assuming that the eigenmode orthogonality is preserved. To maximize
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Figure 2.10 | Angular displacement power map
(a) Voltage map around one single fringe for an incident optical power
of 60 µW. Scale bar 500 nm. After a numerical evaluation of the map’s
gradient, the NW is placed at x0 ≈ −xa and line-scanned over a dis-
tance ∆y = 650 nm to obtain a smooth rotation of eβ from β0 = 0 to
π. (b) Magnitude and (c) direction of the local voltage spacial gradi-
ent, at each point of the line scan, measured with the static method
illustrated in Fig. 2.9(a). Note that, due to a small misalignment be-
tween xy-scanner and optical axis, the gain is maximum (minimum)
slightly above β0 = 0 (π/2). The transition from β0 = 0 to π in (c)
becomes more and more steep for x0 approaching x = 0, increasing
the error in the measurement of the gradient direction. Conversely, for
|xo| � |xa| the sensitivity drops, lowering the SNR and introducing an
error in the voltage-to-displacement conversion. (d) Plot of the first
(blue dots) and second (red dots) mode’s displacement power projec-
tion on eβ , as a function of the measurement angle β0. At each point
the power is calibrated with the gain in (b). After subtracting the
background noise, the two datasets are fitted by P cos2(β0 − β) and
P sin2(β0 − β), respectively, with P = 8.1× 10−20 and α = 144◦ as fit
parameters. The angle α is the direction of the first mode respect to
eβ and the returned values by the two fits differ by less than 1◦ con-
firming the orthogonality of the modes’ polarization. The points in the
shadowed region have been mirrored to obtain a full 2π representation.
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the motion detection sensitivity, the NW is generally positioned on the optical axis at
the point of highest gradient. Finally note that, due to the projective nature of the
measurement, the modes’ orientation respect to eβ is not univocally determined by
a single measurement, since the result is equivalent for ±β. However, the real mode
directions can be established by comparing the oscillation amplitudes obtained at
different β0 or can emerge from the orientation of features in AFM-like scans realized
by using the NW as a force probe (see Fig. 3.4).
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Chapter 3

Vectorial scanning force
microscopy using a nanowire sensor

3.1 Introduction

Atomic force microscopy (AFM) [4, 89] is a well established microscopy technique
existing in several forms and is nowadays routinely used to image a wide variety of
surfaces, even with atomic [90] or sub-atomic resolution [5]. Variations on the ba-
sic technique, including contact and non-contact modes, allow its application under
diverse conditions and with enhanced contrast for specific target signals. Typically,
the ‘atomic’-force probes are top-down fabricated silicon cantilevers (hundreds of µm
long, tens of µm wide and few µm thick) or functionalized quartz tuning forks. In
both cases, the spatial resolution is prioritized over the force sensitivity, oscillating
the tip very close to the surface where strong short-range forces dominate.
Conversely, in recent years, researchers have developed new types of mechanical force
transducers, fabricated by bottom-up processes [91]. Prominent examples include
doubly-clamped carbon nanotubes (CNTs) [81], suspended graphene sheets [92], and
NW cantilevers [24, 32, 93–95]. Assembly from the bottom up allows for structures
with extremely small masses and low defect densities. Small motional mass and high
structural quality result in high mechanical resonance frequencies, which decouple the
resonators from common sources of noise, and low mechanical dissipation, which en-
ables high thermally-limited force sensitivity. As opposed to extreme aspect ratios and
ultra-soft spring constants of CNTs and graphene resonators, NWs are ideal candi-
dates for scanning probe applications. If arranged in the pendulum geometry, i.e. with
their long axis perpendicular to the sample surface, NWs are well-suited as scanning
probes, with their orientation preventing the tip from snapping into contact [11].
When approached to a surface, NWs experience extremely low non-contact friction
making possible near-surface (< 100 nm) force sensitivities around 1 aN/

√
Hz [29]. As

a result, NWs have been used as force transducers in nuclear magnetic resonance force
microscopy [96] and may be amenable to other ultra-sensitive microscopies such as
Kelvin probe force microscopy [97] or for the spectroscopy of small friction forces [27].
Furthermore, their highly symmetric cross-section results in orthogonal flexural mode
doublets that are nearly degenerate [24, 32]. In the pendulum geometry, these modes
can be used for the simultaneous detection of in-plane forces and spatial force deriva-
tives along two orthogonal directions [22]. Although one-dimensional (1D) dynamic
lateral force microscopy can be realized using the torsional mode of conventional
AFM cantilevers, although at the price of a high mode stiffness [98–102], the ability
to simultaneously image all vectorial components of nanoscale force fields is of great
interest. Not only would it provide more information on tip-sample interactions, but
it would also enable the investigation of inherently 2D effects, such as the anisotropy
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or non-conservative character of specific interaction forces.

In this chapter, we use an individual as-grown NW to realize the vectorial scan-
ning force microscopy of a patterned surface. By monitoring the NW’s first-order
flexural mode doublet, we fully determine the magnitude and direction of the static
tip-sample force derivatives in the 2D scanning plane. Moreover, we characterize the
electrostatic interaction by dynamically probing the force field generated by voltages
applied to a sample with multi-edged gate electrodes and we identify the contributions
of NW spurious surface charge and polarizability to tip-sample interactions.
Finally we exploit such electrostatic interaction to strongly couple the NW’s mechan-
ical modes and study their coherent dynamic.

3.2 Nanowire sensor and setup

The NWs used in this experiment have been fabricated via MBE, by the group of
Prof. A. Fontcuberta at EPFL, according to the process described previously in
Section 1.4.1. More specifically, a GaAs 290-nm-thick core is grown on a Si(111) sub-
strate, by the Ga-assisted method detailed in Uccelli at al. [103] and Russo-Averchi at
al. [104]. Axial growth is stopped once the NWs are about 25 µm long by temporar-
ily blocking the Ga flux and reducing the substrate temperature from 630◦C down to
465◦C. Finally, a 50-nm-thick Al0.51Ga0.49As shell is radially grown, capped by a 5 nm
GaAs passivation layer to prevent oxidation and reduce surface charge density [105].
The radial layering of these NWs as well as their hexagonal cross-section are clearly
visible in Fig. 3.1(a).

ab
aa

ac

Figure 3.1 | Array of GaAs/AlGaAs core-shell nanowires.
(a) SEM close-up view of a FIB milled NW’s cross-section. Scale bar
100 nm. (b,c) SEM micrographs of the NW cantilevers’ chip installed
in the microscope. The sharp cleaved edge of Si helps in the focusing
and navigation of the sample. Scale bars 10µm.

A small Si chip was cleaved from the original growth wafer and processed following
the procedure detailed in Appendix B. In Figs. 3.1(b,c) are shown two SEM micro-
graphs from the resulting array of NW cantilevers. In the presented measurements,
we use two individual NWs: NW1 and NW2, however, similar results could obtained
from several other NWs.
The mechanical characteristics of each NWs can be determined interferometrically The
experimental setup allows us . Light from a laser diode with wavelength of 635 nm
is sent through one arm of a 50:50 fiber-optic coupler and focused by a pair of lenses
to a ∼ 1 µm spot. As reported in Section 2.1, the system has been only afterwards
equipped with an equivalent infrared 1550 nm detection setup in order to trade spatial
resolution (wider spot size) for lower power absorption.
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However, the incident power of around 5 µW does not significantly heat the NWs
as confirmed by measurements of laser power dependence and by the values of ef-
fective masses obtained from the fits M = Mtot/4 ∼ 3.25 × 10−15 kg which are
in good agreement with the mass calculated from geometry and nominal densities1

ρGaAs = 5320 kg/m3 and ρAl.49Ga.51As = 4525 kg/m3.
These mechanical parameters yield dissipations and force sensitivities (Eq. (1.53))
very close to 100 pg/s and 5 aN Hz−1/2, respectively.
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Figure 3.2 | Displacement noise spectrum of core/shell GaAs/AlGaAs
NW1.
PSD of NW1 displacement noise measured with an incident optical
power of 5µW. The raw data points are fitted by the black line. The
extracted resonance frequency, spring constant, and intrinsic quality
factor of the first (second) mode are f1 = 414 kHz, k1 = 25 mN/m and
Q1 = 50580 (f2 = 420 kHz, k2 = 26 mN/m and Q2 = 50373). The
first mode is rotated by an angle β = 75◦ respect to the measurement
direction. Inset: SEM micrographs with scale bar 100 µm.

Figs. 3.2 and 3.3 show the calibrated noise spectra for NW1 and NW2, respectively.
For each measurement, the NW is always centered in the focal waist ad positioned
such that the optical gradient is maximum in order to maximize the detection sen-
sitivity. As a consequence, the measurement direction eβ is aligned with the optical
axis (i.e. y-axis).
In general, resonance frequencies range from 350 to 450 kHz and the average frequency
splitting of the modes’ doublet is several hundred times the peak line width, given
the high quality factors Qi in the order of 50000 at 4.2 K. As pointed out in Sec-
tion 1.1.2, the net splitting of the resonance peaks is enhanced for shorter resonators
in length. Nevertheless, the difference is still hundreds of times smaller than the res-
onant frequencies, guaranteeing practically identical sensitivity for both mechanical
polarizations.

3.3 Nanowire-sample interaction

To use the NW as a scanning probe, we approach the sample and scan it in a plane
below the NW tip. By monitoring the mechanical properties of the NW — that is, the

1Density AlxGa1−xAs: 5.32− 1.56x g/cm3
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Figure 3.3 | Displacement noise spectrum of core/shell GaAs/AlGaAs
NW2.
PSD of NW2 displacement noise measured with an incident optical
power of 5 µW. Each mode is rotated by a similar angle (β = 46.5◦)
respect to eβ . As a consequence, the measured peaks’ power of the
projected Brownian motion is almost equal. The extracted resonance
frequency, spring constant, and intrinsic quality factor of the first
(second) mode are f1 = 405 kHz, k1 = 35 mN/m and Q1 = 47360
(f2 = 416.6 kHz, k2 = 36 mN/m and Q2 = 43855).

frequency, dissipation and orientation of its doublet modes— we map the tip–sample
interaction. Such microscopy can be accomplished by measuring the NW thermal dis-
placement spectral density as the sample surface is scanned below it. Although, as it
will be shown later on, this measurement provides a full mechanical characterization
of the modes, it is time-consuming due to long averaging of the Brownian motion at
each point.
Conversely, a technique that is more amenable to a fast spatial scan of the sample to-
pography, uses the resonant excitation of the doublet modes through two independent
phase-locked loops (PLL) to track both frequencies simultaneously.

3.3.1 Bi-modal scanning probe microscopy

As in standard FM-AFM [106], we use a lock-in amplifier2 to resonantly drive each
mode and demodulate the resulting optical signal measured by the photo-receiver.
A voltage signal reference, given by the sum of two tones at the modes’ resonance
frequencies, drives the piezoelectric transducer fixed to the back of the NW chip
holder (see Fig. 2.2). Each frequency shift ∆fi = f ′i − fi is tracked by a phase-locked
loop (PLL), while a proportional integral control loop (PI) maintains the mode’s
oscillation amplitude constant by adjusting the amplitude of the respective sinusoidal
component of the dithering piezo voltage. Owing to the high quality factors and the
large frequency gap between the resonances it is possible to monitor and control both
modes simultaneously, avoiding any cross-talk between the two PLLs by choosing a
proper filter bandwidth to separate each frequency component.
The test sample in Fig. 3.4(a) consists of nine 5-µm long and 200-nm thick finger gates

2Zurich Instruments UHFLI + PLL/PID
mod
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of Au on a Si/SiO2 substrate, radially disposed and equally spaced along a semicircle.
The finger gates and their tapered shape are intended to provide edges at a variety of
different angles, highlighting the directional sensitivity of the orthogonal modes. The
frequency shift maps ∆f1(x, y) and ∆f2(x, y) in Figs 3.4(b,c) are acquired keeping a
constant oscillation amplitude of 6 nm. The spatial scan is performed at a distance
of 70 nm from the Au surfaces without feedback to maintain a constant tip-sample
separation, i.e. in ‘open-loop’. The Au gates are grounded during the measurement.
Such spatial scans are extremely time efficient and are just limited by the high Q
factor of the resonator, i.e. each point is acquired for Q/f ∼ 125 ms. The frequency
shift images clearly delineate the topography of the patterned sample, with each mode
showing stronger contrast for features aligned along orthogonal directions. These two
directions (identified by noting the direction of the fingers with maximum contrast)
agree with the angle β = 75◦ measured for NW1 via the thermal noise plotted in
Fig. 3.2. Edges, i.e. large topographical gradients, pointing perpendicular (parallel)
to the mode oscillation direction appear to produce the strongest (weakest) contrast.
The nature an strength of the tip-sample interactions, producing the frequency shifts
in non-contact AFM, depends on the distance and can include electrostatic (long-
range), van der Waals, or chemical bonding (short-range) forces . In our case, because
of the large spacing, they are entirely dominated by electrostatic forces.

aa

900-60
Frequency shift (Hz)

ab

ac

y

x

Figure 3.4 | 2D lateral force microscopy.
(a) SEM micrograph of the scanned sample. The frequency shift data
shown refer to the region delimited by the dashed yellow line. The re-
sults presented in Section 3.4 and 3.5 are restricted to the highlighted
3.6 × 3.6 µm region. Scale bar 5 µm. (b,c) Frequency shift maps ob-
tained by tracking mode 1 and mode 2 resonance simultaneously. Due
to the limit xy scanning range at 4.2 K, the complete maps are ob-
tained combining together 5 scans. The oscillation amplitude for each
mode is kept constant at 6 nm. The spacial resolution is ultimately
limited by the large diameter of the NW. All scale bars 5 µm.
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3.3.2 Nanowire dynamics in a bi-dimensional force field

The information given by the frequency shifts ∆fi is not sufficient to entirely describe
the interaction of the NW with the sample’s force field. Hereby, we apply the bi-
dimensional vectorial Eq.(1.29) – obtained in Section 1.2.1 – to describe the planar
motion of the NW tip r(t) subjected to a external force F(t). In general, we focus
on the force field governing the motion of the two fundamental mode’s polarizations,
ignoring the contribution of higher orders modes. In scanning probe microscopy, it
would correspond to the so-called tip-sample interaction force which is felt by the
probe starting from a certain distance from the sample (Fig. 3.5(a)).
To describe each component we can use Eq. (1.25) and write:

Mr̈i + Γiṙi +Mω2
i ri = δF + Fi (3.1)

where δF is the Langevin force and Fi is the modal force which was introduced in
Section 1.1.1. The latter accounts for the portion of the applied force F(t) acting
along r̂i. In the more general case of a distributed force F(z, t) at the NW position,
it has to be averaged over the length by the normalized mode shape as Fi(t) =

〈u0(z),F(z, t) · r̂i〉 =
∫ L

0 u0(z)Fi(z, t)dz. Following from the definition, a punctual
force acting at the tip is expressed F(t)δ(z − L). In order not to overcrowd the
notation, the force is always considered at the NW rest position ri = 0 and therefore
often omitted as well as the time dependence.
Following the treatment of Gloppe et al. [22], Fi can be expanded up to the first order
for small oscillations around the equilibrium ri = 0 giving F(r) ≈ F(0) + (∇rF)|0 · r.
Each modal force writes as

Fi ≈ Fi(0) +
∑
j=1,2

rj
∂Fi
∂rj

∣∣∣∣
0

(3.2)

By replacing this expansion in (3.1), we can write the equations in vectorial form as

M r̈ + Γṙ +Kr = F0 + δF (3.3)

where r = [r1 r2]T and the equilibrium tip-sample force F0 = F(r = 0). The dissipa-
tion and spring constant matrices are defined by:

Γ ≡
[
Γ1 0
0 Γ2

]
(3.4)

K ≡
[
k1 − F11 −F21

−F21 k2 − F22

]
(3.5)

where ki = Mω2
i is the effective spring constant of the mode and we used a shorthand

notation for the force derivatives Fij ≡ (∂Fi/∂rj)|0. Note that, in the following
we prefer to make use of the modal stiffness ki which is compliant with the usual
expressions adopted by the scanning force microscopy community and has the physical
dimensions of a force gradient (N/m).
As K matrix definition (3.5) makes clear, the field derivatives Fii of the tip-sample
force alter the modes’ intrinsic stiffness redefining new effective spring constants, while
the shear cross-derivatives on the anti-diagonal, i.e. Fij for i 6= j, act as coupling terms
for the two mechanical polarizations [107].
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Figure 3.5 | NW immersed in a tip-sample force field and eigenvectors
rotation.

