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1 Introduction

Magnetic materials have a large variety of everyday uses. From audio speakers to magnetic
memory or logic devices, many branches or modern technology at least partially rely on mag-
nets. In biology and medicine, magnetic nanoparticles serve for example as contrast agents
in biological and MRI imaging. In hyperthermia cancer treatment, nanoparticles are located
at tumor cells and actuated using an oscillating magnetic field, causing them to rotate and
overheat the malignant tissue [1]. Micron and sub-micron sized magnetic particles are fur-
ther discussed in modern scientific settings as a multi-functional component in lab-on-chip or
micro-total analysis systems [2, 3]. Magnetic Janus-Particles, consisting of a hemispherical
cap of magnetic material on a non-magnetic spherical template, allow not only a controlled
transversal motion, but also a controlled rotation by rotating external magnetic fields [4, 5].
The transversal and rotary motion of these particles can be controlled via external magnetic
fields, which exert magnetic forces and torques [6]. This ability has led to applications in
microfluidics, e.g. as stirring devices [7], as microprobes for viscosity changes [8], or as cargo
transporters in lab-on-chip devices [9–11]. Magnetic JPs have also been proposed as an in vivo
drug delivery system [12]. Recent interest has been building for new technical and biomedical
applications [13, 14] of maghemite (γ-Fe2O3) nanoparticles, which also have a long history in
magnetic recording applications [15].

A different approach is to facilitate magnetic states of nano- and micro-structured bulk ma-
terials. In magnetic recording devices, distinct regions of a magnetic recording medium are
magnetized, forming structures of magnetic domains that can be read out an inerpreted [16].
The increasing demand of energy efficient manipulation of magnetic states has motivated the
design of a magnetic racetrack-memory [17], a device that allows for high-density data storage
by arranging stripes of magnetic material vertically to the read/write head. Data is stored
by use of magnetic domain walls that can be moved using electrical currents. The discov-
ery of the nanometer-scale magnetization configurations known as magnetic skyrmions [18],
has sparked new interest in the research of non-collinear magnetic structures. Both skyrmion
lattices (SkLs) [19, 20] and isolated skyrmions [21] have now been observed in either bulk
or nanostructured noncentrosymmetric crystals. Their topologically protected spin-texture,
which is stable even at room temperature [22], their nanometer-scale size, and their easy ma-
nipulation via electric currents and fields [23–27] make skyrmions a promising platform for
information storage and processing applications [28]. A magnetic racetrack memory that uses
skyrmions instead of domain walls have been proposed as a ultra-dense, low-cost and low-power
storage technology [29].

Magnetometry of individual nano- to micron-sized magnetic particles using conventional,
commercially available measurement techniques is complicated due to the inherently small
generated signals and hence the necessity to investigate large ensembles of particles. This
typically leads to random orientation of, and considerable interactions between the particles.
Consequently, information on magnetic states or anisotropies is averaged out. Dynamic Can-
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tilever Magnetometry (DCM) has been established as a sensitive method to investigate very
small, individual magnets without the need for electrical contacts or large sample volumes.
DCM has been used to investigate effects such as persistent currents in normal metal rings
[30], vortex entries in magnetic tubes [31], quantum oscillations in Weyl semimetals [32] or
magnetic phase diagrams in skyrmion hosting nanowires [33]. Another advantage of DCM
lies in the ability to retrieve information such as direction, type and strength of the magnetic
anisotropy of individual magnets.

This thesis offers a contribution to the research on the magnetism of nano- to micrometer-
sized magnetic particles using Dynamic Cantilever Magnetometry. We analyze the data using
analytical models and micromagnetic simulations. We demonstrate the manipulation of the
remanent state of spherical Janus Particles with a magnetic cap, using exchange bias as a
means to provide an artificial, unidirectional anisotropy. We further analyze the anisotropy
and blocking temperature of superparamagnetic maghemite mesocrystals. Both types of mag-
netic systems have previously not been investigated on the individual level. We also highlight
the contribution to the investigation of phase transitions and domain wall magnetism in the
multiferroic polar magnet GaV4Se8.
The document is structured as follows: Chapter 2 describes the theoretical background neces-
sary to understand the measurements and data analysis. It introduces the setup and the basic
concept of DCM. Afterwards, it guides the reader through the concepts of micromagnetics and
establishes analytical as well as numerical methods in order to reconstruct the signals obtained
from the DCM measurements for different magnetic systems. Subsequently, DCM is analyzed
in a thermodynamic framework, correlating features in DCM measurements with the behavior
of thermodynamic properties included in the Gibb’s free energy of the magnetic particle.

Chapter 3 shows measurements of magnetic Janus Particles. Exchange bias is introduced
as a unidirectional anisotropy in order to manipulate the magnetic states at remanence. The
magnetic anisotropy of a spherical cap is analyzed using the Stoner-Wohlfarth model, as well
as micromagnetic simulations to match the data and gain insights into the magnetic state of
the cap.

In Chapter 4, we present the results of the anisotropic behavior of maghemite mesocrys-
tals. Mesocrystals are composed of large number of perfecty arranged and equally-sized mag-
netic nanoparticles, which allows for the measurement of the cubic crystal symmetry of the
maghemite nanoparticles while simultaneously distinguish the signal from the contribution of
the overall shape of the mesocrystal.

Chapter 5 summarizes the contribution of DCM measuements to the description of domain
wall magnetism in GaV4Se8. Being part of a collaborative effort, we add to the description
of the material by mapping out the magnetic phase diagram, demonstrating the stability of a
Néel-type skyrmion lattice against oblique magnetic fields.

