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turbulence and convection, so that in the early
evening, the mixing ratio of water vapor was ap-
proximately constant up to a height of 4 km.
Above the cloud top, the water vapor partial pres-
sure would have been below the saturation val-
ue because clouds were not observed at those
heights. The corresponding height profile of
frost point temperature (before cloud formation)
is shown in Fig. 1C. The integrated amount of
water vapor within the PBL (from the ground
to 4 km) before cloud formation on sol 99 (Ls =
122°) can be estimated from the analysis above
to be 35 pr-mm. This is a substantial fraction of
the total atmospheric column water vapor (40 to
50 pr-mm) measured from orbit at the latitude of
Phoenix in previous years (1, 16). Solar radia-
tion measurements during the Pathfinder mis-
sion also indicated that atmospheric water vapor
was confined near the ground (17).

We also used the simulated temperature pro-
files in Fig. 1C to estimate the IWC in the clouds.
At 05:00 and a height of 4 km, the simulated
temperature is –66°C and the saturated vapor
density is 5 mg m–3. The threshold value of va-
por density at cloud formation (time 01:00) was
7.6 mg m–3. The difference of 2.6 mg m–3 is an
estimate of the IWC in the cloud, and this is
within the range of IWC derived from the LIDAR
measurements.

Our estimate of the water content of the PBL
is consistent with independent measurements.
The Thermal and Electrical Conductivity Probe
instrument (18) on Phoenix measured the partial
pressure of water vapor near the ground to have
values up to 2 Pa during the daytime and less than
0.1 Pa at night, with a diurnal average of 0.9 Pa
(6). The water vapor volume mixing ratio in the
mixed boundary layer would be greater than
the average at ground level (0.0012), because the

vertical mixing occurs mainly during the daytime.
Also, if the water vapor volume mixing ratio was
0.0016 throughout the PBL, then the integrated
amount up to a height of 4 km would be 40 pr-mm,
and this is an upper limit because it is within the
measured range of the total atmospheric column
water vapor (1, 16). Our estimate of the volume
mixing ratio at the top of the PBL (0.0014) is
within the range of plausible values.

The Phoenix LIDAR observations have dem-
onstrated that water-ice crystals grow large enough
to precipitate through the atmosphere of Mars.
In the early morning hours, the clouds formed at
ground level and at heights around 4 km be-
cause these were the coldest parts of the PBL
(Fig. 1C). The cloud was capped at the top of
the PBL because daytime turbulent mixing does
not transport moisture above that height. The
overall process was that water ice was transported
downward by precipitation at night, it sublimated
in the morning, and then the vapor was mixed
back up through the PBL by turbulence and con-
vection during the daytime. The clouds and pre-
cipitation act to confine water within the PBL.
Eventually the ice clouds would have persisted
within the PBL throughout the daytime, and
water ice would have remained deposited on
the ground. As the depth of the PBL decreased
in late summer, this local process would con-
tribute to the seasonal decrease in atmospheric
water vapor (1).
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A Coherent Single-Hole Spin
in a Semiconductor
Daniel Brunner,1 Brian D. Gerardot,1 Paul A. Dalgarno,1 Gunter Wüst,1 Khaled Karrai,2
Nick G. Stoltz,3 Pierre M. Petroff,3 Richard J. Warburton1,4*

Semiconductors have uniquely attractive properties for electronics and photonics. However, it has
been difficult to find a highly coherent quantum state in a semiconductor for applications in
quantum sensing and quantum information processing. We report coherent population trapping,
an optical quantum interference effect, on a single hole. The results demonstrate that a hole spin
in a quantum dot is highly coherent.

Semiconductor heterostructures can be de-
signed to confine electrons, holes, and pho-
tons in specificways. Post-growth processing

enables the creation of individual devices and
their interconnection into fully functional circuits.
However, it is not yet clear whether these mate-
rial advantages can be exploited in a new class of
device whose operation depends on the controlled
manipulation of coherent quantum states. Achiev-

ing the necessary coherence poses considerable
challenges.

In bulk semiconductors and quantum wells,
individual quantum states lose coherence rapidly
through an interaction with the lattice vibrations,
or phonons. An electron spin interacts only in-
directly via the spin-orbit interaction with the
phonons and emerges as a strong candidate quan-
tum bit (qubit) (1). However, to suppress the

spin-orbit interaction, the electron must be tightly
confined to a nanoscopic quantum dot (2–4). But
in GaAs, the semiconductor with the best mate-
rials properties, the electron spin now interacts
with 104 to 105 nuclear spins, too few for can-
cellation of the hyperfine interaction and too many
for each nuclear spin to be used as a resource.
The nuclear spins create a fluctuating effective
magnetic field, the Overhauser field. The electron
spin precesses in the Overhauser field such that
the time-averaged coherence time, T2*, is small,
just ~10 ns (5–7), much less than the intrinsic
decoherence time, T2, which is around 1 ms (8, 9).
This difficulty represents a stumbling block in
engineering a coherent semiconductor spin state.
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An alternative is to use a hole spin in an
attempt to bypass the interaction with the nuclear
spins (10–16). A hole state is constructed from a
p-type atomic wave function that conveniently
goes to zero at the location of the nuclei, sup-
pressing the contact part of the hyperfine inter-
action (14). Furthermore, in a quantum dot, the
hole spin–phonon interaction is weak because
the strong quantization reduces the admixture of
heavy and light hole states (11, 13).