New eigenfrequencies and modal coordinates In the presence of weak tip-
surface interactions, as those studied here, the dissipation rates of the NW modes are
negligibly small compared to their unperturbed resonant frequencies, i.e. Γ

2M �
√

k
M .

In this limit, the NW mode frequencies and oscillation directions are determined by
K. Therefore, by diagonalizing K, we can find a new pair of uncoupled flexural
modes. The corresponding spring constants and mode directions result modified from
the unperturbed state by the spatial tip-sample force derivatives Fij as

k′1,2 =
1

2

(
k1 + k2 − F11 − F22 ±

√
(k1 − k2 − F11 + F22)2 + 4F12F21

)
(3.6)

r̂′1 =
1√

(k2 − F22 − k′1)2 + F 2
12

[
k2 − F22 − k′1

F12

]

r̂′2 =
1√

(k1 − F11 − k′2)2 + F 2
21

[
F21

k1 − F11 − k′2

] (3.7)

These new modes remain orthogonal (r̂′1 · r̂′2 = 0) for conservative force fields (∇×F =
0, i.e. F12 − F21 = 0), but lose their orthogonality for non-conservative force fields.
Such property can be deduced from the fact that, if F12 = F21, K is symmetric and
therefore its eigenvectors of distinct eingenvalues (k′1 6= k′2) are orthogonal.

Weak-field limit For tip-sample force derivatives that are much smaller than the
bare NW spring constant – as in our case – the modified spring constants and the
modified modal coordinates in (3.6) and (3.7) can be approximated to first order
derivatives:

k′1 ≈ k1 − F11 and k′2 ≈ k2 − F22 (3.8)

r̂′1 ≈
1√

(k1 − k2)2 + F 2
12

[
k1 − k2

−F12

]

r̂′2 ≈
1√

(k1 − k2)2 + F 2
21

[
F21

k1 − k2

] (3.9)
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In the limit of small dissipation discussed previously (Γ � Mω), analogously to
the unperturbed situation, the new resonance frequencies of the flexural modes are
given by f ′i = 1

2π

√
k′i/M . For small tip-sample force derivatives, we can apply the

approximated expression (3.8), obtain f ′i ≈ 1
2π

√
(ki − Fii)/M and finally expand to

first order in Fii, finding f ′i ≈ fi − fi
2ki
Fii.

Solving in terms of the frequency shift induced by the tip-sample interaction, we have:

∆fi = f ′i − fi ≈ −
fi
2ki

Fii (3.10)

Therefore, by monitoring the frequency shift between the bare resonances and those
modified by the tip-sample interaction, we measure Fii as

∂Fi
∂ri

∣∣∣∣
0

≈ −2ki

(
∆fi
fi

)
(3.11)

Note that, because the oscillation amplitude is usually very small compared to the
tip diameter (in our case it is 6 nm against a NW diameter of ∼ 350 nm), the spatial
variations of the force derivative over the oscillation cycle can be neglected. Just as in
conventional 1D dynamic force microscopy (e.g. standard non-contact AFM along z-
axis and lateral AFM driving the cantilever torsional mode), each ∆fi(x, y) depends
on the derivative Fii, i.e. on the force both projected and differentiated along the
mode oscillation direction. The mode doublet of a NW probe, however, is able to
simultaneously measure force derivatives along orthogonal directions.
With the mechanical parameters of NW2, a frequency shift of one linewidth ∆ω =
Γ/M corresponds to a gradient Fii = 2ωΓ ≈ 1.4 × 10−7N/m. However, gradients in
the order of 1 nN/m can be sensed at the limit resolution of the frequency shift mea-
surement which can be set to a hundred times less the linewidth (i.e. RBW ∼ 0.1 Hz)
by calculating the noise PSD spectrum on the demodulated signal around the reso-
nance frequencies.

Using the expressions in (3.9), we can also write an expression involving the angle φi
between the bare mode direction r̂i and the corresponding modified mode direction
r̂′i, as pictured in Fig. 3.5(b):

tanφi ≈
Fij

|ki − kj |
(3.12)

This equation then allows us to solve for Fij = ∂Fi/∂rj for i 6= j in terms of the
rotation of the mode axes φi and the unperturbed spring constants:

∂Fi
∂rj

∣∣∣∣
0

≈ |ki − kj | tanφi (3.13)

For NW2, a modes rotation φ = π/4 corresponds to a shear gradient Fij = |ki−kj | ≈
1 mN/m. From this expression it follows that the sensitivity to shear gradients can
be improved by using softer NWs with higher cross-sectional symmetry to reduce the
modes’ frequency splitting.

In the following, we apply Eqs. (3.11) and (3.13) to calculate all the in-plane tip-
sample force derivatives in the small interaction limit (i.e. all derivatives much smaller
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than the unperturbed spring constants) by monitoring the doublet mode frequency
shifts ∆fi and oscillation directions φi,

Strong-field limit In this regime, the strength of the gradients Fii is much bigger
than the modes’ stiffness ki. Therefore, the stiffness matrix K can be approximated
by the Jacobian (gradients) matrix3 JF of the force field , which takes over the NW dy-
namics at the first order approximation. In this conditions, while the modes’ stiffness
(and eigenfrequencies) are directly and unlimitedly modified by the gradient longitu-
dinal components Fii, the rotation of the modes reaches a saturation angle. In fact,
at each position the NW’s modal coordinates are oriented in order to diagonalize the
force gradients matrix, aligning along the force field principal directions. More specif-
ically, the mode 1 at lower frequency points to the direction of the eigenvector with
the lowest eigenvalue, while mode 2 points to the direction with the highest eigenvalue
[23].
In conclusion, the mapping of strong field gradients results more straight-forward,
since the NW’s modes indicate at each point the direction of the force field principal
axes.

3.4 Imaging of static in-plane force derivatives and dissi-
pation

A complete measurement of static in-plane force derivatives, the resulting force field,
and dissipations is performed using NW2 over a smaller scanning region (see Fig. 3.4)
at a fixed spacing of 70 nm from the grounded gold electrodes. It is important to
remark that, despite having set the electrodes and the NWs support at the same po-
tential, a residual voltage V0 exists between the NW and the golden gates, due to the
difference in electron work function of the two materials (WAu −WNW = −eV0).
∆fi and Γi are extracted by fitting Eq. (1.49) to the spectral density of the thermal
noise measured at each acquisition position of the scan window. In particular, by
assuming a conservative tip-sample interaction (Fij = Fji hence φ1 = φ2), we de-
termine φ = β′ − β by comparing the extracted modes’ angle to the NW’s intrinsic
polarization directions extracted far from the surface, which is β = 46.5◦ as shown in
Fig. 3.3. In order to measure any force field, including non-conservative force fields
such as those due to opto-mechanical interactions [87], φ1 and φ2 have to be measured
independently, i.e. along two linearly independent measurement vectors. As described
in Section 2.2.3, such a measurement it is possible in our fiber-coupled setup, by
positioning the NW slightly on the side of the optical axis and detuning the laser
wavelength to shift the interference fringe and therefore rotate the optical gradient
direction.
Using these data along with Eq. (3.11) and Eq. (3.13), we produce maps of Fij(x, y)
and Γi(x, y), plotted in Figs. 3.6 and 3.7, respectively. The measurements show strong
positive followed by negative Fii for edges perpendicular to the NW mode oscillation
r̂i. In non-contact AFM, long-range tip-samples forces have an electrostatic origin
and are generally attractive and become more so with decreasing tip-sample distance
and increased interaction area. As the NW approaches a Au edge perpendicular to
r̂i from a position above the lower Si surface, it experiences an increasingly attractive

3JFij = Fij
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Figure 3.6 | In-plane force gradients of tip-sample interaction.
Force derivatives F11, F22, and F12 = F21, respectively, extracted from
thermal noise data as a function of the xy-position of NW2, at 70 nm
over the sample. Overlayed dashed lines indicate the edges of the finger
gates, as obtained by SEM (see Fig. 3.4). Inset: scanners (x,y) and
NW modes (r1,r2) coordinate system orientation. Scale bar 1 µm.

force, i.e. a positive Fii. After the midpoint of the tip crosses this edge, the attrac-
tive force starts to drop off, resulting in a negative Fii [98]. The consideration of
an instrumental mechanical vibration between sample and NW is required in these
fits to produce integrable force derivatives. The root mean squared amplitude of this
vibration is 3 nm root-mean-square, which is reasonable for our experimental setup.
This parameter only affects measurements of F12 = F21 in Fig. 3.6, which depend on
φi and are derived from the ratio of the mean square displacements of the two modes.
Measured dissipations Γi in Fig. 3.7 are nearly isotropic and appear to reflect the
different materials and tip-sample spacings over the Au fingers and the Si substrate.
Similar 1D measurements of non-contact friction also show lower values over con-
ducting surfaces like Au compared to insulating surfaces like Si and point to charge
fluctuations as the origin for the dissipation [27, 28]. Another possible mechanism is
the so-called Joule dissipation, attributed to a residual static charge on the NW tip
generating a time varying image charge (current) on the sample underneath, which
dissipates energy depending on the local resistivity.

In order to produce a vectorial force map in the (x,y) coordinates reference of the
scanners (laboratory frame), a change of coordinate system is required for the force
gradients obtained in the reference system of NW’s uncoupled modes (r1,r2). We can
use

Fxx = F11 sin2 β + F22 cos2 β − cosβ sinβ(F12 + F21)

Fyy = F11 cos2 β + F22 sin2 β + cosβ sinβ(F12 + F21)

Fxy = F12 cos2 β + F21 sin2 β − cosβ sinβ(F22 − F11)

Fyx = F21 cos2 β + F12 sin2 β − cosβ sinβ(F22 − F11)

(3.14)

where β is the angle between the r̂1 and the y-axis (i.e. our measurement vector).
The 2D gradient ∇Fx (∇Fy) is integrated over the 25 × 25 points of the map to
extract the relative force field component Fx (Fy). At each cell (i, j), the value of Fx
corresponds to Fx(i, j) = Fx(i0, j0)+

∫
C(Fxxdx+Fxydy), where C is a path connecting

the starting cell (i0, j0) to the current cell (i, j); similar expression applies for Fy(i, j).
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Figure 3.7 | Dissipation maps.
Dissipation Γi of each mode as a function of the xy-position. Scale bar
1 µm.

Respect to the straight-forward 1D integration used for conventional AFM data [108],
in the 2D case the calculation should be ideally performed averaging the result on every
possible short path connecting the two points. However, to simplify the process, the
calculation was performed iteratively along rows and columns starting from each of
the four sides of the domain. The obtained results were then averaged together.
The map of the static in-plane force field due to tip-sample interactions is shown
in Fig. 3.8. Note that this force field is determined up to an integration constant,
i.e. up to a spatially constant force. The field lines confirm the presence of a residual
electrostatic force attracting the NW towards the golden electrodes, even when the
NW chip support and the gates are grounded. The electrostatic ‘zero’ in between the
gates corresponds to an equilibrium position (unstable) where the attractive forces
cancel out.
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Figure 3.8 | In-plane tip-sample force field.
The map is numerically integrated from the force derivatives in Fig. 3.6
up to a spatially constant force. Solid lines show contours of constant
force magnitude.
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3.5 Dynamic measurement of 2D force fields

Any force field coupling to the NW, if modulated on resonance, can be mapped with
a thermally limited sensitivity of 5 aN/

√
Hz by measuring the induced displacements

of the two modes. At each point, the coherent trajectories generated in this way
correspond to the NW response to two resonant forces.
The measurement scheme, illustrated in Fig. 3.9, is similar to the one used for the
driven bi-modal scan in Section 3.3.1. Here, instead of driving a dither piezo to
enhance the modes’ displacement and speed-up the readout of tip-sample interaction
(i.e. force gradients in terms of frequency shifts), the NW’s motion is resonantly excited
by the force field itself, allowing for a direct force detection.
In this way, we study the electrostatic nature of the interaction forces by applying

E

G

photo-receiver
Vsignal

Vdrive

Figure 3.9 | Operating scheme for the dynamic measurement of 2D force
fields.

a small AC voltage drive Vdrive = Vd sin(ωt) to produce an oscillating electric field
E(r, t) between the opposing finger gates.
The model of the total force field has two contributions:

• a Coulomb force term, linearly dependent on the electric field strength, associ-
ated with trapped surface charges

Fq = qE ∝ Vd (3.15)

where q is the net charge on the NW tip;

• a term with quadratic dependence on the field strength, associated with the
induced dipolar moment of the dielectric NW in an external electric field4 [109].
By considering a scalar polarizability, the force can be written as

Fp = −∇(α|E|2) ∝ V 2
d (3.16)

where α is the effective polarizability of the GaAs/AlGaAs NW.

Due to their linear and quadratic dependence on E, respectively, Fq drives the
NW at frequency ω, while Fp drives it at DC and 2ω. As a result, the two
interactions can be spectrally separated.