Finally, Chapter 6 summarizes the findings presented in the thesis and provides an outlook
to further projects and the perspective of torque magnetometry in the recent research trends
on magnetism.
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2 Theoretical Background

2.1 Dynamic Cantilever Magnetometry

2.1.1 Introduction

The first famous experimental observation of the magnetic torque was reported by Albert
Einstein and Wander Johannes de Haas in 1915 [34], after carrying out an experiment suggested
by O.W. Richardson in 1908 [35]. Richardson calculated the torque that electrons experience
due to their orbital motion in an external magnetic field and predicted that the collective effect
of all electrons in a macroscopic suspended sample in a homogeneous magnetic field would
easily generate a measurable torsion. In 1918, Karl Beck provided a thorough investigation
of the torque for various orientations of the crystallographic directions of iron disks [36]. The
samples were mounted on a sample holder in the air gap between the pole shoes of a bore
magnet, suspended vertically on a phosphor bronze wire. The wire has a pointer attached to it
at the top end and the torsion was measured by the relative displacement to a reference pointer.
In general, this design was used in slightly modified versions until D.S. Miller introduced an
electrical readout method in 1950 [37] using a resistance strain gauge to convert the torque
to a small direct-current voltage. This voltage was applied to the measuring circuit of a
”strip-chart” voltage recorder. Synchronizing the rotational movement of the disk sample in
an applied field and the movement of the paper in the recorder using two motors, the output
of the voltage recorder becomes a plot of torque versus the angle of rotation.

After this, the read out and sensing methods have been improved and adapted for both
particularly large and small magnetic fields and for very high and also cryogenic temperatures.
The basic design, however, remained more or less the same for several decades. Over the
years, torque magnetometry has been established as a powerful method to investigate effects
in solid state physics such as two dimensional electron systems, quantum oscillations or su-
perconductivity. [38–40]. The technological possibility to investigate even smaller magnetic
or superconducting samples at the submicron scale lead to the increasing demand for high-
sensitivity magnetometers in the 1990s. Even though the SQUID magnetometers at the time
already provided a very high sensitivity, their read-out was slow compared to torque mag-
netometers. The most sensitive torque magnetometers at the time were using a capacitive
read-out method where a metallic beam was placed between two capacitor plates, or using the
torsion of a tungsten support wire. In 1996, Roessl et al. proposed the use of an active piezo
resisitive micro cantilever as a new type of torque sensor. [41].

This sensitive method has evolved into what is now known as dynamic cantilever magne-
tometry (DCM) and allows to measure torque originating from such small magnetic moments,
that the size of the investigated samples can have dimensions in the range of a few tens to a
few hundreds of nanometers. In DCM, the sample under investigation is fixed at the apex of a
cantilever and driven at its resonant frequency in a homogeneous, external magnetic field H.
The exerted torque τ = µ(H)×H causes a static bending of the cantilever as well as a shift in
the resonance frequency.
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Being linked to its free energy, measuring the frequency shift of the cantilever as a function
of temperature as well as magnitude and orientation of the external magnetic field allows for
retrieval of information about the magnetic sample, most notably type and orientation of the
effective magnetic anisotropy, switching processes and phase transitions. The basic principle of
DCM has been described in quite some detail for example in [42–44]. In the following chapter,
we provide the theoretical background to understand the measurements and data analysis
throughout the thesis. We introduce the Stoner-Wohlfarth model as well as micromagnetic
models as a means to calculate the frequency shift for different types of anisotropic magnetic
systems and give a model for a thermodynamic approach to measure phase transitions.

2.1.2 Setup

A schematic of the setup is depicted in Fig.(2.1). The cantilever with the magnetic sample at-
tached is mounted in a vibration-isolated closed-cycle helium cryostat (Montana Instruments).
The pressure in the sample chamber is less than 10−6 mbar and the temperature can be stabi-
lized between 4 and 300 K. As indicated in Fig.(2.1), the long axis of the cantilever is aligned
with the x-axis of its corresponding coordinate system and hence oscillates in the xz-plane
around its y-axis. This configuration will be used throughout the thesis. Using an external
rotatable superconducting room temperature bore magnet, magnetic fields with amplitudes of
up to 4.5 T can be applied along any direction spanning 225° in the plane of the cantilever.
This direction is specified by θh, which is the angle between H and z. The cantilever’s flex-
ural motion is read out using an optical fiber interferometer employing 100 nW of laser light
at 1550 nm [45]. A piezoelectric actuator mechanically drives the cantilever at the resonance

Figure 2.1 ∣ Schematic of the Setup. The long axis of the cantilever is aligned with the x-axis of the coordinate
system and oscillates around the y-axis. The magnet-on-cantilever system is mounted inside a closed-cycle
helium cryostat. The flexural motion of the cantilever is read-out via a laser interferometer. An external
magnetic field with an amplitude of up to 4.5 T is applied using a rotatable, superconducting room temperature
bore magnet. The field H can be rotated by an angle of 225° in the xz plane.
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frequency f0 of its first flexural mode with a constant oscillation amplitude of a few tens of
nanometers using a feedback loop implemented by a field-programmable gate array. This pro-
cess enables the fast and accurate extraction of f0 from the cantilever deflection signal. The
choice of cantilevers depends on the sample of interest. In general, the sensitivity and spring
constant of the cantilever need to be approximately compatible with the anticipated (dynamic)
torque. Also, the additional mass of the sample should not push the resonance frequency of
the cantilever too much towards lower frequencies, e.g. below 1 kHz, since the sensor becomes
susceptible to low-frequency mechanical noise in this regime.