We conducted an experiment that is sensitive
to hole spin coherence. We observed a quantum
interference phenomenon, the “visibility” of which
depends directly on the hole spin coherence (17).
The interference arises in the optical spectroscopy
of a L system, a quantum system consisting of
three states, |1〉, |2〉, and |3〉, with optical transitions
between |1〉 ↔ |3〉 and |2〉 ↔ |3〉 (Fig. 1A). In our
case, states |1〉 and |2〉 correspond to Zeeman-split
hole spin states, and state |3〉 corresponds to an
exciton. A “pump” laser [Rabi energy ℏWpump,
where ℏ is Planck’s constant divided by 2p]
drives the |2〉 ↔ |3〉 transition, and a “probe”
laser [Rabi energy ℏWprobe] drives the |1〉↔ |3〉
transition. The interference occurs when the
frequency difference of the lasers matches the
|1〉-|2〉 splitting, the two-photon resonance. In this
case, the amplitude of state |3〉 undergoes a de-
structive interference, and a dark state—an admix-
ture consisting only of states |1〉 and |2〉—results.
This phenomenon, coherent population trapping
(CPT) (7, 17–20), is the underlying basis for elec-
tromagnetically induced transparency (21) and is
revealed by a dip in the probe absorption spectrum,
provided that the coherence of states |1〉 and |2〉
is high enough. Specifically, when Gr > Wpump >
Wprobe, the probe absorption acquires a dip with
energy width ℏW2

pump/Gr where Gr is the sponta-
neous emission rate from state |3〉 (Fig. 1A). This
width sets the sensitivity of the experiment to the
decoherence rate g of state |2〉 with respect to |1〉:
For g << W2

pump/Gr the signal in the dip goes to

zero, but for g >>W2
pump/Gr the dip is washed out

(Fig. 1A). Previous observations of CPT in semi-
conductors have not achieved a perfect dip because
in each case the dephasing was too rapid (7, 18–20).

Our experiments are performed on single
InGaAs dots in a GaAs matrix (Fig. 1D), loading
a single hole into a single dot and probing the
exciton transitions resonantly with laser spectros-
copy (22). To establish a L system, we apply a
magnetic field in the x direction, in the growth
plane, which allows optical transitions from both
hole spin states to both exciton states (23) (Fig.
1E). Once the Zeeman splitting of the exciton
states is larger than the linewidths, twoL systems
can be established. We work with the one at
lower energy (Fig. 1E). At zero magnetic field
and with one linearly polarized laser, there is an
absorption peak at the exciton resonance. In mag-
netic field, this resonance disappears through
optical pumping (4, 23). However, a “double
resonance” can be located by driving the dot
simultaneously with a second laser: When both
lasers come into resonance, onewith the |1〉↔ |3〉
transition and the other with the |2〉 ↔ |3〉 tran-
sition, optical pumping is suppressed and a
probe absorption signal reappears. Upon locat-
ing the double resonance, we then look for the
CPT dip.

In the example data at a magnetic field of
2.3 T (Fig. 2), there is a pronounced and narrow
dip in the probe spectrum. To prove that the dip
arises fromCPT, we detuned the pump laser (Fig.
3, A to C). Figure 3D shows that the energy shift
of the dip in the probe spectrum equals the energy
shift of the pump, as expected for a two-photon
resonance. There are a number of features in Fig.
2. First, the dot is rendered transparent at the two-
photon resonance. Such a clear destructive inter-
ference is only possible with a highly coherent
hole spin state. Second, the CPT dip clearly sur-
vives the broadening of the exciton resonance,
which is as large as 6 meV for this particular dot.

Third, for nonzero pump detunings, the form of
the probe absorption spectrum does not follow
the atomic physics model (Fig. 1B). Instead of a
maximum signal located close to zero probe
detuning (Fig. 1B), we find that the maximum
signal is always close to the CPT dip (Fig. 3, A
and C). Furthermore, for positive pump detun-
ings, the probe absorption falls more rapidly on
the positive detuning side than on the negative
side, a situation reversed for negative pump
detunings.