4Epol = p ·E ' α|E|2 ; Fp = −∇Epol
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By scanning the sample in a plane 70 nm below NW2 and measuring thermal
motion and driven response at each point, we construct vectorial maps of the Fq and
Fp, as shown in Fig. 3.10(a) and (c).
In first place, the thermal noise spectrum in the absence of the AC drive, is acquired to
calibrate the orientation r̂′i and resonance frequencies ω′i of the modes doublet, which
are altered by the static tip-sample interaction as described in Section 3.4. Then,
the frequency of the driving voltage Vdrive is swept through ω′i/2 and ω′i to probe Fp
and Fq respectively, by recording amplitude and phase of the displacement signal. In
this way, the resulting force is always resonantly driving each mode, which can be
described as

Mr̈i
′ + Γ′iṙi

′ + k′ir
′
i = δF + Fd,i sin(ωt+ φ) (3.17)

where Fd,i is the force component along r̂′i.
In the linear regime, the modes’ displacement amplitude and phase are determined
by their mechanical susceptibility χ′i(ω) = 1/(k′i −Mω2 + iΓ′iω), as presented in Sec-
tion 1.2.1. As shown schematically in Fig. 3.10(e), the magnitude and orientation of
the driving force at each point is extracted from the displacement and phase response
of each mode as a function of frequency. For mode i, the oscillation amplitude is fitted
by |χ′i(ω)||Fd,i(ω)| and gives the magnitude of the driving force Fd,i along r̂′i. Instead,
the phase arg(Fd,i(ω)) gives the direction of Fd,i along either positive or negative r̂′i.
As an alternative measurement protocol for one of the two forces, it would be possible
and faster to use two PLLs (as in Section 3.3.1) to simultaneously excite and track
the resonant response of both modes with two distinct tones. In this case, the PLLs’
phase set-point has to be be adjusted during the scan, since the phase response un-
dergoes a π-shift when the force component driving the mode becomes negative (see
Fig. 3.10(e)).
These measured force fields are compared to the E and −∇|E2| fields simulated by
FEM analysis (COMSOL) using the real gate geometries in Figs. 3.10(b) and (d).
Dividing the measured force fields by the corresponding simulations, we estimate an
equivalent net charge on the NW tip q = 30±10e, where e is the fundamental charge,
and the effective polarizability α = 10−29 C/(Vm), which is roughly consistent with
the size and dielectric constant of the NW.
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Figure 3.10 | Vector plots of electrostatic force fields.
(a) Vector plot of the force field induced by an electric field on the
charged NW. The vector plot is overlayed on top of a SEM image of
the sample. The scale bar represents 1 µm. (b) Vector plot of the
simulated electric field E(r) induced by the biased finger gates. (c)
Vector plot of the force field induced by the electric field on the polar-
izable dielectric NW. The voltage amplitude applied to the gates in (a)
and (c) is 2 mV and 20 mV, respectively, the vertical spacing between
NW2 and the Au gates is 70 nm. (d) Vector plot of the simulated
values of −∇|E(r)|2 induced by the biased finger gates. (e) Schematic
explanation of how force vectors are extracted from measurements at
the example positions A and B shown in (c). Example plots on the
right showing amplitude and phase response as a function of driving
frequency illustrate the method (violet/red for positions A/B). The
magnitude of the force component along each mode direction is ex-
tracted from the displacement of that mode. The phase response of
the mode with respect to the driving then allows the extraction of the
sign of the force component along each mode direction.
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3.6 Coherent Two-Mode Dynamics

Classically coherent dynamics analogous to those of quantum two-level systems can
be studied in this setting of force sensing.
In the last years, the coherent dynamics in classical systems has been studied in the
context of nanoscale mechanical resonators, typically top-down fabricated and with
doubly clamped geometry. In particular, strong coupling between mechanical modes
[107, 110, 111], driven Rabi oscillations [110–112] and Stückelberg interferometry [113]
have already been demonstrated, measuring also coherence and dephasing times [110,
114]. Here, exploiting the electrostatic NW-sample interaction characterized previ-
ously, we demonstrate quantitative control over the coupling between two orthogonal
mechanical modes of a nanowire cantilever, through measurement of avoided crossings
as we deterministically position the nanowire in the electric field produced by gate
electrodes. Furthermore, we measure Rabi oscillations between the two mechanical
modes in the strong coupling regime.

By applying a static voltage Vg to the gates, we control the strength of the inter-
action between the NW and the electric field. As discussed in the previous section,
the resultant force is given by the sum of a weak Coulomb term Fq ∝ Vg due to a
small surface charge excess and a term Fp ∝ V 2

g due to the polarization of the bound
charge inside the dielectric NW. Note that this linear and quadratic dependence on
the voltage it also applies to the respective force gradients. The eigenfrequencies of the
hybridized modes can be derived from Eq. (3.6), indicating explicitly the dependence
of the force gradients Fij on Vg

ω′1,2 =
1√
2

[
ω2

1 + ω2
2 −

F11(Vg)
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±
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2 −
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M
+
F22(Vg)

M

)2
+

4F12(Vg)2

M2

]1/2 (3.18)

Avoided crossings A signature of strong coupling is formed by mode energies ex-
hibiting avoided crossing under detuning, with a splitting larger than the sum of the
linewidths of the individual resonances [115]. At the same tip-gates distance of 70 nm
and with a procedure similar to the one adopted in Section 3.4, we search for such
avoided crossings by acquiring thermal noise spectra at each point (x, y) for a set of
voltage values in the interval [−10 V, 0 V] with steps of 500 mV. The distance . From
this, we determine the mode frequencies ω′i for each spatial point (x, y) as a function
of Vg.
In Fig. 3.11(a) and 3.12(b) are plotted the frequencies f ′i = ω′i(Vg)/2π for exemplary
positions in the electric field generated by the gate electrodes, which exhibit an avoided
crossing. In order to obtain a frequency anti-crossing, starting from a small Vg (weak-
field limit), each longitudinal gradient components Fii has to shift the correspondent
frequency towards the other. This condition can be met in many combinations of
sign and magnitude of the two Fii terms, which ultimately determine the sign and
curvature of the parabolic frequency shift around zero voltage. In all the cases shown,
at low Vg, mode 1 gets stiffer (f ′1 increases), i.e. F11 < 0, while mode 2 gets softer (f ′2
decreases), i.e. F22 ≥ 0.
At the center of an avoided crossing, for voltage Vg = Vx, the eigenmodes are fully
hybridized in a symmetric and antisymmetric superposition of the original modal
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basis. The size of the avoided crossing can be approximated as

∆ωx ≡ ∆ω(Vx) = ω′2 − ω′1 ≈
F12(Vx)

Mω0
(3.19)

where ω0 ≡
√
ω2

1 −
F11(Vx)
M =

√
ω2

2 −
F22(Vx)
M .

We see therefore that the splitting is proportional to the coupling force gradient. By
moving along the edge of a gate electrode, we observe that we can controllably set
F12 and observe avoided crossings with correspondingly different gap sizes.
Fitting Eq. (3.18) to ω′1(x, y, Vg) and ω′2(x, y, Vg), directly returns the values for F11,
F22, and F12 as a function of (x, y, Vg). Fig. 3.11(b) shows two spatial maps of F12, for
Vx of the avoided crossings displayed in Fig. 3.11(a). Consistent with expectations,
the larger avoided crossing occurs at a position where F12 is larger. Similarly, we can
obtain spatial maps of F11, F22, and F12 for each voltage Vg [116].

Fig. 3.12 analyzes in more detail the evolution of the modes’ frequencies and ori-
entation for at a position on the plane showing well defined avoided crossings. At
Vg = Vx, the modes have been turned by an angle that maximizes the shear com-
ponents Fij . Around these points, the change in curvature of the frequency curves
indicates that the respective longitudinal gradients Fii are changing sign, pulling the
frequencies in the opposite direction. Locally, the field lines are mostly perpendicular
to the mode basis (r̂1 ,̂r2), which indicates the dominant role of the off-diagonal cou-
pling terms Fij .
In the high-field limit (|Vg| > 6 V), the first mode is rotating towards the direction of
the eigenvector of the force gradients matrix with the lowest absolute value (smallest
curvature), as explained in Section 3.3.2. The displacement spectra in Fig. 3.12 show
additional damping, increasing quadratically with the gate voltage, due to the dissipa-
tive re-orientation of the dipoles in the resonator caused by its motion in a static and
inhomogeneous electric field. It can be take into account by considering a complex
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Figure 3.11 | Shear force gradient vs. gate voltage mapping
(a) Mode frequencies as a function of the gate voltage. Data points
represented by green circles are taken at the position indicated by the
green hexagon drawn in (b), while the violet squares corresponds to
data taken at the position of the violet hexagon in (b). The curves
are fits of Eq. (3.18) to the data. Both sets of data show avoided
crossings, with different splittings due to different coupling strengths.
(b) Spatial maps of the measured coupling term F12 for Vg = −5V
(left) and Vg = −6.5 V (right). The dashed black line indicates the
position of the nearest gate electrode. Scale bar 500 nm
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Figure 3.12 | Vibrational modes evolution at an anti-crossing point.
(a) Evolution of the displacement noise density as a function of the ap-
plied gate voltage Vg. The mode frequencies f ′i and orientation angle
β′ respect to the measurement vector, shown in (b) and (c) respec-
tively, are obtained by fitting the spectra in (a). The two gray dashed
parabolas in (b) correspond to a second order polynomial fit and show
the deviation of the two frequencies in absence of coupling. At high
fields, the direction of the modes is inverted with respect to the initial
situation. The minimum of the lower parabola at ∼ 0.5V confirms the
existence of a residual electrostatic force. (c) Due to the intrinsic ori-
entation of the modes β, at the anti-crossing points the modes’ basis
rotates of ∼ 45◦ making first mode becomes orthogonal respect to the
detection direction eβ (dashed circles in (a)). β′ saturates ideally at
90◦.

polarizability α = α′ + iα′′ [109]. Moreover, the dissipation shows strong dependence
on the electric field orientation, being higher on the first mode for Vg < Vx and then
moving onto the second one as a result of the modes’ rotation.

Rabi oscillations In strongly coupled two-level systems, energy can be coherently
exchanged between the two levels through driven Rabi oscillations. Here, such regime
of operation is confirmed by frequency splittings ∆ωx of several kHz compared to
linewidths of few tens of Hz. At the avoided crossing, the system can be parametrically
driven through a periodic modulation of the detuning [117]. When the modulation
frequency ωd is close to the frequency difference ∆ωx, a coherent oscillation between
the populations of the two modes takes place. Here, modulation of the detuning is
generated by superimposing an oscillating voltage drive Vac(t) = Vd cos(ωdt) over the
gate voltage Vg.
Borrowing the notation from the two-level quantum mechanical system representa-
tion, we indicate the first and second hybrid state (mode) frequency and orientation
respectively as ω+, |+〉 = (1, 1) and ω−, |−〉 = (1,−1) (see Fig. 3.13(a)). In a classical
picture, Rabi oscillations between the populations |a±|2 of the two modes (i.e. power
stored in each mode), including decay, can be described as [117]

|a+(t)|2 = cos2

(
ωRt

2

)
e−Γt , |a−(t)|2 = sin2

(
ωRt

2

)
e−Γt (3.20)
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Figure 3.13 | Rabi oscillations.
(a) Sketch of the energy swap between the eigenmodes at the avoided
crossing, by harmonically modulating of the voltage detuning with
Vac(t). (b) Schematic of Rabi pulsing scheme. (c) Bloch sphere repre-
sentation of Rabi oscillations. The two trajectories on the sphere cor-
respond to resonant and non-resonant Rabi oscillations. (d) Detected
spectral power of both modes as a function of Rabi pulse duration,
for zero detuning δd = 0. The fit for mode |−〉 (red line) returns a
Rabi frequency of 1.9 kHz (∆ω)x/2π = 10.9kHz). (e) Similar to (d),
but for δd 6= 0. Fits yield Rabi frequencies of 2.8 kHz (mode |−〉) and
3.0 kHz (mode |+〉) with ∆ωx/2π = 12.1kHz. Note that the offset
in the measured Rabi oscillations is due to thermal excitation of the
mode. Moreover, following from the definition of the Rabi frequency,
ωnon−resR > ωresR for all δd 6= 0.

Here, initialization is assumed to give |a−(0)|2 = 0, |a+(0)|2 = 1. Furthermore,
ωR =

√
A2 + δ2

d is the generalized Rabi oscillation frequency, with the amplitude A
set by Vd, and δd = ωd −∆ωx.
We use a single decay constant Γ for both modes, since for the two hybridized modes
(at the center of the avoided crossing), population decay rates should be equal. Γ
corresponds to the time constant of evolution towards |a−(0)|2 = 0, |a+(0)|2 = 0. In
a Bloch sphere representation of the populations, this corresponds to a shrinking of
the state vector.
In order to excite and detect Rabi oscillations in our system, we implement the

following measurement protocol (see Fig. 3.13(b)). First, we excite mode |+〉 by ap-
plying a drive pulse with frequency ω+ for 50 ms. Next, a pulse of varying duration
τRabi with frequency ωd is applied to drive the Rabi oscillations. During this pulse, a
coherent exchange of energy takes place between the two modes, resulting in a change
of the two populations. Finally, the populations of the two modes are read out by
measuring the power spectral density of each mode. We average over 50 such cycles.
Figure 3.13(d) shows Rabi oscillations for δd = 0 (i.e. ωd = ∆ωx). Since we are
using NW2 which has an intrinsic orientation of β ∼ 45◦ respect to our detection
direction (see Fig.3.3), at Vg = Vx the modes result aligned approximately parallel
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(mode |−〉) and perpendicular (mode |+〉) to the optical axis of the interferometer
(see Fig.3.12(b)). Consequently, the displacement noise of mode |+〉 is below our de-
tection noise, and Rabi oscillations are hard to detect. Instead, for a small but finite
δd (i.e. ωd = ∆ωx + δd), the modes are rotated with respect to the optical axis, and
Rabi oscillations can be detected for both modes (see Fig. 3.13(e)). In this case, the
Rabi oscillations result in only a partial transfer of populations, as can be understood
from the schematic depiction of the Bloch sphere in Fig. 3.13(c). For δd = 0, the
Rabi frequency depends linearly on the drive amplitude A, where A is a quadratic
function of Vd. We observe Rabi frequencies in the kHz-regime, with a maximum of
4.5 kHz, as determined from fitting Eq. 3.20 to the data. The same fits return values
for the relaxation time T1 = M/Γ = Q/ω between 0.6 and 1.5 ms, in agreement with
independent ringdown measurements.

Interestingly, our driven two-mode system is close to the regime of strong driving,
with the Rabi frequency ωR approaching the transition frequency ∆ωx. We observe
a maximum of roughly ωR = ∆ωx/3. When a two-level system is strongly driven,
its dynamics is not simply sinusoidal anymore, but can become anharmonic and non-
linear. In other systems, ripples on top of sinusoidal oscillations have been observed
[118], as well as oscillations that are faster than expected from the Rabi model[119,
120]. Such effects may explain irregularities in our measurements. Furthermore, note
that in our experiments we were limited by our electronics allowing only a limited
amplitude A of the Rabi drive, and higher Rabi frequencies should be feasible. This
would enable further studies of the strong driving regime in the case of a classical
two-mode system.