2.1.3 Measurement Principle

The combined magnet-on-cantilever system can be treated as a damped harmonic oscillator.
In order to cause a deflection of the cantilever, the torque has to be exerted along y and we
refer to τy as τ . The equation of motion of the system is now given as

meẍ + Γẋ = τ

le
(2.1)

where me and le are the effective mass and the effective length, respectively, Γ is the mechan-
ical disspiation. We use the term ”effective” here, since the model assumes the cantilever to be
massless, assigning all the mass to the attached particle. We operate the system in the small
angle regime where the oscillation angle of the cantilever θc ≪ 1 and we can substitute x ≈ leθc
in Eq. (2.1). The total energy of the system can be expressed in two terms, the mechanical
energy of the cantilever and the magnetic energy Em of the attached magnet:

Etot =
k0l

2
e

2
θ2
c +Em (2.2)

where k0 is the unaltered spring constant of the cantilver. Em depends on the exact shape,
material and magnetic anisotropy of the sample and has to be considered individually. The
deflection of the cantilever is proportional to the exerted torque and can be expressed as

τ = − (∂Etot∂θc
), wich we can expand to the first order around θc = 0. Doing this and substituting

the resulting expression for τ in Eq. (2.1) yields

meθ̈c + Γθ̇c +
⎡⎢⎢⎢⎢⎣
k0 +

1

l2e

⎛
⎝
∂2Em
∂θ2

c

RRRRRRRRRRRθc=0

⎞
⎠

⎤⎥⎥⎥⎥⎦
θc = −

1

l2e

⎛
⎝
∂Em
∂θc

RRRRRRRRRRRθc=0

⎞
⎠

(2.3)

The solutions for this are well known from the theory for the harmonic oscillator. We apply

ω0 =
√

k0
me

to obtain the frequency shift ∆ω = ω − ω0 and after substituting ω = 2πf , the
expression for the fequency shift reads as follows:

∆f = f0

2k0l2e

⎛
⎝
∂2Em
∂θ2

c

RRRRRRRRRRRθc=0

⎞
⎠

(2.4)

From Eqs. (2.3) and (2.4), it can be seen that the frequency shift in a DCM measurement
is generated by a modification of the spring constant k0, proportional to the curvature of the
magnetic energy Em. There are two main experiments that we carry out in DCM. In the
first one we fix the external field at a high enough value to reach the high-field limit, where
the frequency shift is at an asymptotic value ∆fhf , which is then measured as a function of
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θh. This probes the type and direction of the effective anisotropy of the magnet. We refer to
this as angle dependent measurements. For the other one we choose a fixed value for θh and
measure ∆f as a function of the magnitude of the applied field, which is equivalent to a typical
hysteresis measurement. Both experiments shall be described in more detail below. Besides
the frequency shift, there are two other quantities that can be measured, see Table (2.1)

∆f f0
2k0l2e

⎛
⎝
∂2Em
∂θ2c

RRRRRRRRRRRθc=0

⎞
⎠

Frequency shift

Γ Voltage applied to Piezo Disspiation

τ − 1
le

(∂Em∂θc
∣
θc=0

) Torque, static bending

Table 2.1 ∣ Measurable quantities in a DCM measurement

The first one is the dissipation Γ, which describes the system’s rate of energy loss: dE/dt =
−Γl2e θ̇c

2
[46]. In order to maintain a constant oscillation amplitude, the cantilever must be

driven with a force F = Γleθ̇c, such that any losses due to dissipation are compensated.
The voltage amplitude used to drive the piezoelectric actuator is therefore proportional to
Γ = Γ0 + Γm where Γ0 is the cantilever’s intrinsic mechanical dissipation at H = 0 and Γm
represents magnetic losses. Given that Γm reflects the sample’s magnetic relaxation, Γ should
undergo abrupt changes at magnetic phase transitions. This can be compared to the imagi-
nary part of a traditional magnetic susceptibility measurement. The signature of a magnetic
phase transition in the ∆f signal is often a dip or a jump, which can look the same as the
signature of a ferromagnetic switching or similar processes. Therefore, in many situations, it
is necessary to compare and correlate features in the frequency shift and the dissipation signal
of a measurement in order to obtain a correct phase diagram.

The other one is a static torqe τ which causes a static bending of the cantilever. We have
access to this quantity by monitoring the displacement of the cantilever from its equilibrium
position at zero field. This set of quantities contains all the information we can directly get from
the magnetic sample using this type of measurement. Note, however, that since magnetization
dynamics typically take place in the GHz range, while cantilevers usually operate in the kHz-
MHz range, it is not possible to obtain information about the time-resolved magnetic state
present in the sample, but rather about the quasi-static magnetic state, which is a temporal
average of the former over the time period of the cantilever oscillation.

2.2 Micromagnetic methods - Basic concepts

2.2.1 Introduction

We use DCM to investigate samples with dimensions on the order of a few hundred nanometers
to a few tens of microns. On this particular length scale, the lateral dimensions are much
bigger than the lattice constant a of the material but small enough for quantum mechanical
effects, essential for the description of a ferromagnet, to be still comparably strong. [47]. As a
consequence, neither a fully classical nor a purely quantum mechanical theory such as Maxwell’s
theory or density functional theory, respectively, are suitable to describe such magnets [48].
This gap in theoretical descriptions emerged after the discovery of Weiss domains in 1907
[49] and subsequent experiments on domain patterns and their respective domain walls by
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Barkhausen 1919 [50], Bitter [51], as well as Sixtus and Tonks [52], all in 1931. The theory that
was developed to close that gap during the 1930s and 1940s is now known as micromagnetics
and was established by Brown 1940 and 1941 [53, 54].

The main assumption in the micromagnetic model is, that the interactions in the magnet
are strong enough to keep the magnetization parallel over a characteristic length scale λ≫ a,
such that [47]

Si ≈ Sj for ∣xi − xj ∣ < λ≫ a (2.5)

where Si,j are individual spins at positions xi,j . Considering that λ is smaller or on the order
of the lateral dimensions of the sample (e.g. true for nano particles below the single domain
limit), it is reasonable to assume, that the density of discrete spins is homogeneous for a given
material. Hence, the sum over individual spins can be well approximated by an integral over a
continuous magnetization M(x), which, in turn, is treated in terms of a unit-vector field m(x)

M(x) =Msm(x) with ∣m(x)∣ = 1 (2.6)

where Ms is the saturation magnetization. [47].
Aiming for a full description of the magnet, terms that contribute to the magnet’s energy

Em will be either of classical or quantum mechanical nature. Using the above approach, all
those terms can be described by incorporating (differential) vector operations on m(x) and a
magnetic field H. There is a multitude of relevant terms that potentially add to Em. Depending
on the properties of the sample that needs to be described, some terms need to be included,
while others can be left out. A summary of the magnetic terms can be found for example in
[42–44] or in common textbooks on magnetism.