The CPT dip allows us to make a quantitative
statement on the hole spin coherence time T2*
(17). To eliminate systematic errors, it is first
necessary to understand the entire probe spec-
trum (Fig. 3, A to C). The missing factor in Fig.
1, A and B, is a description of the broadening of
state |3〉, the exciton. Including subnanosecond
dephasing in level |3〉 fails; this simply smears out
the curves in Fig. 1, A and B. The experiment
itself points to the resolution of this problem. The

Fig. 1. (A) Calculated
probe absorption spectrum
in the presence of an on-
resonant pump laser in a L
system. The dip represents
CPT; r is the density matrix.
(B) As for (A) but with a
detuned pump. The model
uses Rabi energiesℏWpump =
1.0 meV, ℏWprobe = 0.45 meV,
radiative decay rates ℏG31 =
ℏG32 = 1/2ℏGr = 0.50 meV
with a lower-level coherence
time T2 = 1 ms (black line),
and T2 = 10 ns (red line). (C)
Calculated probe absorption
with the same parameters as
(B) but also including a spec-
tral wandering of level j3〉 with Lorentzian probability distribution with full
width GX = 6 meV. (D) A cross-sectional scanning tunneling image (80 nm by
40 nm) of a quantum dot, showing schematically a single hole and a magnetic
field B applied in the plane along the x direction. [Image: Murat Bozkurt and
Paul Koenraad] (E) The quantum states of the hole: j1〉 and j2〉 are the hole

spin eigenvectors in the x basis, split by the Zeeman effect; the upper levels are
X1+ excitons consisting of two spin-paired holes and an unpaired electron with
spin T1/2, again in the x basis. The optical transitions are linearly polarized
along either the x or y direction. Two L systems are established (solid and
dashed lines).
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Fig. 2. Measured probe absorption spectrum (dif-
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resonant weak pump laser on a single quantum dot
containing a single hole. The pronounced dip sig-
nifies CPT. The measured Rabi energies are ℏWpump =
0.75 T 0.25 meV and ℏWprobe = 0.34 T 0.15 meV;
radiative decay time, 0.4 T 0.2 ns; magnetic field,
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4.2 K.
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narrow CPT dip amid the broad exciton reso-
nance suggests that the exciton undergoes a spec-
tral wandering with little if any effect on the
hole spin splitting. Once the two-photon reso-
nance condition is satisfied, it remains satisfied
even as the exciton energy fluctuates. To con-
firm this view, we convoluted the density matrix
calculation with a probability distribution in the
detunings to describe the fluctuations of the
exciton energy, slow relative to radiative recom-
bination but fast relative to the experimental
integration (22). The convolution made surpris-
ingly large changes to the probe spectrum (Fig.
1C) and reproduced all the features in the ex-
periment. We achieved excellent fits to the probe
absorption curves (Fig. 3, A to C), reproducing
both the width of the CPT dip and the overall
line shape.

The minimum signal in the dip depends on
the hole spin coherence. Figure 4A shows the
results of the theory for various T2 values along
with the data of Fig. 2, allowing an immediate
and robust conclusion that T2* is at least 100 ns.
To quantify this upper bound further, we used the
average of the ratio of the minimum to the max-
imum signal, Imin/Imax, from 10 data sets: (0.11 T
2.07)%. Figure 4B plots the calculated Imin/Imax

versus T2. The constraints on the parameters are
that they must be compatible with the auxiliary
experiments (22) and that they reproduce the
overall line shapes in Fig. 3. This implies that any
systematic error is less than the random error in
the measurement of the small signal in the dip.
The data in Fig. 4 reveal upper bounds to T2
associated with probabilities calculated from the
random error, for example, T2 ≥ 490 ns with 70%
probability. With the current data, the probability
that T2 exceeds 1 ms is about 40%.

The CPT dip (Fig. 2 and Fig. 3, A to C) has a
linewidth of just 0.35 meV (85 MHz), ushering
semiconductor optical spectroscopy into the do-
main of atomic physics with applications as
frequency standards (24), ultrasensitive magnetom-
eters (25), “slow light” photon storage devices
(21), and coherent spin rotations via stimulated
Raman adiabatic passage (26). The coherence of
the hole spin points to applications in quantum
information. A two-qubit device is possible with
hole spins in tunnel-coupled quantum dot mole-
cules (27).

The contact hyperfine interaction is not the
only interaction between a quantum dot spin and
the nuclear spins. There is also a dipole-dipole
interaction. Recent theory suggests that the cou-
pling coefficient of the heavy hole dipole-dipole
hyperfine interaction is by no means negligible
(28), but the interaction has an Ising form. For
electrons, loss of phase arises through the com-
ponent of the Overhauser field along the direc-
tion of the applied field. For a heavy hole spin
with an Ising interaction, the Overhauser field
lies in the growth direction, z, and has a benign
effect in the presence of a large applied field in
the x direction. Our data are consistent with this

picture, but further work is required to establish
its validity.
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the measured absorption against probe laser de-
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blue-detuned from the resonance (A), one close to
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lines are fits to the calculated response for pump
detunings of +2.831 meV (A), 0.000 meV (B), and
−2.820 meV (C); ℏWpump = 1.0 meV, ℏWprobe =
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dephasing rate of state j3〉), ℏg2 = 0.00067 meV,
GX = 6.0 meV, and field scattering ratio a = 0.01
(22). (D) Measured detuning of the probe laser at
the CPT dip plotted against pump laser detuning
with a linear fit.
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