3.7 Discussion and outlook

Our measurements demonstrate the potential of NWs as sensitive scanning vectorial
force sensors. By monitoring two orthogonal flexural modes while scanning over a
sample surface, we map forces and force derivatives in 2D. While we demonstrate
the technique on electrostatic tip-sample interactions, The ability to vectorially map
electric fields on the nanometer-scale extends the capability of conventional AFM to
image charges [121, 122] and contact potential differences [97] and has applications in
localizing electronic defects on or near surfaces, e.g. in microelectronic failure analysis.

The technique has a universal applicability, given a proper functionalization of the
NW tip, and can for instance be used to measure magnetic forces [25] – as will be
shown in the next Chapter – or even in liquid [71] for the study of batteries, water
splitting, or fuel cells. Note that in the presented data, the 350 to 400-nm diameters
of the NW tip strongly limited the spatial resolution of the microscopy. Nevertheless,
the same directional technique could be applied to NWs grown or processed to have
sharp tips [75], presenting the possibility of atomic-scale or even sub-atomic-scale
force microscopy, a feature already achieved in 1D [102]. The vectorial nature of the
NW-based non contact-AFM is therefore ideal to reveal anisotropies of non-contact
friction and forces like atomic bonding forces.
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Chapter 4

Magnetic Force Sensing Using a
Self-Assembled Nanowire

4.1 Introduction

In magnetic force microscopy (MFM), mass-produced ‘top-down’ Si cantilevers with
sharp tips coated by a magnetic material represent the current standard since many
years. Under ideal conditions, state-of-the-art MFM can reach spatial resolutions
down to 10 nm [123], though more typically around 100 nm. These conventional
cantilevers are well-suited for the measurement of the large forces and force gradients
produced by strongly magnetized samples.
In this context, nanostructures grown by ‘bottom-up’ techniques, such as carbon nan-
otubes (CNTs), have been used to functionalize AFM cantilevers’s tip in order to
obtain finer spacial resolution. Such a tiny extension serves essentially as a tem-
plate to achieve a very localized and highly concentrated deposition of the magnetic
material [124–127]. However, even in these implementations, the cantilever’s force
sensitivity is imposing stringent conditions on the detectable magnetic signal as a
function of tip-sample distance, tip’s volume and magnetization.

As discussed throughout this thesis, in order to overcome these limitations, it is
possible to use NWs and CNTs as mechanical force transducers in scanning probe
applications, exploiting their mechanical properties and very high force sensitivity.
In principle, such sensitivity to small forces allows to operate MFM in a different
regime, allowing on the one hand to detect very weak magnetic fields and therefore
to image subtle magnetic patterns, on the other hand to use even tinier magnetic tips
to achieve nanometer-scale spatial resolution, while also reducing the invasiveness
of the tip on the sample under investigation. Such improvements are crucial for
imaging nanometer-scale magnetization textures such as domain walls, vortices and
skyrmions [128–131]; superconducuting vortices [132, 133]; mesoscopic transport in
two-dimensional systems [134]; and small ensembles of nuclear spins [14, 135–137].

Following from recent experiments introducing the use of single NWs and CNTs as
sensitive scanning force sensors [22, 23, 138], including the one discussed in the pre-
vious chapter [33], we aimed to integrate a magnetic tip onto a NW transducer and
therefore to give a proof-of-principle of ‘NW-MFM’. Due to its singly-clamped beam
geometry, the NW is arranged in the pendulum geometry to probe both the size and
direction of weak in-plane magnetic forces, maintaining excellent force sensitivities
of few aN/

√
Hz near sample surfaces (< 100 nm), due to extremely low non-contact

friction [29].

In this chapter, remaining in the framework of self-assembled as-grown NWs,
we demonstrate such MFM transducers using individual GaAs NWs with integrated
single-crystal MnAs tips, grown by molecular beam epitaxy (MBE).
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We first introduce the structural and magnetic properties of the sample. Then, by
monitoring the motion of each NW’s flexural mode in a static magnetic field, we are
not only able to determine its mechanical properties, but also to characterize the MnAs
nanomagnet at the tip via dynamic torque magnetometry. Moreover, we determine
the equilibrium magnetization configurations of each tip by comparing its magnetic
response with micromagnetic simulations.
Finally, in order to determine the sensitivity and resolution of the NWs as MFM
probes, we use them as scanning probes in the pendulum geometry. By analyzing
their response to the magnetic field produced by a lithographically patterned current-
carrying wire, we find that the MnAs tips can be approximated as magnetic dipoles.
The thermally-limited sensitivity of a typical NW to magnetic field gradients is found
to be 11 mT/(m

√
Hz), which corresponds to the gradient produced by 63 nA/

√
Hz

through the wire at a tip-sample spacing of 250 nm.

4.2 GaAs nanowires with a ferromagnetic MnAs tip

In the group led by Prof. D. Bougeard at University of Regensburg, has been de-
veloped a method for the epitaxial growth of single ferromagnetic MnAs nanoscale
segments in GaAs NWs [35]. The NWs are grown with the Ga-catalyzed growth
method [74] using Si(111) wafers covered with a thin layer of native oxide as a sub-
strate and a growth temperature of 600◦.
In order to terminate the growth with a magnetic tip, the liquid Ga catalyst droplet at
the top of the NW is heavily alloyed by a Mn flux. Then, to initiate its crystallization,
it is exposed to an As4 background pressure for 30 min. Under such conditions, the
droplet undergoes a sequential precipitation: first, the Ga is preferentially consumed
to build pure GaAs; next, the remaining Mn crystallizes in the form of MnAs. The
outcome of such procedure is shown at the tip of a NW in the bright field STEM
image in Fig. 4.1(a). The chemical composition in the corresponding area has been
detected by energy-dispersive X-ray spectroscopy (EDX) and confirms a homogeneous
content of As and a net separation between Ga and Mn, the latter only confined in
the tip region (Fig. 4.1(b,c,d)).
Furthermore, the crystallinity of both GaAs and MnAs phases is revealed by hi-
resolution TEM imaging. The GaAs wire is mostly zinc-blende (ZB) with few twin
planes. In the final part shown in Fig. 4.1(e), a short GaAs wurzite (WB) segment
is followed by few nanometers of GaAs ZB, as expected from the consumption and
precipitation of the Ga from the Ga-Mn alloy in the tip’s droplet. On top, the MnAs
compound can be clearly identified as a well-defined hexagonal α-MnAs WZ crystal,
with an epitaxial relationship [0001]MnAs‖[111]GaAs along the growth axis (i.e. NW’s
axis).

4.2.1 Magnetic properties of MnAs(0001)/GaAs(111)

Bulk MnAs compound was already studied more than a hundred years ago, in 1904,
by Heusler [140]. Few years later, in 1911, its ferromagnetism and two polymorphic
phase transformations were discovered by Hilpert and Dieckmann [141].
In fact, MnAs can adopt three different phases depending on the lattice temperature.
A first order transition is observed around 40

◦ where the ferromagnetic hexagonal
α-MnAs phase starts turning into an orthorhombic β-MnAs phase, which is usually
assumed to be paramagnetic. The shrinking of the hexagonal lattice cell causes a
reduction in volume and the ferromagnetic coupling to disappear, therefore setting
the Curie temperature of MnAs just above RT at TC ≈ 40◦.
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a dcb
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Figure 4.1 | Composition and crystal structure of MnAs-tipped
nanowires.
(a) Bright field STEM and (b,c,d) EDX maps for Ga, As and Mn at
the tip region of the nanowire. (e) HRTEM image of the dotted area
in (a). Epitaxial relations in the lower right corner are referred to the
ZB GaAs final layer. Adopted from [139].

Notably, the α-β transition presents thermal hysteresis and the two phases can coexist
around RT [142, 143]. A second order transition at 126◦ reverses the crystal structure
back to WZ, without any volume change.

With the advances in nanotechnologies, MBE grown ferromagnet/semiconductor hy-
brid structures such as MnAs/GaAs has been extensively studied as potential can-
didates for spintronics at RT [144]. Due to the high technological relevance of the
GaAs(001) surface, most of the studies focus on this substrate’s orientation. Here,
the hexagonal MnAs crystal structure is growing with the c-axis lying in-plane (i.e. or-
thorhombic unit cell). The lattice constant c contracts much more than the under-
neath GaAs lattice constant while cooling down to RT, causing a very pronounced
strain-induced in-plane anisotropy of the physical properties of the film, reflected in
a strong uniaxial (in-plane) magnetic anisotropy (Fig. 4.2(c)).
On the contrary, MnAs on GaAs(111), i.e. the growth orientation of our magnetic
tips, has the c-axis (0001) perpendicular to the substrate and therefore free to relax
[145]. Minor biaxial strain is released in-plane to accommodate the different lattice
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a b

c

Figure 4.2 | MnAs/GaAs crystalline configurations and epitaxial rela-
tions.
(a) Sketch of the crystal orientations of WZ MnAs (above) grown on
the (111) surface of a ZB GaAs crystal (below). Adopted from [145].
(b) MnAs/GaAs(111). On the left, crystal structure of α-MnAs con-
sisting of hexagonal planes of Mn and As. Unit cell highlighted in red.
On the right, epitaxial scheme with biaxial compressive strain indi-
cated by arrows. (c) MnAs/GaAs(001). On the left, orthorhombical
crystal structure with a distorted unit cell highlighted in red. On the
right, epitaxial scheme with uniaxial compressive strain indicated by
arrows along the a-axis‖[110]. Magnetocrystalline anisotropy is quite
strong in the sample plane, with easy and hard axis being the a and c
axis, respectively. Adopted from [146].

constants between the hexagonal WZ MnAs (a = 3.725 Å and c = 5.713 Å) and cubic
ZB GaAs (a = 5.65 Å). In such configuration, the MnAs crystal is characterized by a
strong magnetocrystalline anisotropy K in the form of a magnetic hard axis parallel
to the c-axis, which, in general, is coincident with the NW growth direction. As a
result, the magnetization will tend to lie in the growth plane being a nearly isotropic
magnetic easy plane [143]. Additional factors like strain and shape anisotropy can
potentially lift the degeneracy of the in-plane directions.

The main magnetic parameters for MnAs, summarized in Table 4.1, have been taken
from literature and deployed in our micromagnetic simulation described in 4.3.2. Since
no study at 4 K has been reported, assuming a minor dependence with temperature,
the parameters are all referred to RT except for the magnetocristalline anisotropy,
which was measured in bulk at 77 K [147].

Symbol Value

Saturation magnetization [143] µ0Ms 1.005 T
Exchange stiffness constant [143] Aex 10 pJ/m
Uniaxial magnetocrystalline anisotropy [147] K −1.2× 106 J/m3

Table 4.1 | MnAs/GaAs(111) magnetic parameters.
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4.2.2 Mechanical properties

SEM micrographs of the growth batch used in this experiment are shown in Fig. 4.3.
Most of the NWs are perpendicular to the substrate (i.e. [111] direction) with a length
of 17± 1 µm and a diameter of 225± 15 nm. To a lesser extent, also parasitic growth
occurs along other angled direction, as typically observed on Si(111) wafers. The NWs
show slight inverse tapering of about 0.2%, while a wider tapering (∼ 10%) is usually
present at the base due to the radial growth stabilization at the beginning of the
process (Fig. 4.3(a)). These deviations from the ideal NW geometry with constant
cross-section can contribute to the frequency splitting of the modes and to marginal
changes of the effective mass for the first order mode. A crystallized MnAs tip is
present in the vast majority of the standing NWs; the regularity of its shape and
faceting can vary significantly, due to its self-assembled nature (Fig. 4.3(b)).

460 nm

214 nm

234 nm

a b

220 nm

235 nm

c

Figure 4.3 | SEM micrographs of GaAs NWs with MnAs tip.
(a) Vertical standing NW on the unprocessed wafer. Zoomed-in insets
of the tip and base area. (b) Particular of crystallized MnAs tips
(scale-bar 1µm). Images taken by F. Dirnberger. (c) Particular of the
processed chip with NWs standing next to the cleaved edge (scale-bar
10µm).

Following the procedure described in Appendix B, a small chip (∼ 1-2 mm2) is ob-
tained from the growth 2′′ wafer, modified and installed in our measuring setup (Sec-
tion 2.1). In first place, by means of a micro-manipulator, only a single row of vertical
standing NWs is left along the designated reference cleaved edge. After SEM imaging,
the NWs not showing a crystallized MnAs tip or much shorter than the average are se-
lectively removed from the chip. The resulting sample – partially shown in Fig. 4.3(c)
– consists of tens of NWs spaced at least by 5 µm > 2w0 to avoid the presence of more
than one NW in the focal spot and therefore the simultaneous detection of multiple
NWs’ motion.
More than 50 NWs have been characterized thanks to the ease of navigation in such
an array-like configuration. Each doublet of mechanical frequencies served also as a
tag to backtrack the NWs of interest.
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Fig. 4.4 shows a typical thermal noise spectrum measured in our setup. In general,
resonance frequencies range from 500 to 700 kHz and, for each NW, the doublet modes
are completely separated by a frequency splitting δ of several hundred times the peak
line width, given the high quality factors. The two modes’ mechanical parameters can
be extracted just by fitting the data with Eq. (1.49).
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Figure 4.4 | Displacement noise spectrum of a MnAs-tipped GaAs NW.
Power spectral density (PSD) of the thermally excited NW’s displace-
ment measured with an incident optical power of 25µW. The two
peaks, highlighted in blue and red, correspond to the doublet of first
order flexural modes. The raw data is fitted by the black line. The
extracted resonance frequency, spring constant, and intrinsic quality
factor of the first (second) mode are f01

= 581 kHz, k1 = 10.5 mN/m
and Q1 = 44650 (f02 = 615 kHz, k2 = 11.6 mN/m and Q2 = 48456).
Estimated motional mass is M = 780 fg. The first mode is rotated
by an angle β = 70◦ respect to the measurement direction. Insets:
sketch of the extracted polarizations direction with respect to the vec-
tor measurement eβ ‖ optical axis. On the right, SEM micrograph of
the measured NW with hexagonal cross-section of maximal diameter
234 nm and length 16.8 µm.

In the cooling process from RT to 4.2 K, the resonant frequencies of the NWs’ first
order flexural modes shift by about +8 kHz. This stiffening is related to the Young
modulus’ temperature dependence in GaAs [148]. A similar behavior was observed
also for core-shell GaAs/AlGaAs NWs studied in Chapter 3.
At RT, typical quality factors start from several hundreds in air and improve by
a factor ×10 in vacuum already at a pressure of ∼ 10−3 mbar, due to the drastic
decrease of viscous and acoustic damping. By cooling the resonator at liquid helium
temperature, the modes’ quality factors usually gain another factor ×10. Their values
range between 2 × 104 and 5 × 104, differing from each other by less than 1%. The
spring constants extracted from fits to the PSD for each flexural mode are on the order
of 10 mN/m, yielding a mechanical dissipation (friction coefficient) and a thermally
limited force sensitivity down to 50 pg/s and 3 aN/Hz, respectively.
With a systematic study of the thermal noise PSD at several positions along the NW
and at different laser powers, we observed a heating of the NW above the 4.2 K bath
temperature up to 15 K, when the detection spot overlaps with the MnAs particle.
Similar effects were reported on Si NWs with Au catalyst particle at the tip [24]. For
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scanning purposes, however, this aspect is irrelevant since the laser is focalized far
away from the NW extremity.