In order to calculate static micromagnetic properties, as for example for the determination
of the hysteresis loop of a given magnetic system, it is necessary to find a stable magnetization
configuration for the applied magnetic field. This can be obtained by finding a minimum of the
total free energy while fulfilling the condition given by eq. (2.6), known as the micromagnetic
unit-sphere constraint [47]. Using variational calculus, the expressions and boundary conditions
that minimize the magnetic energy can be found in [47] for typical contributing terms of Em.

An analytical solution for the problem was introduced by Stoner and Wohlfarth (SW) in
1947. In order to solve the equations, their model makes the simplified assumption that the
magnetization of the sample behaves as one macroscopic magnetic moment. The SW model
can be applied with reasonable accuracy in two different regimes. The first one is what we call
the low-field limit. In this case, only a low magnetic field is applied and the magnetic energy
is dominated by the involved anisotropies along which the magnetic moments will align. The
second one is the opposite scenario, which we call the high-field limit. The magnetic energy
is dominated by a high applied magnetic field, and the magnetic moments are aligned parallel
to the field direction. In the low-field limit, the SW model makes sense for example in the
case of nano particles below the mono-domain boundary [55]. In this regime, the formation of
a domain wall is energetically not favorable, and the macro spin model can be applied. For
magnets with sizes above the mono-domain boundary, the model may be considered in the
high-field limit.

The SW model reaches its limit in cases where the measured signal shows features that
arise due to individual switching events in the sample, since the spatial distribution of the
magnetization is not considered. In this case, the equations can not be solved analytically
and require numerical methods [56]. Numerical solutions use a discretization of the sample
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geometry in order to find solutions of m(x). Unlike the SW model, this method considers the
spatial distribution of magnetic moments in the sample. The numerical frameworks used in
this thesis are MuMax3 and nmag.

Given the knowledge of the cantilever properties, the frequency shift can be calculated in
both a SW and numerical framework using eq.(2.4), which allows for a direct comparison with a
measured quantity. The following sections will introduce analytical as well as numerical meth-
ods used for the analysis of the data. The relevant magnetic energy terms will be introduced
for each example individually.

2.2.2 DCM in a Stoner-Wohlfarth framework

In their 1947 theory [57], Stoner and Wohlfarth describe one of the rare situations where the
micromagnetic equations can be solved analytically. This is the case for small magnets where
the exchange interaction keeps the spins parallel. The magnetization then rotates in unison and
can be treated like one big macro-spin, which avoids the calculation of the precise M(x) depen-
dence. It can be shown that the magnetization of a mono-domain particle in a homogeneous
magnetic field behaves in the same way, as the magnetization of a suitably chosen ellipsoid
[58]. In this chapter we introduce the Stoner-Wohlfarth (SW) approximation for different sit-
uations, starting with a purely ferromagnetic system described by a prolate ellipsoid. We then
discuss the difference of a prolate and oblate ellipsoid, which has the same physical effect as
having a positive or negative uniaxial anisotropy constant. Afterwards, we extend the model
by introducing a thermally activated SW model, which approximates a super-paramagnetic
particle. For all these situations, we calculate ∆f from the magnetic energy.

2.2.2.1 Ferromagnetic particles with easy axis and easy plane anisotropy

We start with the description of a simple case of a ferromagnetic ellipsoid of revolution with a
uniaxial anisotropy. For this, we use the following magnetic energy terms:

Em = EZ +Eu (2.7)

where EZ is the Zeemann energy and Eu a uniaxial anisotropy energy of the magnet.

The Zeemann term describes the potential energy of the magnetization in the external field
and is given as

EZ = −µ0∫
V
M ⋅HdV = −µ0VM ⋅H (2.8)

The anisotropy term describes a preferential direction of the magnetization in the sample.
Uniaxial anisotropy can in some materials occur in form of a magnetocrystalline anisotropy
[59] but can also appear due to the geometry of the sample. Magnetocrystalline anisotropy has
its origin in the spin-orbit interaction, while geometry related anisotropy stems from dipolar
interaction between the magnetic moments [60]. The resulting mathematical terms, however,
have the same form. The term for the uniaxial anisotropy can be derived by analyzing the
total magnetic field and energy inside and outside the ellipsoid. The derivation (see Ref.[60])
results in the following energy term:

EU = µ0

2
V (DxM

2
x +DyM

2
y +DzM

2
z ) (2.9)
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Where the Di are the components of the demagnetization tensor D [61]. The Di are inter-
dependent since Tr(D) = 1 and their values depend on the ratios a/b and b/c of the ellipsoid’s
axes a, b and c. Note that the calculation of the parameters can be quite complicated and
exact values can only be determined for a few special geometries [62, 63].

Here, we want to focus on the two extreme cases of a very long and thin, and one flat and
wide geometry. The first one is the limit of an ideal easy axis anisotropy, the second one of
an easy plane anisotropy. In general, if two axes of the ellipsoid are equal, their corresponding
demagnetization factors are equal as well. We will use this in order to simplify eq.(2.9) by
focusing on ellipsoids of revolution. For the first case, we assume a = b << c and hence
Dx = Dy >> Dz. In an ideal case, Dx = Dy = 0.5 and Dz = 0. We introduce an effective
demagnetization factor Du = Dz − Dx and consider only uniaxial shape anisotropy with an
easy axis along the long axis of the ellipsoid. We further describe the direction of the uniaxial
anisotropy by a vector n in spherical coordinates with a set of angles (θn, ϕn):

n(θn, ϕn) =
⎛
⎜
⎝

sinθncosϕn
sinθnsinϕn

cosθn

⎞
⎟
⎠

(2.10)

In addition, we define the vectors of the external field and the magnetization in terms of
spherical coordinates with angles (θh, ϕh) for the field and (θm, ϕm) for the magnetization in
the coordinate system given in Fig. (2.1) in the same fashion.

