
Exercise Sheet 5

1. (a) Use the lattice constants below to find the compositions of InxGa1−xAs
and InxAl1−xAs that can be grown without strain on an InP substrate. Lattice
constants in nm: InP: 0.5869; InAs: 0.6058; GaAs: 0.5653; AlAs: 0.5660. Why is
the absence of strain an important consideration in realizing semiconductor het-
erostructures?
(b) Use Anderson’s rule to estimate the energy offsets in the conduction and va-
lence bands for two lattice-matched heterostructures: GaAs-AlAs and InAs-Alsb.
Electron affinities in eV: GaAs:4.07; AlAs: 3.51; InAs: 4.92; AlSb:3.65. Sketch the
band profile - conduction and valence band energy versus z - in the two cases.

2. Consider holes in a 5 nm quantum well of GaAs surrounded by AlGaAs.
Estimate the lowest energy levels for light and heavy holes and their splitting using
a simple model. How many holes can be put in the lowest "heavy" band before
the "light" band becomes occupied? For GaAs, masses of heavy holes and light
holes are mhh = 0.5m0 and mlh = 0.082m0 respectively where mass of electron m0

is 9.109 ∗ 10−31 Kg.

3. Consider free electrons in a finite 2D box of lengths Lx and Ly. The wave-
functions are travelling waves in each direction with periodic boundary conditions
giving φ(x, y) = 1√

LxLy
exp i(kxx+ kyy). The allowed values of kx and ky are

(kx, ky) = (2πl
Lx
, 2πm
Ly

), l,m = 0,±1,...Calculate the total density of states (N(E))
using the general definition N(E) = 2Σk=∞

k=−∞δ(E − ε(k)). From N(E), calculate
the Fermi energy of a 2D electron gas with electron density N2D at T = 0.

4. A quantum well is formed by embedding a 20 nm thick layer of InAs be-
tween AlSb layers. Assuming that the quantum well can be approximated as an
infinite square well, calculate the electron confinement energies in eV for the first
two confined electron states E1 and E2. The effective mass for InAs is 0.022m0. If
the actual well depth is 1.27 eV, comment whether the infinite well approximation
is appropriate in this case.
In addition to quantization in the growth direction, an electron in a quantum well
has plane-wave behaviour in the perpendicular plane. Based on this, calculate and
sketch the density of electron states as a function of energy where the energy range
starts at the bottom of the quantum well and extends to a few tens of meV above
the second electron state.
If the quantum well has an electron density of 1015 m−2, determine the position of
the Fermi energy above E1 at a temperature of 0 K.
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5. We can consider quantitatively the effect of the Coulomb attraction on the
motion of electrons and holes in a semiconductor. We assume that the Coulomb
attraction between electron and hole is weak due to screening by the valence elec-
trons, so that the effective mass approximation is valid. The electron and hole
in an exciton are localized relative to their centre of mass. Their relative motion
can be shown to be described by (− h̄2

2µ
∇2
r − e2

4πε0εrr
)φ(r) = Erφ(r), where µ, the

reduced mass of the exciton, is defined by 1
µ

= 1
me

+ 1
mh

and φ(r) is the exciton enve-
lope wavefunction. Equation is similar to the equation describing the motion of the
electron in a hydrogen atom. For isotropic effective masses, Er depends on the prin-
cipal quantum number n only and is given by Er(n) = Er(∞)− R∗

n2 , where Er(∞)
is the minimum energy of the continuum states, i.e, the energy gap, and R∗ is the
Rydberg constant for the exciton defined as R∗ = µe4

2h̄2(4πε0εr)2
= µ

mε2r
∗13.6eV . Two-

dimensional excitons can also be considered. Their bound state energies (indexed
by the quantum number n) E2D are given by the series E2D(n) = E2D(∞)− R∗

(n− 1
2

)2

for n = 1, 2, ..., where the effective Rydberg R∗ is the same one as defined for three
dimensional excitons. Sketch the binding energy of an exciton in an infinitely deep
well as a function of the width L of the well considering particularly the limiting
cases of L = 0,∞. However, numerical results for finite wells in GaAs-AlGaAs
systems (confinement depth V0 = 0.3eV ) show that the binding energy has a peak
when L = 5nm, proving that the infinitely deep well is an unreliable model for
narrow wells. Argue on dimensional grounds that the best confinement occurs
when L = 5nm (me = 0.067m0 and εr = 13.2 for GaAs). Explain qualitatively
why the binding energy of an exciton in a real structure approaches the value cor-
responding to very wide wells as the width L goes to zero.
6. Optional: Estimate as follows the accuracy of the ′∆n = 0′ rule for interband
transitions in a GaAs quantum well of width 10 nm. For electrons, the depth is
about 0.30 eV and the lowest state has energy 34 meV. The same energy would
be found in an infinitely deep well if its width were 12.8 nm. Similarly, the holes
sit in a well of depth 0.18 eV, which gives an energy of 5.9 meV, equivalent to an
infinitely deep well of width 11.3 nm. Calculate the matrix element between the
envelope functions (just their product!) using the wavefunctions in the equivalent
infinite deep well.
For comparison, repeat this for the transition between the lowest electron and
third hole states, using the same effective widths.
Calculate the wave functions in a finite well numerically, use these to evaluate the
matrix element. How good is the rough approximation of adjusting the width of
the well?
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