4.3 Nanowire dynamic torque magnetometry

In order to use our NWs as magnetic sensors it is crucial to be able to obtain a char-
acterization of their magnetic behavior. In fact, similarly to MFM, the mechanical
response of the NW in an external magnetic field will depend on the tip’s magnetic
configuration. Thanks to the high mechanical sensitivity of the NWs and to the pos-
sibility to apply an homogeneous magnetic field in our setup, we were able to probe
the magnetization of each individual magnetic tip by means of a technique known as
dynamic cantilever magnetometry (DCM).
This technique has enabled a large variety of experiments including the measurement
of magnetic dissipation in individual nanomagnets [149], persistent currents in normal
metal rings [10], magnetization reversal processes and vortex-like states in magnetic
nanotubes [9, 150, 151] and skyrmion phase mapping in MnSi NWs [8].

Conventional cantilever torque magnetometry detects with high sensitivity the
weak magnetic response of nanometer-scale samples mounted on a cantilever and
placed in a homogeneous external field B. The sample’s net magnetic dipole moment
m(B) will therefore exert a torque τ = m × B on the cantilever. Generally, three
distinct modes of operation can be distinguished:

1. The static mode measures the deflection of the cantilever caused by the torque.
Despite enabling a direct measurement of the magnetization, this method does
not operate at cantilever’s resonance and therefore sacrifices sensitivity.

2. The dynamic cantilever magnetometry (DCM) - used in this thesis - measures
the resonator’s frequency and dissipation as a function of the applied static field.
As a consequence, it requires a model of the magnetization in order to extract
quantitative information above the sample’s magnetic properties1.

3. The phase-locked cantilever magnetometry [152] combines the two previous tech-
niques measuring a dynamic deflection excited by a small alternating torque field
orthogonal to a static field. The complexity of the required setup is a major
drawback.

It is important to remark the fact that cantilever torque magnetometry provides an
integral measurement, averaged over the entire specimen’s volume. Dynamic mag-
netometry (mode 2 and 3) offers a number of advantages in comparison to static
magnetometry (mode 1). By operating at the resonant frequency, the measurement
is better decoupled from 1/f noise and the displacement sensitivity is enhanced by
the quality factor Q of the resonator, which greatly facilitates thermal limited force
detection.
Magnetization dynamics are not accessible since these methods are limited to the

1Methods see 4.3.2
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resonator’s frequency which is usually in the kHz range and thus well below relevant
time scales. Hence, DCM data always corresponds to magnetization being in equi-
librium. This kind of magnetometry is minimally invasive since the motion readout
avoids perturbation of the sample’s magnetization by currents as used in transport
measurements, intense illumination or inhomogeneous magnetic fields.

4.3.1 Basic principles of dynamic cantilever magnetometry

As-grown MnAs tipped GaAs NWs constitute a device which can be directly charac-
terized by DCM: it provides a magnetic tip at the apex, epitaxially grown onto a high
quality mechanical resonator.
As shown in Section 3.3.2, each mode can be treated as an independent damped
harmonic oscillator, in the limit of small oscillations and in absence of coupling via
external force field gradients.
The equation of motion for each mode can be expressed as

Mr̈i + Γiṙi = τi/le (4.1)

where M and le are the effective mass and effective length, respectively. For i = 1,2,
each mode is polarized along the in-plane direction r̂i perpendicular to the NW’s axis
n̂, has a mechanical dissipation Γi and senses a torque τi. Each mode’s deflection
angle θi, associated to a displacement ri = leθi (for θi � 1◦), depends on the torque
exerted on the mode along its correspondent axis of rotation. The total energy Ei for
the i-th mode of a NW with a magnetic tip is simply given by the sum of two terms:
the mechanical energy in the form of a harmonic oscillator with spring constant ki
and a generic magnetic energy term Em that will be later better specified.

Ei =
1

2
ki(leθi)

2 + Em (4.2)

In the small angle regime, we can express the torque τi = −∂Ei/∂θi in terms of the
mode’s energy Ei by expanding to the first order around the mode’s equilibrium angle
θi = 0 and obtain

τi = −
(
∂Em
∂θi

∣∣∣∣
θi=0

)
−
[
kil

2
e +

(
∂2Em
∂θ2

i

∣∣∣∣
θi=0

)]
θi (4.3)

By replacing (4.3) into (4.1) and rearranging, we obtain the following equation of
motion for each mode

Mr̈i + Γiṙi +

[
ki +

1

l2e

(
∂2Em
∂θ2

i

∣∣∣∣
θi=0

)]
ri = − 1

le

(
∂Em
∂θi

∣∣∣∣
θi=0

)
(4.4)

Here, the two torque components related to Em in (4.3) produce a constant deflec-
tion of the NW along r̂i and a shift by k̃i of the original mode’s spring constant
ki, respectively. The latter translates into a shift of the angular resonance fre-

quency ωi =
√

(ki + k̃i)/M , which is the measured quantity in DCM. Note that,
since the resonator is highly under-damped, the terms related to damping are ne-
glected and in absence of magnetic interaction the bare frequency is just given by
ω0i = 2πf0i =

√
ki/M .



4.3. Nanowire dynamic torque magnetometry 87

Finally, we can write an expression for the measured frequency shifts2 ∆fi =
fi − f0i as a function of the applied static magnetic field B affecting the magnetic
tip’s energy Em(B)

∆fi(B) =
f0i

2kil2e

(
∂2Em
∂θ2

i

∣∣∣∣
θi=0

)
(4.5)

In such a field, by monitoring the resonance frequency of each orthogonal flexural
mode fi, it is possible to probe simultaneously the curvature of the tip’s magnetic
energy Em along two orthogonal directions. This is an additional feature in contrast
with traditional DCM, where multiple cantilevers and samples mounted in various
orientations are required [9, 150].

4.3.2 Magnetic energy and numerical simulations

In order to establish a framework from which to predict and interpret our DCM data
via the equation (4.5), it is crucial to provide a model for the MnAs tip’s magnetiza-
tion, and therefore for Em.

Analytical model

By assuming our tip to be an idealized single-domain magnet, the magnetization
M = Msm̂ is supposed uniform throughout its volume V , with magnitude equal
to magnetization saturation Ms and directed along the unit vector m̂. Em can be
approximated by the sum of a Zeeman term dependent on the external field B and
an anisotropy term related to the magnet’s properties [149]:

Em = −VM ·B−KV (M · k̂)2 (4.6)

As discussed in Section 4.2.1, MnAs(0001)/GaAs(111) is a hexagonal system with
a strong magnetocrystalline anisotropy. The anisotropy energy is expanded up to
several orders, but our analysis is restricted to the dominant first two terms, which
determine a uniaxial anisotropy K along the unit vector k̂, collinear to the c-axis of
the lattice [147]. Since K � 0, as reported in Table (4.1), k̂ is the hard axis direction
for the magnetization, which will tend to lie in the easy plane orthogonal to it.

It is important to remark that equation (4.6) gives a simplified description of the
tip’s magnetism and does not include second order effects such as shape and mag-
netoelastic anisotropy, which can play an important role in breaking the basal plane
isotropy.

In the high-field limit, when |B| � |K|/Ms, M stays aligned to the external field
B, regardless of the magnetic tip’s orientation. Therefore, the first term in (4.6) is
a constant and does not contribute to the measured frequency shifts in (4.5). This
regime, is of particular interest to characterize the sample’s saturation magnetization
Ms (or alternatively its volume V ) and probe its anistropy.
In our case, with B ideally parallel to the hard axis K, the system is in the most
unfavorable configuration (maximum of Em) and therefore the asymptotic limits of

2For complete derivation see SI [8]
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∆fi are expected to be negative. Moreover, since tip oscillates in two orthogonal
directions, any difference in ∆fi gives information on of additional anistropy present
in the easy plane.

In the low-field limit when |B| � |K|/Ms, the crystalline anisotropy dominates
the magnetic energy and the model becomes inconclusive, since the magnetization
is lying in the easy plane. For our MnAs nanoparticles, the measured data in this
region is usually rich of features related to complex and non-uniform magnetization
configuration. For this main reason we have to rely on numerical calculations for the
interpretation of our experimental results.

Numerical model

In order to obtain a complete understanding of DCM measurements, we carry out
numerical simulation of the tip’s magnetization mainly with two open-source software
packages: Nmag [153], which is based on the finite element method and MuMax 3

[154], based on the finite element difference method. Both software packages use mi-
cromagnetic formalism and solve numerically the Landau-Lifschitz-Gilbert equation.
After checking the physical equivalence of the results provided by the both meth-
ods, MuMax 3 has been preferred for its high computational performance given by
GPU-acceleration at the cost of a simpler space discretization in cubic meshes.

We model the geometry of each MnAs magnetic tip based on observations made
by SEM. The side of the cubic mesh elements is set to 5 nm, corresponding to the
dipolar exchange length of the material lex =

√
2Aex/(µ0Ms)2. The validity of this

discretization is confirmed by comparing the results of a few representative simula-
tions with simulations using much smaller mesh sizes.
With the magnetic parameters listed in Table (4.1), MuMax 3 calculates the equi-
librium magnetization configuration for each external field value. Because the micro-
scopic processes in a MnAs tip are expected to be much faster than the NW resonance
frequencies, the magnetization of the tip is assumed to be in its equilibrium orienta-
tion throughout the NW oscillation.
The simulation also yields the total magnetic energy Em corresponding to each of
the configuration. We calculate ∆fi in (4.5) by numerically evaluating the second
derivatives of Em with respect to θi.

B

2
1

n

r2r1 B

k kk

2 = -δ2 2 =+δ22 = 0

Em (-δ2) Em (0) Em (+δ2)

Figure 4.5 | Sketch for NW magnetometry measurement and simulation
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As sketched in 4.5, for each field we calculate Em at the equilibrium angles θi = 0
and at tiny tilt angles δθi < 0.3◦ along the NW modes’ orientation i.e. θi = ±δθi. The
second derivative can be approximated by a finite difference:

∂2Em
∂θ2

i

∣∣∣∣
θi=0

≈ Em(δθi)− 2Em(0) + Em(−δθi)
(δθi)2

(4.7)

By setting f0i, ki and le to their measured values, we then arrive at the ∆fi(B)
corresponding to each magnetization configuration in the numerically calculated field
dependence.

In the simulated geometry, every vector is referred to the orthogonal reference
system {r̂1, r̂2, n̂} defined by the modes’ direction and the NW’s axis. Note that, in
practice, the process of fitting to the data requires multiple iterations to tune the
simulation parameters affected by uncertainties on the tip’s geometry and possible
misalignment of vectorial quantities such as B and K, respect to the NW axis n̂.

4.3.3 MnAs tips DCM: experimental results and analysis

The measurements are carried out by saturating the tip at the maximum field for our
setup of ±8 T and stepping it down to ∓8 T, while acquiring a PSD of the NW’s
displacement noise at intermediate points.
The partitioning of the sweeping range [±8T,∓8T ] is not homogenous and depends on
the magnetic properties of the sample. Typically, the measurement points are spaced
out by an interval ∆B ∼ 100 mT in the high field range which gets refined down to
few mT at low field.
We chose to acquire full thermal noise spectra instead of tracking of the driven reso-
nance frequencies via phase-locked loop or self-oscillation protocols, both for simplicity
of implementation and ’isotropy’ of the thermal driving force. When working at high
fields, drift of few micrometers can occur in our microscope requiring additional care
to maintain the alignment of the NW respect to the lens, conversely to a conventional
cantilever.

The entire experiment is performed by a LabView VI program consisting of the
following steps for each measurement point:

1. ramping and settling to the current magnetic field value;

2. re-centering of the NW in the xy-plane for optimal motion detection (i.e. the
maximum optical gradient position on the optical axis);

3. re-calibration of voltage-to-displacement coefficient3 in the current position;

4. acquisition of the thermal displacement PSD and extraction of the modes’ res-
onance frequencies.

For nearly all investigated NWs (11 out of 12), ∆fi(B) is negative for all applied
fields. In general, negative values of ∆fi correspond to a local maximum in Em(θi)
with respect to θi. As predicted by the simple analytical model described in 4.3.2,
this is consistent with B being aligned along the magnetic hard axis of the MnAs tip,
which ideally coincides with the NW axis n̂.

3Methods see 2.2.3
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We present here data related to three NWs as a representative set of the variety
of magnetic behaviors found in our sample. For each NW, DCM has been performed
sweeping the external field in both directions, but, due to the exact specularity of the
frequency curves, only data related to ‘positive to negative’ sweep (+8 T→ −8 T)
are reported. More details about the simulated tip geometries and fit parameters are
given in Appendix C.

NW1: ideal easy plane. In Fig. 4.6(a), NW1 shows a particularly ideal magnetic
response, in which the frequency shift of both modes asymptotically approaches the
same negative value at high-field. This behavior indicates a MnAs particle with a hard
axis along n̂ and no preferred easy axis in the r1r2-plane. The DCM response of the
MnAs tip measured in Fig. 4.6(a) and shown in the inset is simulated by approximat-
ing its shape as a half ellipsoid, with dimensions given in the inset of Fig. 4.6(b) and
its caption. The excellent agreement between the measured and simulated ∆fi(B),
plotted in Figs. 4.6(a) and (b), respectively, allows us to precisely determine the direc-
tion of the magnetic hard axis K. As expected, this axis is found to be nearly along
n̂: just θK = 2.5◦ away from n̂ and φK = 19.5◦ from r̂1.

Furthermore, as shown in Fig. 4.6(c), the simulations relate a specific magne-
tization configuration to each value of H. In this particular case, a stable vortex
configuration in the easy plane is seen to enter (exit) from the edge in correspondence
with the abrupt discontinuities in the eigenmodes’ frequencies around +2 T (−2 T).
Between these two fields, the vortex core moves from one side to the other, inducing
several discontinuities in ∆fi(B). The smoothness of the measured frequency shifts
around B = 0 T indicates pinning of the vortex and is well-reproduced in the simu-
lation by the introduction of two sites of pinned magnetization. This is modeled in
Mumax 3 by freezing the magnetization on a region of 4 cells (∼ 10 nm×10 nm) along
the entire tip’s height. In one case the magnetization is fixed along −n̂ and in the
other along +n̂. The second pinning point on the vortex trajectory 4 is not crucial for
the evolution of the reversal process but counteracts in terms of energy the presence
of the first one, preserving the symmetry of the frequency shift asymptotes for both
the negative and positive high field limit.