If a magnetic field is applied, the magnetization will orient itself at some angle from the easy
axis depending on the relative orientation and strength of the anisotropy and the magnetic
field. This can be described by the scalar product between the magnetization and the uniaxial
anisotropy vector and the magnetic energy can be rewritten as

Em = −µ0VMsH0m ⋅ h −Ku1V (m ⋅ n)2 (2.11)

with Ku1 = −µ02 DuM
2
s taking the role of an effective, shape related anisotropy constant. The

elegeance of this description becomes evident, when we consider the opposite case of an oblate
ellipsoid with an easy plane anisotropy. By retaining the direction of n as the orientation of the
anisotropy, the description stays perfectly valid with only Ku1 becoming negative and doubling
in magnitude, since Dx = Dy = 0 and Dz = 1 for an infinitely flat ellipsoid with a = b >> c. n
takes the role of a magnetic hard axis now, while the magnetization has no preferred direction
in the xy-plane. This is the case e.g. for a ferromagnetic disc, the physics of which has been
studied extensively [64–71].

Now that the magnetic energy terms are established, we introduce a DCM model for this
type of magnetic system. In order to study the differences of the two cases, we consider the high
and low-field limit separately. For the high-field limit, the Zeemann term becomes dominant
and EZ >> Eu. Therefore, m(θm, ϕm) ∥ h(θh, ϕh) for all values of θh. In the experiment,
the direction of the external field is restricted to the xz-plane, of the coordinate system, i.e.
perpendicular to the cantilevers rotation axis, as given in Fig.(2.1) and we set ϕh = 0 at all
times. Applying this limit yields

m(θh) ≡ h(θh) =
⎛
⎜
⎝

sinθh
0

cosθh

⎞
⎟
⎠

(2.12)
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The Zeemann term in eq.(2.11) becomes constant with EZ = −µ0VMsH0 since the scalar
product m ⋅h = 1 and the cantilever oscillation only probes the second term in eq.(2.11), which
then translates a change in energy due to the rotation of the anisotropy axis n.

To account for the oscillation of the cantilever in the magnetic model, a rotation matrix is
applied to n, which is rotated around the y-axis by an angle θc. The frequency shift is then
determined using eq.(2.4).

We mentioned before that, in the high-field limit, the frequency shift is at an asymptotic
high field value ∆fhf which is only dependent on the cantilever constants and the orientation
of the anisotropy vector with respect to the external field vector and thus becomes a measure
for the anisotropy in the system. Note that, if other anisotropies are present, ∆fhf probes the
superposition of all involved anisotropies. Neglecting EZ , the contribution from the uniaxial
anisotropy to the high-field frequency shift for an arbitrary orientation of n is given as follows:

∆fhf =
Ku1V f0

4k0l2e
[ cos(2θh)(1 + 3 cos(2θn) − 2 cos(2ϕn) sin2(θn))

+ 4 cos(ϕn) sin(2θh) sin(2θn)]
(2.13)

In Fig.(2.2) we plot ∆fhf as a function of θh with n aligned with the x-axis, e.g. (θn, ϕn) =
(π/2,0) for both the easy axis and the easy plane situation. Since they only provide a scaling
of the absolute value, we set all cantilever constants, the saturation magnetization, µ0 and the
volume V equal to one.

Assuming an ideal case for the easy axis and easy plane anisotropy, we set Dea
u = −0.5

(Kea
u1 = 0.25) for the easy axis and Dep

u = 1 (Kep
u1 = −0.5) for the easy plane type.

0 45 90 125 180

h (°)

0.4

0.2

0.0

0.2

0.4

f h
f (

Hz
)

easy axis
easy plane

Figure 2.2 ∣ High field frequency shift as calculated
from a SW model for a prolate (easy axis, blue curve)
and an oblate (easy plane, orange curve) ellipsoid. Min-
ima and maxima coorespond to field orientations per-
pendicular and parallel to the respective hard and easy
directions.

For the situation corresponding to the
curves in Fig.(2.2), the magnetic field is par-
allel to the z-axis for θh = 0°, e.g. perpendic-
ular to n. Consequently, the field is parallel
to n for θh = 90°.

Looking at the easy axis curve (blue) first,
it exhibits a minimum for θh = 0° and a max-
imum for θh = 90°, where the field is perpen-
dicular and parallel to the magnetic easy and
hard direction, respectively. In these orien-
tations, the frequency shift reaches the most
positive and most negative asymptotic value.
The same holds true for the easy plane curve
(orange). In this case, however, the minima
and maxima are exchanged, even though the
direction of n is the same. Also the ampli-
tude of the curve is doubled. Both effects are
directly related to the different sign and value
of the anisotropy constants.

This behavior can be observed for any kind of anisotropy. If the field is parallel (perpen-
dicular) to the magnetic easy direction, a positive (negative) frequency shift can be observed.
This, in turn, allows for determination of the anisotropy direction, and in some cases also the
type of anisotropy, using angle dependent measurements in the high-field limit.
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The same analysis can be done for an easy axis anisotropy in the low-field limit. In this case
EZ << Eu and the magnetization is either fixed to be parallel or anti-parallel to the anisotropy
vector n which means that the cantilever oscillation now only probes the first term in eq.(2.11),
which is now a change in energy due to the rotation of the magnetization in the applied field.
The low-field frequency shift ∆flf can be calculated equivalently to ∆fhf and results in

∆flf =
f0V H0µ0Ms

2k0l2e
(cos(θh) cos(θn) + cos(ϕn) sin(θh) sin(θn)) (2.14)

The term in parenthesis is the projection of the anisotropy vector on the magnetic field
vector. Therefore, either Mx or Mz can be probed by aligning the magnetic field either with
the x or z axis, since one of the terms goes to zero.