NW2: anisotropic easy plane. The majority of the measured NWs (10 out of
12) present DCM curves as shown by NW2 in Fig. 4.7(a). Despite the similarity of
these curves to those shown in Fig. 4.6(a), no sharp discontinuity is observed upon
sweeping B down from saturation (forward applied field). Furthermore, the high-field
frequency shift of both modes does not asymptotically approach the same negative
value as in Fig. 4.6(a). Both of these effects can be explained by taking into account
magnetic shape anisotropy in the MnAs tips (a similar result could be caused also by
in-plane strain formed during the crystallization process). Despite the nearly perfect
symmetry of NW1’s tip, most of the crystallized MnAs droplets are asymmetric in
the r1r2-plane. This asymmetry introduces an effective magnetic easy axis in the
r1r2-plane. In fact, the measured ∆fi(B) shown in Fig. 4.7(a) are well-reproduced by
a simulation that takes into a account the geometry of NW2’s MnAs tip as observed
by SEM. While small refinements in the microscopic geometry, which often cannot be
confirmed by the SEM, affect how well the the simulation matches every detail of the

4See video NW1 in SI [25]
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Figure 4.6 | NW1 - MnAs tip magnetometry: zero-field vortex state.
(a) Plot of the ∆fi(B) for i = 1 (i = 2) in blue (red), extracted at each
B from the thermal displacement PSD. The bare resonance frequencies
and spring constants are f01

= 613 kHz, f02
= 636 kHz and k1 = 7.7

mN/m, k2 = 8.3 mN/m, respectively. Inset: false-color SEM of NW1’s
MnAs tip with a 200 nm scale-bar. (b) Plot of the corresponding
∆fi(B) simulated for a half-ellipsoid. Inset: schematic diagram of
the half-ellipsoid geometry used to approximate the MnAs tip, where
a = 85 nm, b = 90 nm, c = 95 nm. The simulation uses parameters for
MnAs listed in Table (4.1) and the hard axis direction k̂ (purple arrow)
is given by θK = 4.2◦ and φK = 45.5◦. Black dots and crosses indicate
the position and direction of the sites of pinned magnetization. (c)
Simulated magnetization configurations for B indicated by the dashed
lines. Each cone, associated with a discretized volume, is color-coded
with the magnitude of the magnetization component along r̂1. Large
black arrows indicate the net magnetization for B = ±8 T.
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Figure 4.7 | NW2 - MnAs tip magnetometry: zero field in-plane dipole.
(a) Plot of the ∆fi(B) for i = 1 (i = 2) in blue (red), extracted at
each B from the thermal displacement PSD. Inset: false-color SEM of
NW2’s MnAs tip with a 200 nm scale-bar. (b) Plot of the correspond-
ing simulated ∆fi(B). For NW2, the frequency shifts are calculated by
using the mechanical characteristics extracted from its displacement
noise spectrum, shown in Fig. 4.4. Inset: tip modeled as a truncated
asymmetric ellipsoid of length l = 230 nm, width w = 115 nm, and
depth h = 110 nm. The hard axis (purple arrow) is set to θK = 8◦

and φK = −9.5◦. (c) Simulated magnetization configurations for B
indicated by the dashed lines. Large black arrows pointing out of plane
indicate the net magnetization for B = ±8 T. Note that at zero field
the tip presents a net magnetization lying entirely in-plane.
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Figure 4.8 | NW3 - MnAs tip magnetometry: anomalous hard axis tilt.
(a) Plot of the ∆fi(B) for i = 1 (i = 2) in blue (red), extracted
at each B from the thermal displacement PSD. On the side: false-
color SEM of NW2’s MnAs tip with a 200 nm scale-bar. The bare
resonance frequencies and spring constants are f01

= 435 kHz, f02
=

447 kHz and k1 = 14.3 mN/m, k2 = 15 mN/m, respectively. (b)
Plot of the calculated ∆fi(B). On the side: simulated tip’s geometry
approximated as an elongated ellipsoid with a = b = 85 nm and c =
90 nm and it is tilted with respect to the modes’ reference system, so
that its semi-axis c is tilted by θt = 20◦ and φt = 210◦ with respect to
n̂. The hard axis (purple arrow) is nearly perpendicular to n̂ with θK =
68.3◦ and φK = 142.2◦. (c) Simulated magnetization configurations
for B indicated by the dashed lines. Each cell is color-coded with
the magnitude of the magnetization component along r̂1. Large black
arrows indicate the net magnetization for B = ±8 T.
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measured ∆fi(B), the precise orientation of the hard axis and the direction of the
effective shape anisotropy in the r1r2-plane sensitively determine the curves’ overall
features (e.g. their high field asymptotes and shape).

In general, simulations show that shape anisotropy restricts the field range for a
stable magnetic vortex to reverse applied field. In small forward applied field and in
remanence, the magnetization evolves through a configuration with a net magnetic
dipole in the r1r2-plane. Only upon application of a reverse field, does this config-
uration smoothly transform into a vortex 5, resulting – for NW2 – in a subtle dip
in ∆fi(B) around B = −0.3 T. At a reverse field close to B = −2 T, an abrupt
jump indicates the vortex’s exit and the appearance of a single-domain state, which
eventually turns toward B. This analysis indicates that NW2’s tip – as well as the
majority of the MnAs tips – present a dipole-like remanent configuration pointing in
the r1r2-plane, rather than vortex-like configuration with a core pointing along n̂, as
in NW1. Such remanent magnetic dipoles have been already observed by MFM in a
previous batch of such NWs [35] and in analogous MnAs nanocrystals [155, 156].

NW3: tilted hard axis. In the rare case (1 of 12) of NW3 reported in Fig. 4.8
(a), we measure mostly positive ∆fi(B) with different high-field asymptotes for each
eigenmode. This behavior indicates a MnAs particle, whose hard axis points approx-
imately in the r1r2-plane. In fact, the features of the measured ∆fi(B) in Fig. 4.8(b)
are reproduced by a simulation considering a nearly symmetric half-ellipsoid with a
hard-axis lying θK = 68.3◦ from n̂ and φK = 142.2◦ from r̂1. These data are clear evi-
dence that crystallization of the liquid droplet can occasionally occur along a direction
far off of the NW growth axis.

4.4 Dynamical current sensing

In order to test the behavior of these NWs as scanning magnetic sensors, we approach
a typical one (NW2) to a current-carrying Au wire patterned on a SiO2 substrate,
as described in Fig. 4.9. Once in the vicinity of the wire constriction, the NW’s two
modes are excited by the Biot-Savart field BAC resulting from an oscillating drive
current I = I1 sin(2πf1t) + I2 sin(2πf2t), where I1 = I2 = 50µA.
Single 10µm-long line scans are acquired by moving the NW across the wire at the
fixed tip-sample spacing dz = 250 nm. This spacing is chosen to match the scanning
probe’s tip size, since getting closer would not improve its spatial resolution. Both the
resonant frequencies fi and displacement amplitudes ri are tracked using two phase-
locked loops (PLL) and the corresponding values of the force Fi driving each mode at
resonance are then calculated as 6

Fi =
ki
Qi
ri (4.8)

Using an approach similar to that used to calibrate MFM tips [157, 158], we model
the force exerted by a well-known magnetic field profile on the magnetic tip by using
the so-called point-probe approximation. This approximation models the complex
magnetization distribution of the tip as an effective monopole moment q0 and a dipole
moment m located at a distance d from the tip apex (the monopole contribution
compensates for the non-negligible spatial extent of the tip). The magnetic force

5See video NW2 in SI [25] 6see Section 1.2.1
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Figure 4.9 | Sketch of the setup for dynamical current sensing
Schematic drawing of the bottom sample consisting of a 240-nm-thick
Au wire on an insulating SiO2 substrate. NW2 is approached on the
constriction 3-µm-wide and 6-µm-long and scanned across it, with a
tip-sample spacing dz = 250 nm.

acting on each mode is then given by Di = q0BAC · r̂i +∇(m ·BAC) · r̂i.
Moreover, we also consider the magnetic torque τ = m ×BAC generated at the tip,
which results in a torsion and/or bending of the NW depending on its orientation.
Although this contribution is negligible in MFM with conventional cantilevers, the
short effective length of NWs (le = 12.2µm) and soft spring constant (k1 ≈ k2 ≈
11 mN/m), make the bending component of the torque responsible for an observable
displacement along r̂i, equal to Ti = (l−1

e n̂× τ ) · r̂i.
We then model the total force Fi driving each mode as

Fi = Di + Ti =

[
q0BAC +∇(m ·BAC) +

1

le
n̂× (m×BAC)

]
· r̂i (4.9)

The point-probe model is applied at a distance d = 100 nm from the tip (i.e. ap-
proximately at the base of the MnAs crystallite) for the best fits, while q0 and m are
used as free parameters. The precise spatial dependence of the field BAC produced by
the current I is calculated using the finite-element package COMSOL and is shown in
Appendix D.

We characterize the NW magnetic response at B = −5T and B = 0. In the high
field case shown in Fig. 4.10(a), a fit of the two driving forces is obtained with an effec-
tive dipole m nearly along B with a magnitude |m| = 0.45MsV , where Ms = 1.005 T
is the saturation magnetization of MnAs and V = 2.24 × 10−21 m3 is the volume of
the tip defined in the correspondent magnetometry simulation. In general, the esti-
mation of V from SEM is approximate due to the difficulty in determining the precise
three-dimensional geometry and in distinguishing regions of non-magnetic material
inside the tip or at its surface. The fit returns a small, but non-zero q0 and shows a
very good agreement with the measured forces sensed by the two modes.
In Fig. 4.10(b), the same line scan is performed in absence of external field and, as
expected, the observed response changes radically, since the magnetization lies mostly
in the easy plane and is not completely saturated. In the fit, the effective dipole con-
tribution is dominant and mostly orthogonal to the NW axis n̂ with |m| = 0.3MsV .
As an additional confirmation of the relevance of the magnetic torque at this scales,
the direction of m is closely related to the torque contribution making the fit partic-
ularly sensitive to the in-plane orientation φm of the dipole term.



96 Chapter 4. Magnetic Force Sensing Using a Self-Assembled Nanowire

0 2 104 6 8

B = -5T

Y (μm)

F 2 (
fN
)

F 1 (
fN
)

1

0

-1

0

2

-2

-4

0 2 104 6 8
Y (μm)

F 2 (
fN
)

F 1 (
fN
)

B = 0T

0.5

0

-0.5

0

2

-2

r2r1

n

m q0

θmφm

r2r1

n

m
q0

θm

φm

a

d

y

z

c

y

z

b

Figure 4.10 | Characterization of NW2 as magnetic scanning probe.
Plots of the measured (dotted line) and calculated (solid line) forces
Fi driving the first (blue) and the second (red) mode over a 10 µm
long line scan, as sketched in Fig. 4.9. For each plot, the three distinct
drive contributions in equation 4.9 are shown as dashed lines: the
monopole (black), dipole (gray) and torque (brown) terms. For the
high magnetic field case in (a,c), the simulated response is fit by setting
q0 = −1× 10−10 A·m, |m| = 8× 10−16 A·m2 with θm = 2◦, φm = 20◦.
For the zero field case in (b,d), fitting parameters are set to q0 =
4× 10−11 A·m, |m| = 5.3× 10−16 A·m2 with θm = 87◦, φm = 42◦ .

The results, obtained by using point-pole model for MFM probes, are entirely con-
sistent with the DCM characterization of the MnAs tip obtained for NW2. However,
this technique is dependent on the relation between the size of the tip and the scale of
the field variation. In fact, the contribution of the single-pole and the dipole is sample
dependent and changes with the tip-sample distance [159]. Despite the validity of the
point-pole approximation at dz = 250 nm, for future imaging application at smaller
distances and to obtain quantitative understanding of MFM data, more robust and
general tip calibration procedures have been proposed [160, 161].

Based on both numerical simulations and control experiments, using the applied
magnetic field to initialize the MnAs tip magnetization along opposing directions, we
find spurious electrostatic driving of the NW modes to be negligible.

4.4.1 Current sensitivity

The NWs’ high force sensitivity combined with highly concentrated and strongly mag-
netized dipole-like tips give them an exquisite sensitivity to magnetic field gradients.
In order to quantify this sensitivity – according to the definition we gave in Sec-
tion 1.2.3 – we restrict our attention to the second mode of NW2 (always plotted in
red in this thesis), positioning it at the point of maximal response over the wire at
dz = 250 nm and B = 0 T (i.e. y = 4.5 µm on Fig. 4.10(b)). The displacement
signal r2 is measured with a lock-in amplifier while decreasing the driving current
I = I2 sin(2πf2t).
The sweeps plotted in Fig. 4.11(a) and (b) show the expected linear response as well
as a wide dynamic range. In Fig. 4.11(b), we focus on the low-current regime, showing
both the in-phase X (signal+noise) and quadrature Y (noise) response. By simple
linear regression, we extract the signal as X = βI2/

√
2, with a transduction factor
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Figure 4.11 | NW2 sensitivity to a resonant current drive at distance
dz = 250 nm.
(a) Plot of the oscillation amplitude r2 for each value of the current am-
plitude I2, both quantities are root mean squared. (b) Plot of in-phase
response to the drive (X) and quadrature signal (Y) for a finer current
sweep from I2 = 1 µA to I2 = 1 nA. The lock-in demodulator low-
pass filter noise equivalent bandwidth was set to BWneq = 0.156 Hz
and each point was averaged for 2.5 sec. Both signals are linearly fit
(dark dashed lines). The intersection (light blue cross) between the
linearly fit signal X̄ and the displacement sensitivity (dashed purple
line), shows a current sensitivity of 63 nA/

√
Hz (dashed blue line).

(c) Noise analysis on the quadrature channel Y. On top, a close-up of
the second mode’s PSD fit and the noise power σ2 = 4.2 × 10−23 m2

within the measurement bandwidth BWneq. Below, the histogram of
the noise measured on quadrature channel (Y) in (b), fitted by a Gaus-
sian N (0, σY ) with σY = 6.5 pm ∼

√
σ2, confirming the thermally

limited nature of the sensitivity measurement.
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β = 0.26 nm/µA. The noise in both X and Y is found to be Gaussian and fully ascrib-
able to the NW’s thermal motion with variances σ2

X ≈ σ2
Y ≈ Sr2(ω2)×BWneq, where

Sr2(ω) is a fit to the second mode’s thermal PSD shown in Fig. 4.11 (c), ω2 is the
resonant angular frequency of the second mode, and BWneq is the lock-in’s equivalent
noise bandwidth. As shown in Fig. 4.11 (c) for Y , the mode’s thermal PSD is as-
sumed constant around its value at resonance Sr2(ω2) = 4kBT

Q2

k2ω2
, due to the narrow

measurement bandwidth. Therefore, the NW’s second mode has a thermally-limited
displacement sensitivity of

√
Sr2(ω2) = 16 pm/

√
Hz, equivalent to a force sensitivity

of
√
Sr2(ω2)k2/Q2 = 4 aN/

√
Hz. Given the measured current transduction factor β

at the working tip-sample spacing dz = 250 nm, we obtain a sensitivity to current
flowing through the wire of 63 nA/

√
Hz.