The situation in the low-field limit is less clear for the easy plane anisotropy. The problem
can be understood by drawing an intuitive picture as follows: We assume the case of a real
sample with easy plane anisotropy, as for example a perfectly symmetrical magnetic disk. In
such a sample, the magnetic state that minimizes the energy at low enough field is a vortex.
As it is not possible to assign a single macroscopic spin that represents the situation correctly,
translating this into the SW model is hardly valid. A possible attempt to derive an easy-
plane version of eq.(2.14) would be to assume that the macroscopic spin aligns in the plane
perpendicular to n in a way that is ”most parallel” to the magnetic field vector. The validity of
the result would probably be quite questionable, and shall therefore be omitted at this point.

Regardless of the anisotropy type, the situation becomes more complicated in the case of
intermediate field strengths. The magnetization is oriented in an equilibrium position between
h and n and the frequency shift becomes a function of the coordinates of the magnetization
vector (θm, ϕm). In order to calculate ∆f in this regime, it is necessary to minimize the
magnetic energy with respect to these coordinates. As a first step, it is necessary to find
the orientation of m, which can be achieved by finding solutions (θm, ϕm) for the following
minimization conditions for Em: [31]:

∂Em
∂ϕm

= ∂Em
∂θm

= 0 (2.15)

∂2Em
∂2ϕm

,
∂2Em
∂2θm

> 0 (2.16)

Since we operate the cantilever in the small angle regime with θc << 1, the solutions for θm
and ϕm, which depend on θc, can be approximated by applying a Taylor series up to the first
order in θc:

ϕm(θc) ≈ ϕm(0) + ∂ϕm
∂θc

∣
θc=0

⋅ θc (2.17)

θm(θc) ≈ θm(0) + ∂θm
∂θc

∣
θc=0

⋅ θc (2.18)

In this limit, θm(0) , ϕm(0), ∂ϕm/∂θc, and ∂θm/∂θc can be determined analytically. The
found solutions are substituted into Em and ∆f can be calculated. The behavior for an easy
axis and an easy plane type situation are very similar and the field-dependent frequency shift
as calculated from this model is shown in Fig.(2.3) for th exemplary values θh = 0° (H ∥ z) and
θh = 90° (H ∥ x).
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(a) (b)

(c) (d)

Figure 2.3 ∣ Field dependent frequency shift for SW particles with easy axis (a)-(b) and easy plane (c)-(d)
anistoropy. For θh = 0° (e.g. external fiefld along the z-axis), the easy axis particle (a) exhibits a behavior typical
for a magnetic hard direction, while the easy plane particle (c) shows a magnetic easy behavior. The situations
switches for θh = 90° (e.g. external field along the x-axis), where the easy axis particle is shows magnetic easy
behavior (b) and the easy plane particle shows magnetic hard behavior (d).The calculations for the curves shown
here use the following parameters: Ms = 1.6 ⋅ 106A/m, f0 = 5284.79 Hz, le = 74.7µm, V = 1.089155 ⋅ 10−20m3,
k0 = 165.7 ⋅ 10−6N/m. The demagnetization factors Du are according to the main text.

These particular values correspond to the maxima and minima of the high-field frequency
shift plotted in Fig.(2.2).

The curves corresponding to the field alignment with the easy directions in Fig.(2.3) (b)
and (c) show a V-shape with positive values for the field strength dependent progression of
the frequency shift, which can be understood as follows: The field and the magnetization are
parallel to the anisotropy axis for high applied field magnitude. The magnetization remains in
this orientation if the field strength is decreased and flips to the opposite direction upon reversal
of the external field direction, once a certain threshold value is reached. This corresponds to
a jump in the frequency shift indicated by the arrows in Fig.(2.3) (b) and (c). It then again
remains in this orientation and flips in the opposite manner, if the field is increased again.

Fig.(2.3) (a) and (d) show the curves corresponding to the field alignment with the hard
directions. In this case, the curves show a W-shape with a negative frequency shift. Initially,
the magnetization is aligned with the magnetic field, and thus both of them are perpendicular
to the anisotropy axis. If the field magnitude is decreased, the magnetization slowly rotates
away from the external field towards the anisotropy axis. The beginning of this rotation is
associated with a dip in the frequency shift, before it overshoots to small positive values and
then crosses the ∆f -axis. Magnets with an easy axis symmetry switch hysteretically. This
behavior would not be expected for a perfect easy plane anisotropy, as shown in Fig.(2.3) (c)
for the easy direction in the easy plane configuration. In experiment, the perfect symmetry
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of an easy plane anisotropy is expected to be broken, leading to a preferred axis within the
plane and thus magnetic hysteresis. For both hard and easy direction, the full hysteresis curves
are symmetric upon field reversal. For any values of θh between the ones that maximizes the
frequency shift, the field dependent curves transform smoothly between the V and W- shape,
with the asymptotic value for high fields following the curve in Fig.(2.2).

Taking geometric relations of the participating vectors into account, the magnetization com-
ponents can be calculated for some limiting cases. This has been done for both easy axis and
easy plane situations and plotted for different values of (θn, ϕn) in Refs [31, 72].

In the following, we discuss a peculiarity of the frequency shift in the high-field limita.
Increasing the magnitude of the external field, the frequency shift value of the high-field limit
is approached asymptotically and generally has a constant value that is determined both by
the sample’s and the cantilever’s properties, as well as the magnetic field orientation. Thinking
in terms of the standard definition of the torque τy =m×µ0H, this is a surprising result, since
m ∥ µ0H for large fields, and hence m × µ0H = 0. Hence, we would expect ∆f = − ∂τ

∂θc
to be

zero, as well. We have omitted here, however, that we have to take the derivative in the limit
of θc → 0. This means that, even though the absolute value of the torque at θc = 0 is zero, the
slope of the torque curve τy(θc) in this point e.g. the frequency shift might not be. Thus, we
need to have a look at these properties as a function of θc. As an attempt to give the reader
a more intuitive understanding of this, we show τ and ∆f in Fig.(2.4) in dependence of θc for
the simple case of an easy axis magnet.

Fig.(2.4) shows the curves for the torque and the frequency shift for three specific angles θn.
The first two columns in Fig.(2.4) show the torque ((a) & (b)) and the frequency shift ((d) &
(e)) as a function of the oscillation angle θc with H = 2 T in the first column and H = 10 T in
the second column. The third column ((c) & (f)) shows τ and ∆f as a function of the external
field magnitude H at θc → 0. The chosen field angles correspond to the situation where the
external feld is aligned with the easy axis (θn = 0°, blue), hard axis (θn = 90°, orange) and an
intermediate alignment (θn = 45°, green).

We first focus on the curves for θn = 0° and θn = 90°. In Fig.(2.4) (a)-(c), it can be seen that
τ(θc → 0) = 0, as expected. However, the curves for τ(θc) show sinusoidal behavior and have
non-zero slopes at θc → 0, the values of which depend on the magnitude of the applied field
(c.f. situations in (a) and (b)). Taking the derivative after θc, this leads to the frequency shift
curves ∆f(θc) shown in Fig.(2.4) (d)-(f). The dependence of the absolute value of ∆f(θc → 0)
on the applied field is what creates the ∆f(H) curve, as indicated by the dashed arrows.

In addition, Fig.(2.4) shows the same kind of curves for θh = 45°. For this particular align-
ment, the asymptotic value of the high-field frequency shift is zero (c.f. Fig.(2.4) (f)), which
requires a minimum in the τ(θc) curve for θc → 0. This can be seen in Fig.(2.4) (b). At lower
fields, the minimum is shifted towards non-zero values of θc (c.f. (a)), resulting in a non-zero
frequency shift, as shown in (Fig.(2.4) (d) and (f)).

To conclude this discussion, we note that the intuitive picture of τy = m × µ0H can not
explain the non-zero values of the frequency shift as soon as m ∥ H for high enough fields.
Rather than that, it is more instructive to consider τ and ∆f as derivatives of the magnetic
energy with respect to θc.

aThis has caused several discussions among researchers working on this project, which sparked a more
thorough analysis of the problem. The results of this are summarized here.
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Figure 2.4 ∣ Torque (a)-(c) and frequency shift (d)-(f) as a function of the oscillation angle θc at H = 2 T
((a) and (d)) and H = 2 T ((b) and (e)) as well as the external field magnitude H at θc = 0 ((c) and (f)), all
for different values of θn. The curves are calculated from the Stoner-Wohlfarth model using τ = − ∂Em

∂θc
and

∆f = (− ∂τ
∂θc

∣
θc=0

). Most notably, the torque in (a)-(c) has an absolute value of τy = 0 for both θn = 0° and

θn = 90° but opposite slopes, with both curves switching signs at their turning points, leading to positive and
negative asymptotes. Whereas, for θn = 45°, the torque has a minimum which leads to ∆fhf = 0.

2.2.3 DCM in numerical micromagnetics

The model described in the chapters above is a useful tool to extract numerical values for the
investigated sample, such as the demagnetization factor, by fitting the model to the measured
asymptotes. It can also help to gain a first intuitive understanding of the DCM curves. The
model reaches its limitations for magnetic effects that include magnetic switching events or
magnetic states that can’t be approximated well by using a single macroscopic spin. Ana-
lyzing DCM signals with regard to such effects requires a more detailed consideration of the
spatial distribution of the magnetic moment within the sample. This is provided by numerical
micromagnetic tools, which we will introduce in this chapter.

At the center of the micromagnetic theory is the Landau-Lifshitz-Gilbert (LLG) equa-
tion, which describes the magnetization dynamics at nanometer length scale and picosecond
timescale [73] . After applying a magnetic field, the magnetization will start to precess around
the magnetic field direction on a spiral trajectory caused by a superimposed damping, until m
and H are fully aligned. The precession frequency is given by [73]

f = γµ0Heff

2π
≈ µ0Heff ⋅ (28 GHz/T) (2.19)

where γ = ge/2me is the gyromagnetic ratio, µ0 the vacuum permeability and Heff is the effec-
tive magnetic field. The damping parameter was phenomenologically introduced by Landau
and Lifshitz. Later, Gilbert modified the term such that the damping is proportional to the
time derivative of the magnetization. Different micromagnetic solvers may use several more
implicit or explicit versions fo the equation, but in a general form it reads as follows:
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ṁ = −γ0m ×Heff + αm × ṁ (2.20)

where α is the Gilbert damping factor. In order to solve the equation, the right hand side
of eq.(2.20) needs to be integrated. Since it can only be solved analytically for a few special
cases, most problems in micromagnetics are solved numerically. This can be done by virtue of
finite-difference and finite-element methods.

(a) (b)

Figure 2.5 ∣ Representation of different mesh types. Finite-difference methods use a mesh of regular rectan-
gular cuboids (a), while finite-elements methods rely on a mesh of potentially irregular tetrahedra (b). Figure
adaped from [47]

The integral of the right hand side of eq.(2.20) contains both temporal and spatial parts.
To account for the spatial integral over the whole magnetic domain, typically the geometry
is discretized in a certain way. The finite-difference method (FDM) uses a regular mesh of
rectangular cuboids, in which the magnetization is assumed to be uniform. In contrast, finite-
element methods (FEM) use a potentially irregular mesh of tetraedra. The solution of eq.(2.20)
is then approximated at the nodal points of the mesh [73]. Even though it is by far more
challenging to make calculations on a GPU (see [74] for more details), FDMs make use of
GPUs which makes them orders of magnitude faster than FEM, which rely on calculations on
a CPU.

Time integration is typically done using a variety of Runge-Kutta methods [73, 75]. The
spatial integral is solved for all cells during one time step and the value for each cell is updated.
This process is iterated until the magnetic energy is minimized with an error below a given
threshold.