4.5 Discussion and outlooks

The measured sensitivity to electrical current compares favorably to that of other
microscopies capable of imaging current through Biot-Savart fields, including scanning
Hall microscopy, magneto-optic microscopy, scanning SQUID microscopy, microwave
impedance microscopy, and scanning nitrogen-vacancy magnetometry [162, 163].

Because of the dipole-like character of the MnAs tip, this transduction of current
into displacement is dominated by the effect of the time-varying magnetic field gra-
dient generated by the current: Fi ≈ ∇(m · BAC) · r̂i = m · ∇(BAC · r̂i). Although
the torque resulting from the time-varying magnetic field produces an effective force,
Ti, as seen in Figs. 4.10 (a) and (b), this term is typically secondary. Therefore, from
COMSOL simulations of the field produced by current flowing through the wire, we
find this current sensitivity to correspond to a magnetic field gradient sensitivity of
11 mT/(m

√
Hz) at the position of the tip’s effective point probe, i.e. dz + d = 350 nm

above the surface. The direction of this gradient sensitivity depends on the direction
of the mode used.
Having quantified the NW’s response to magnetic field gradients, we can calculate
its sensitivity to other magnetic field sources, including a magnetic moment (dipole
field), a superconducting vortex (monopole field), or an infinitely long and thin line of
current [162]. In particular, following to the calculations carried out in Appendix E,
we expect a moment sensitivity of 54 µB/

√
Hz, a flux sensitivity of 1.3 µΦ0/

√
Hz, and

line-current sensitivity of 9 nA/
√
Hz. These values show the capability of magnet-

tipped NWs as probes of weak magnetic field patterns and the huge potential for
improvement if tips sizes and tip-sample spacings can be reduced. Smaller mag-
netic tips may be produced using optimized growth processes or Focused Ion Beam
(FIB) milling. Alternatively, the production of different types of magnet-tipped NWs
could be attempted, through the evaporation of magnetic caps on sharp non-magnetic
NWs [75] or by direct focused ion beam induced deposition.

In addition to improved sensitivity, NW MFM provides other potential advantages
compared to conventional MFM. First, scanning in the pendulum geometry with the
NW oscillating in the plane of the sample has the characteristics of lateral MFM.
This technique, which is realized with the torsional mode of a conventional cantilever,
distinguishes itself from the more commonly used tapping-mode MFM in its ability
to produce magnetic images devoid of spurious topography-related contrast and in a
demonstrated improvement in lateral spatial resolution of up to 15% [164]. Second, the
nanometer-scale magnetic particle at the apex of the NW force sensor minimizes the
size of the MFM tip, allowing for optimal spatial resolution and minimal perturbation
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of the investigated sample. In fact, the stray field from small magnetic tips falls off
more rapidly in space than for large tips and therefore produces less field at the sample
than a large tip at the same spacing. In this way, smaller tips are less invasive and
are less likely to alter the sample magnetization or current distribution. Since the
NWs are much more sensitive forces sensors than conventional cantilevers, they will
respond mechanically even for such small interaction forces.

The prospect of increased sensitivity and resolution, combined with few restrictions
on operating temperature, make NW MFM ideally suited to investigate nanometer-
scale spin textures, skyrmions, superconducting and magnetic vortices, as well as
ensembles of electronic or nuclear spins. Such magnetic tips may also open opportu-
nities to study current flow in 2D materials and topological insulators. The ability
of a NW sensor to map all in-plane spatial force derivatives [23, 33] should provide
fine detail of stray field profiles above magnetic and current carrying samples, in turn
providing detailed information on the underlying phenomena and anisotropies. Di-
rectional measurements of dissipation may also prove useful for visualizing domain
walls and other regions of inhomogeneous magnetization. As shown by Grutter et al.,
dissipation contrast, which maps the energy transfer between the tip and the sample,
strongly depends on the sample’s nanometer-scale magnetic structure [165].
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Conclusions and future directions

The study of nano-mechanical resonators represents a central aspect of several rapidly
expanding and promising areas of research and is boosted by continuous advances in
nanotechnology and material science. In fact, nano-mechanical devices do not only
stand out for their exquisite force sensitivity but also offer a versatile platform to
interface with other physical systems. Upon functionalization, such sensitive force
detectors can respond to electric, magnetic and optical forces leading to a widespread
number of applications down to the quantum regime, where they can provide a read-
out of static and dynamic properties of the quantum systems or mediate interactions
between physically distinct systems [166]. Moreover, ‘bottom-up’ fabrication tech-
niques of nano-structures have given the possibility to further reduce the resonators’
size, maintaining a high level of quality and control of their chemical structure and
opening up new possibilities for integrated functionalization. As a proof of the poten-
tial of ‘bottom-up’ resonators, a thermally limited force resolution close to 1 zN/

√
Hz

has been demonstrated for a doubly-clamped suspended CNT [18], i.e. more than
100 times better the record using ‘top-down’ transducers. However, despite their
outstanding properties, CNTs oscillators can exhibit non-linear behavior even under
low-temperature thermal excitation and require elaborated detection schemes which
make them extremely difficult to use as scanning force sensors. NWs oscillators, on
the other hand, show a wide linear dynamic range and have a more versatile and con-
trollable structure, which offers an advantageous trade-off between low masses (high
sensitivity) and ease of use as scanning force sensors. In fact, their singly clamped
geometry can be arranged as pendulum cantilever and allows for a ‘straightforward’
optical detection of their motion.

Inspired by Nichol et al. seminal works [24, 29], in this thesis we have explored
some of the opportunities given by as-grown NWs in the field of scanning force sensing.
First, we have built a cryogenic scanning probe microscope setup capable to detect
and characterize NW force sensors directly from their original growth substrate. The
fiber-based confocal reflection microscope allows to navigate the sample by imaging
individual NWs and to measure their displacement with a noise floor of 0.4 pm/

√
Hz

for 25 µW of incident power. In addition, interferometry ensures high sensitivity
along the optical axis (steep optical gradients) and precise displacement calibration.
By controlling the position of the NW respect to the focus or by detuning the laser
wavelength, the projective measurement of its 2D motion can be acquired along arbi-
trary directions, spatially mapping the two orthogonal polarization directions of the
first flexural mode. In direct analogy with lateral AFM, we demonstrated a highly sen-
sitive vectorial force microscopy technique using the NW’s nearly degenerate modes
as a bi-dimensional force transducers, capable to simultaneously map planar force
gradients [33]. A complete study of the static tip-sample interaction force gradients
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has been carried out by using the thermal force noise as a broadband isotropic driv-
ing force and the 2D force field has been calculated via numerical integration. Then,
we showed the capabilities of dynamic vectorial sensing by recording the response of
each mode to a resonant voltage signal to map force fields generated by NW spurious
surface charges and polarizability. The universality of the vectorial force detection
scheme with a NW enriches the surface imaging techniques with an extra dimension
and provides a sensitivity several order of magnitudes better than commercial AFM,
which could be employed to study very weak proximity forces at the nanoscale, such
as Casimir forces. Higher force sensitivity translates into more sensitive measure-
ments of dissipation and non-contact friction, which could in principle to shed light
on concepts such as superlubricity and atomic-scale friction by mapping the direc-
tional dependence of dissipation.

In the last part of the thesis, as evidence of the great potential of NWs functional-
ization, we described the use of a MBE grown GaAs NW with integrated crystalline
MnAs tip as a magnetic force sensor. By monitoring each mode in a static magnetic
field, we characterized the MnAs nano-magnet at the tip via dynamic torque mag-
netometry, showing excellent agreement with micro-magnetic simulations. Such NWs
resulted to be promising probes for dynamic current sensing showing a sensitivity of
63 nA/

√
Hz, which could used to study current flow in 2D materials and topological

insulators. Due to the strong hard-axis anisotropy of ferromagnetic MnAs, most of
the tips displayed an extended dipole configuration of the remanent net magnetiza-
tion lying in the easy-plane, which would permit to achieve higher spatial resolution
compared to the usual monopole-like interaction of standard MFM tips [167]. In fact,
for future improved MFM setups, one frequently discussed approach is to place nano-
magnets directly on the apex of cantilever tips [162]. This would serve three goals:
improved spatial resolution, improved spin sensitivity and improved interpretability,
since the magnetic moment of the deposited nano-magnets would have a narrow dis-
tribution. In this direction, our NWs tipped with a self-assembled MnAs tip represent
an ideal candidate, although the magnet size needs to be further reduced. We have
conducted preliminary experiments in this regard by milling with a focused ion beam
(FIB) the tips to less than half their volume and increasing at the same time their as-
pect ratio in order to introduce an additional shape anisotropy term in the easy-plane
to further stabilize the dipole orientation. The dynamic torque magnetometry mea-
surements of the modified NWs, reported in Appendix F, show a lower asymptotic
value and a smoother behavior of the frequency shifts as a function of the applied
field, confirming a reduction of magnetic volume (∆fasyn ∝ V ) and complexity of
the magnetization states, respectively. We aim to take advantage of the high force
sensitivity of these NWs to detect very small interactions between a tiny magnetic
volume at the tip and samples such as nanometer-scale spin textures, skyrmions, su-
perconducting and magnetic vortices. To do so, it will be necessary to implement
a calibration method for a quantitative measurement of the magnetostatic potential
detected by the 2D NW sensor, based on a tip’s transfer function model in Fourier
space [159, 167]. Additionally, the magnetic vortex remanent state shown by few of
the MnAs tip (see Fig. 4.6), can also have interesting implications in MFM applica-
tions. In fact, the net contribution to the MFM signal is just given by the central
vortex core, leading to an effective increase of the spacial resolution. This is con-
firmed by the results presented in Appendix G, where the NW with a ‘vortex’ tip is
scanned at room temperature over permalloy micro-disk in a remanent vortex state
itself, producing features with much smaller width respect to the physical extension
of the tip. Most notably, the disk’s center core is resolved with a width of 75 nm, in
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contrast with a tip size of 230 nm. Despite the fascinating possible developments of
such vortex-MFM mode which needs deeper investigation, the technique is limited by
the tip vortex core mobility at low temperatures, induced by the interaction with the
sample’s stray field. It is important to remark that a strong stray field emerging from
a tip can affect the sample’s configuration, or viceversa, undermining the measure-
ment interpretation. This limitation could be overcome by using a using NWs with
‘soft’ tips made of paramagnetic/superparamagnetic material with a large magnetic
susceptibility such as iron oxide.
Furthermore, the use of alternative types of magnetic-tipped nanomechanical res-
onators could be attempted. In particular, focused electron beam induced deposition
(FEBID) is a powerful technique to grow NWs with high aspect ratios being able
to freely combine magnetic material such as cobalt or iron and non-magnetic such
as platinum [168]. In this respect, we have performed preliminary dynamic torque
magnetometry measurements on both cobalt and iron FEBID grown NWs, confirming
their magnetism and good force sensitivity of about 10 aN/

√
Hz (at 4.2 K), although

limited by a modest mechanical Q ∼ 1000. Interestingly, has been shown that a
high temperature annealing of these NWs improves both their magnetic purity and
nanocrystalline structure, which could lead to an enhancement of their mechanical
properties [169]. FEBID is also a versatile tool to functionalize NWs and CNTs al-
lowing to grow a magnetic nano-particle at arbitrary positions on the mechanical res-
onator and opening up new intriguing possibilities for the creation of ultra-sensitive
magnetic scanning probes.
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Appendix A

Low temperature nanowire
microscope

Figure A.1 | Photograph of the actual microscope.
Side view
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Figure A.2 | Zoom on the central sample region
The photograph has been taken after focusing the laser on a single
NW from the chip (not visible) glued on the L-shaped holder on the
upper piezo-stack. The focal length f1 = 1.45 mm of the focusing
lens guarantees enough room for safely approaching and scanning the
bottom sample against the NW sensor.
On the bottom piezo-stack is visible the silicon chip with the gold
microwire used for the generation of an AC magnetic field in the ex-
periment presented in Chapter 4.
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Appendix B

NWs sample fabrication procedure

The scanning NWs sample preparation aims to minimize unnecessary steps involving
manipulation and gluing of the NWs, in order not to spoil their mechanical properties.
For this reason, MBE grown NWs are kept on their original growth substrate taking
advantage of their singly clamped geometry, epitaxially registered to the substrate.
We measured quality factor about 5 times higher than the ones obtained for similar
NWs, individually glued on a sharp edge [34].
Here below are summarized the main steps of the fabrication procedure:

1. the wafer is fixed on a glass slide with double sided carbon tape to obtain a
smaller piece about 1×2 mm2. After locating an area of moderate NWs density
(e.g. Fig B.1(a)), the substrate is cleaved laterally by marking the side with a
fine manual diamond scriber and then applying pressure with a sharp scalpell
blade. The tape helps to keep the fragments in place while lateral cleaving
prevents substrate debris from contaminating the sample;
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Figure B.1 | Scanning NWs sample preparation under an optical micro-
scope.
(a) Initial stage: top view of the original growth wafer (b) Final stage:
individual removal of unwanted NWs along the cleaved edge by means
of the micro-manipulator’s needle.
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2. the obtained small chip is fixed with carbon tape on a new glass slide and
mounted on a system of manual micro-metric stages which allows to approach
a very sharp blade perpendicularly to the substrate and remove the excess of
NWs within around 10 µm distance from the chosen reference edge. Operations
are performed under a microscope with very large working distance;

3. remaining shorter and tilted NWs are individually removed by using a micro-
manipulator station under an optical microscope with a high magnification ob-
jective. When a single raw of NWs standing along the chip edge is obtained
(Fig B.1(b)), the sample is imaged at the SEM for more detailed NWs selection.
Further unwanted NWs are then removed.

4. The final chip is glued with a low outgassing epoxy on the L-shaped titanium
mount in Fig. 2.2(c).
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Appendix C

Micromagnetic simulations for NW
magnetometry

The core of the simulation is the calculation of the magnetic energy of the MnAs
tip for each value of the applied external field and for small tilt angles around the
oscillation axis of each NW mode (r̂1 ,̂r2). To define the problem’s geometry, every
vectorial quantity is expressed in spherical coordinates and referred to a orthogonal
coordinate system formed by the direction of the two modes of oscillation r̂i and the
NW axis n̂ = r̂1× r̂2. As sketched in Fig. C.1,for each NW we consider the hard axis
direction k̂ (θK ,φK), a small misalignment between n̂ and the external magnetic field
B̂ (θB,φB) and the orientation axis of the tip itself with respect to the NW t̂ (θt,φt).

n

r1

r2

k

t

B

Figure C.1 | Geometry of MnAs tip’s simulation parameters

k̂ (θK ,φK) B̂ (θB,φB) t̂ (θt,φt)

NW1 (4.2◦, 45.5◦) (2.5◦, 160.5◦) (4.7◦, 170◦)
NW2 (8◦, −9.5◦) (2.5◦, 110.5◦) (0◦, 0◦)
NW3 (68.3◦, 142.2◦) (5◦, 137◦) (20◦, 210◦)

Table C.1 | Angles giving the best fit to data for each NW.

The deviation of the magnetic field with respect to the NW axis accounts for an
imperfect perpendicular growth of each NW with respect to the substrate and for a
small tilt angle of 2◦ along the optical axis ŷ of the NWs’ chip holder. Such design
of the holder ensures that the NWs on the edge of the chip are the first objects on
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the chip to approach the bottom sample, avoiding any unwanted contact due to an
imperfect parallelism between the two.
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Appendix D

Microwire’s magnetic field

In order to calibrate the NW magnetic response over the line scan, the monopole
and dipole terms (q0 and m respectively) are extracted from the complete driving
force expression for each mode: Fi = q0BAC · r̂i + ∇(m · BAC) · r̂i + l−1

e (n̂ × (m ×
BAC)) · r̂i. The Biot-Savart field BAC, generated by a current oscillating at the modes’
frequencies in the golden microwire, is calculated by the finite element simulation
program COMSOL.

The (x,y) coordinates of the line scan with respect to the center of the wire are
estimated by the direct imaging of the sample’s topography, as shown in Chapter 3.
Conversely, along ẑ, the distance dz = 250 nm between the wire and NW’s tip is
determined with a soft-touch onto the sample and consequent retraction by the desired
amount with the z-axis piezo scanner (the absence of a direct calibration for this open-
loop might introduce an error in the distance estimation around ±10%).

ByBx Bz

-7.5

7.5

0

B 
(μ

T)

0 -105 -5
By (μT)

10

Y 
(μ

m
)

0 -105 -5
Bx (μT)

10

Y 
(μ

m
)

Y 
(μ

m
)

0 -105 -5
Bz (μT)

10

Figure D.1 | Simulated magnetic stray field of the current carrying wire.
The field is calculated at the point model’s distance from the wire
(dz + d = 350 nm) and for a current IDC = 50/

√
2 µA flowing in +x

direction, used to fit the measured driving forces Fi for NW2. The field
components are individually color plotted over a 15 µm× 15 µm area
centered above the Au wire constriction (dashed brown line contour).
Each inset plots the value of the field component in correspondence of
the acquired 10 µm-long line scan reported in Fig. 4.10. The sensitivity
measurement has been performed at y = 4.5 µm, as indicated by the
yellow circles.

Given the µm-sized dimension of the wire and the modest frequencies around
500 kHz, the impedance of the wire is frequency independent, with a negligible reactive
part; this fact allows us to approximate the problem with the static case where a DC
current IDC = IAC/

√
2 flows in the wire. Following our point-probe approximation of

the magnetic tip behavior, the best fit with the data is obtained by taking the stray
field calculated at a distance d = 100 nm from the tip’s apex.
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Appendix E

Sensitivity to different Types of
Magnetic Field Sources

In the experiments described in Chapter 4, we find that our magnet-tipped NW has
a thermally-limited displacement (force) sensitivity of 16 pm/

√
Hz (4 aN/

√
Hz) at

T = 4.2 K. Given the measured current transduction factor β = 0.26 nm/µA at the
working distance dz = 250 nm, we obtain a sensitivity to current flowing through our
lithographically patterned wire of 63 nA/

√
Hz. Because of the dipole-like character

of the MnAs tip, this transduction of current into displacement is dominated by the
effect of the time-varying magnetic field gradient generated by the current at the
position of the tip: Fi ≈ ∇(m ·BAC) · r̂i = m · ∇(BAC · r̂i). As discussed in the main
text, the torque resulting from the time-varying magnetic field acting on the tip also
produces an effective force, Ti = l−1

e (n̂ × (m × BAC)) · r̂i, but this term is typically
secondary. Therefore, in the following analysis we restrict ourselves to considering the
role of the magnetic field gradient. From the field profile simulations in Appendix D,
that the measured current sensitivity translates into a sensitivity to magnetic field
gradient of Gmin = 11 mT/(m

√
Hz) at the position of the tip’s effective point probe,

i.e. dz + d = 350 nm above the surface and y = 4.5 µm, as indicated in Fig. D.1.
As a result, in addition to knowing the sensitivity to the specific current distri-

bution flowing through our lithographically defined wire, we can now calculate the
NW’s sensitivity to other sources of magnetic field. We simply need to calculate the
appropriate magnetic field gradient for each field source at the position of the probe
and compare it to the demonstrated gradient sensitivity. For a tip with both its dipole
moment and one of its modes oriented along x̂, the relevant component of the field
gradient is x̂ · ∇(BAC · x̂) = ∂BAC,x/∂x. Then, following a similar treatment by Kirt-
ley [162] for magnetic scanning probes, we calculate the NW’s expected sensitivity to
a magnetic moment (dipole field), a superconducting vortex (monopole field), and an
infinitely long and thin line of current (Biot-Savart field).

Magnetic dipole field. A magnetic moment M generates a magnetic field,

BM (r) =
µ0

4π

3r̂(r̂ ·M)−M

r3
, (E.1)

where r is the distance from the moment to the position of the probe and µ0 is the
permeability of free space. If M is made to flip up and down along the ẑ direction,
e.g. using magnetic resonance pulses as in magnetic resonance force microscopy [170],
it generates a time-varying gradient, ∂BM,x/∂x. The amplitude of this gradient com-
ponent is maximum directly above or below the magnetic moment (x = y = 0) and
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cba

y
x

Figure E.1 | In-plane magnetic field gradient due to different sources
(a) ∂BM,x/∂x resulting from a single electron at the origin with mo-
ment µB ẑ. (b) ∂BΦ0,x/∂x resulting from a single superconducting
vortex at the origin. (c) ∂BI,x/∂x for I = 1 A of current flowing
through an infinitely long and this wire along ŷ. All plots show the
gradient component in gray-scale in the z = 350nm plane over a range
of 2× 2 µm.

has the following dependence on the vertical distance z:(
∂BM,x

∂x

)
max

=
3µ0

4π

(
M

z4

)
. (E.2)

We now take the maximum gradient component generated by a single electron, whose
moment is given by the Bohr magneton µB. By comparing this term to our mea-
sured gradient sensitivity Gmin, we find a sensitivity to magnetic moment in terms of
µB/
√
Hz:

Mmin = Gmin

/(
∂BµB ,x
∂x

)
max

=
4π

3µ0

(
Gmin

µB

)
z4. (E.3)

If we assume the same tip-sample spacing as in our measurements of current flowing
through our lithographically patterned wire, z = dz + d = 350 nm, we find Mmin =
54 µB/

√
Hz.

Magnetic monopole field. A superconducting vortex is modeled as a magnetic
monopole and generates a field,

BΦ0(r) =
Φ0

2πr2
r̂, (E.4)

where r is the distance from the vortex to the position of the probe and Φ0 = h/(2e) is
the magnetic flux quantum. If the position of this vortex is modulated, it will generate
a time-varying gradient, ∂BΦ0,x/∂x. As before, the amplitude of this component is
maximum directly above or below the vortex (x = y = 0) and has the following
dependence on the vertical distance z:(

∂BΦ0,x

∂x

)
max

=
Φ0

2π

(
1

z3

)
. (E.5)

The sensitivity to magnetic flux in terms of Φ0/
√
Hz is then given by,

Φmin = Gmin

/(
∂BΦ0,x

∂x

)
max

= 2π

(
Gmin

Φ0

)
z3. (E.6)
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Again, by assuming the same tip-sample spacing as in our measurements, z = dz+d =
350 nm, we find Φmin = 1 µΦ0/

√
Hz.

Infinite 1D current line Finally, we calculate the expected sensitivity to an infinite
line of current I generating a field,

BI(r) =
µ0

2π

I× r̂

|̂I× r|
, (E.7)

where r is the distance from the current line to the probe position and I ‖ ŷ. By
modulating I, one can generate a time-varying gradient, ∂BI,x/∂x. The amplitude of
this component is maximum in the planes defined by x = ±z/

√
3. In those planes, I

produces a maximum gradient amplitude with the following dependence on z:(
∂BI,x
∂x

)
max

=
3
√

3µ0

16π

(
I

z2

)
. (E.8)

The resulting sensitivity to a line of infinite current in terms of A/
√
Hz is given by,

Imin = Gmin

/(
∂BI,x
∂x

)
max

=
16π

3
√

3µ0

(
Gmin

I

)
z2, (E.9)

where I = 1 A. Assuming the same tip-sample spacing as in our measurements,
z = dz + d = 350 nm, we find Imin = 9 nA/

√
Hz.

Note the better sensitivity of the NW to an infinitely long and thin line of current
than to the test currents of our experiments, which are distributed across a wider wire.
It is also interesting to note the different scaling exponents of the tip-sample spacing
in the expressions for the sensitivity to the difference field sources. The magnetic
moment, superconducting vortex, and current line sensitivity scale with the 4th, 3rd,
and 2nd power of z, respectively. In particular, sensitivity to magnetic moment could
be greatly improved by smaller tip-sample spacing. The gain in the magnetic field
gradient (proportional to z−4) should more than compensate for the reduction of the
effective tip moment interacting with the sample moment (roughly proportional to
z3).
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Appendix F

Magnetometry of GaAs NW with
FIBbed MnAs tips

In order study the behavior of smaller magnetic tips we have milled the MnAs nano-
crystal with a focused ion beam (FIB) to less than half their volume. The FIB milling
scheme in Fig. F.1(c) aims to increase the aspect ratio by leaving a slab ∼ 70 nm
thick of the previous round magnetic crystal, in order to introduce an additional shape
anisotropy term in the easy-plane to further stabilize the dipole orientation. The dy-
namic torque magnetometry measurements of the modified NWs (e.g. Fig. F.1(a,b))
show a lower asymptotic value of the frequency shift due to the proportionality be-
tween ∆fasyn and magnetic volume in the high field limit. Since the typical asymptotic
shift is reduced of about 5 times, we suppose a deterioration of the tip magnetism on
the outer volume caused by the FIB milling process. The frequency shift curves show
a smoother behavior with a reduced number of discontinuities confirming a reduced
complexity of the magnetization states, during the magnetization reversal process.
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Figure F.1 | Dynamic torque magnetometry of a FIBbed MnAs tip.
First (a) and second (b) mode frequency shift as a function of the
applied external magnetic field swept from −8 T to +8 T. The previ-
ous magnetometry results, measured for the as-grown MnAs tip, are
plotted in gray for comparison. The first (second) mode’s frequency
f0,1 (f0,2) at zero field has been red shifted, as expected for a mass
loss, from 693 kHz to 673 kHz (741 kHz to 725 kHz). The asymptotic
frequency shift values are result reduced by 5 and 4 times, respectively.
(c) SEM micrograph of the FIBbed NW. In the sketch are shown the
two selected milling areas on the side of the tip. Scale bar 2 µm.
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We plan to fully characterized the remanent state of such tips with micromagnetic
simulations and to evaluate their sensing performance on calibration samples with
known stray field and/or magnetization such as current micro-loops or thin magnetic
multi-layer structures.
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Appendix G

Room temperature NW MFM

The chosen test sample for these preliminary measurement are ferromagnetic permal-
loy (Py) disks, 1 µm in diameter and 40 nm thick, fabricated by Berezovsky’s group
at Case Western Reserve University, Cleveland. These structures are theoretically
predicted to adopt a magnetic vortex configuration with a spot of perpendicular mag-
netization at the center of the vortex (i.e. vortex core). Experimental evidence for
this magnetization spot has been provided by several techniques such as MFM [171]
and magneto-optical Kerr effect (MOKE) microscopy [172]. The core magnetization
singularity represents an interesting magnetic feature to be detected. A GaAs NW
with MnAs tip is approached to the sample in Fig. G.1(a) at room temperature and
zero external field, using a PLL to track the evolution of the first mode resonance fre-
quency and a PID feedback loop to keep the oscillation amplitude constant r1 = 5 nm
by controlling the voltage driving the dither piezo (Vdrive,1). Due to the NW high
sensitivity, the topography contribution given by the disks edge, superimposed to the
magnetic contrast, is clearly visible at 200 nm distance and shows the direction of
oscillation of the first mode few degrees off the y-axis (Fig. G.1(b,c)). A refined scan
of the first disk over a 1 × 1 µm2 window in Fig. G.1(d,e) shows radially disposed
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Figure G.1 | Permalloy disks scanned with a magnetic-vortex tipped NW.
(a) Commercial AFM image of three permalloy disks (false colored),
1 µm diameter and 40 nm thick, on Au substrate. Scale bar 1 µm.
(b,c) Frequency shift and dissipation scan, monitoring the first mode
of oscillation. Tip-sample separation of 100 nm. Scale bar 1 µm.
(d,e) Refined scan of the first disk (dashed lines contour in (b,c)) at
tip-sample distance of 100 nm. The inset in the bottom left corners
represent the NW tip physical extension. Scale bar 200 nm.
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features on the disk edge, indicating a modulation of the stray field at the boundary
with higher contrast for directions orthogonal to r̂1. As expected, a double (due to the
dipolar nature of compact magnetic tips) peak is measured in correspondence of the
vortex core at the center of the disk, for both frequency and dissipation signals [171].
Most interestingly, the detected features present a much smaller width respect to the
physical extension of the tip of ∼ 230 nm; in particular, the disk’s center core is re-
solved with a width of 75 nm. This spacial resolution enhancement can be explained
by the significant reduction in net magnetic volume given by a MnAs tip in a vortex
configuration by itself. We have confirmed this assumption by simulating the a full
MFM scan scenario with the micromagnetics package MuMax 3 (Fig. G.2(a)). At each
point, is calculated the magnetic energy second derivative along the oscillation direc-
tion of a MnAs tip over a Py disk, in order to extract the frequency shift value with
Eq. (4.5) (Fig. G.2(b)). Note that, for other NWs tips more commonly in a dipole-like
remanent state the obtained space resolution is worse than for the magnetic vortex
case.
Additional efforts have to be dedicated to the perform further experiments in this
direction to improve interpretation of the data and verify the potential of such MFM
imaging using a single magnetic vortex.
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Figure G.2 | Micromagnetic simulation of a MnAs tip over Py disk.
(a) Schematic representation of the simulated problem. The planar
orientation of the magnetization for each cell is color-coded over the
full color spectrum. White cells indicate perpendicular magnetization
(vortex core). (b) Frequency shift along x is derived through Eq. (4.5)
by calculating the magnetic energy of a regular MnAs tip (parameters
in Table 4.1), at 65 nm over the Py disk, with θK = 5◦ and φK = 45◦.
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