Despite the much shorter computation times of finite-difference methods, it can be of dis-
advantage in some situations as the use of regular cuboids fails at the correct approximation
of curved geometries, as shown in Fig.(2.5). This can induce errors in the solution of the
spatial integration which is known as staircase effect. The effect can be reduced to a certain
amount by reducing the cell size, which in turn increases the use of memory and computation
time. In such a case, FEM methods yield better results at a comparable or reasonably longer
computation time.

One important parameter that should be mentioned here is the exchange stiffness Aex. The
value of Aex is related to the exchange and the lattice constants of the investigated material
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and determines the exchange length lex =
√

2Aex/µ0M2
s . The exchange length describes the

distance after which a disturbance of the homogeneous magnetization has dropped by a factor
1/e, where e is Euler’s number [76]. In order to obtain reasonable results, the mesh’s cell size in
the simulation should be smaller than lex which affects the possible mesh size and computation
time of the simulation.

In order to implement the calculation of the frequency shift ∆f and the torque τ , we mimic
the oscillation of the cantilever by applying the external field in three different directions.
First, the simulation is run with the field set in the direction given by (θh, ϕh). The procedure
is then repeated with the field tilted by an angle θ̃ = ±θc. Once the simulation is completed
in all three positions, τ and ∆f can be obtained from the calculated Em using the first and
second order difference quotient, respectively:

τ ≈ − 1

le

Em(θ̃) −Em(−θ̃)
θ̃

(2.21)

∆f ≈ f0

2k0l2e

Em(θ̃) +Em(−θ̃) − 2Em(0)
(θ̃)2

(2.22)

The cantilever itself is represented only by the pre-factors in eqs.(2.21)-(2.22). f0 is the
frequency of the magnet-on-cantielver system when no magnetic field is applied. The spring
constant k0 and the effective length le need to be calculated in a finite-element software (for
example COMSOL), typically by adjusting for small variations of the cantilever’s geometry.
This is iterated until the resonance frequency calculated via COMSOL fits f0 as measured the
experiment. The cantilever dependent factor only provides a scaling of the curves calculated
from the magnetic energy and does not interfere with the solution of the LLG equation.

Matching the measured DCM curves with the simulated frequency shifts allows for analysis
of the data by correlating features in the curves with corresponding magnetization maps. This
has been used for example to investigate vortex states in CoFeB nanowires [77] and to analyze
the data reported later on in ch.(3).

2.3 Micromagnetic methods - Applications

2.3.1 Thermal activation: Superparamagnetic particles

The descriptions in the previous chapters are valid for ferromagnetic nano-particles and yield
decent results in many cases. The Stoner-Wohlfarth model introduced above, however, doesn’t
consider any temperature dependence or effects related to a change in the sample temperature
and therefore its results compare to a magnetic system at very low temperature. For ferromag-
netic particles with a size and shape where the model applies well, this is not very problematic.
It becomes of particular interest, if the size of the magnetic particle is small enough that the
energy due to thermal activation becomes large in comparison to the anisotropy energy [78].
Under these conditions, the direction of the macro-spin is no longer stable and pointing along
the anisotropy axis, but rather flips between its stable positions at a high rate and thus aver-
ages itself to zero. Having no net magnetic moment at zero applied field but magnetizing as
soon as a field is applied, the sample is then called superparamagnetic: It exhibits the behavior
of a paramagnet despite its inherently ferromagnetic nature. The size below which a particle
becomes superparamagnetic depends on its specific morphology and material properties and
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is typically on the order of a few tens of nanometers [78]. Subject to decreasing tempera-
ture, the fluctuations stop when the thermal energy is too small to flip the magnetic moment.
The magnetization then stays in a stable orientation and the superparamagnetism blocks. In
accordance to this, the corresponding temperature is called blocking temperature TB.

A model for the DCM response of such a particle in form of an individual, thermally activated
Stoner-Wohlfarth particle has first been developed in [79] and will be introduced in this chapter,
following Refs.[79, 80]. The Hamiltonian of the magnetic system is given by energy terms as
summarized in eq.(2.11) and we writeH =HZeeman+Huniaxial. Again, we incorporate oscillations
of the cantilever, which correspond to rotations of n around the y-axis by an oscillation angle
θc via the application of a rotation matrix Ry(θc) to n. The partition function of the system
is given by:

Z = 1

2π
∫

π

0
dθm sin θm∫

2π

0
dϕm exp [−H (θm, ϕm)

kBT
] , (2.23)

where θm and ϕm are the polar and azimuthal angles of m. This yields the free energy
through

Fm = −kbT lnZ (2.24)

Once all parameter values are set, the integral over θm and ϕm can be evaluated numerically.
Analogous to the previous chapters, using the difference quotient to approximate the second
derivative in eq.(2.4), we then calculate the frequency shift of the cantilever.

To show the effect of the temperature dependence, we calculate ∆f of a magnetic particle
for two different temperatures, one at T = 5 K leading to a blocked state and the other one at
T = 300 K leading to a superparamagnetic state. We do the calculations for both easy and hard
orientation, e.g with H ∥ n and H�n, as shown in Fig.(2.6). The following parameters were
used in this case: f0 = 5 kHz, le = 100µm, k0 = 100µN/m, θc = 1°, V = 1000 nm3, Ms = 300 kA/m,
Du = −0.1, ϕn = 0, and θn = 90°.

In the H ∥ n configuration, the difference between the curves at 300 K and 5 K is small: the
curve at 300 K is broader and approaches the horizontal asymptote more slowly than the curve
at 5 K. In the H�n configuration, however, the curves behave in a fundamentally different
way. The curve at 300 K is similar to the case of H ∥ n, but mirrored across ∆f = 0. The
curve at 5 K has a distinct W-shape for low fields (see the inset of Fig.(2.6), approaching the
horizontal asymptote from negative rather than positive values of ∆f . This curve matches
the DCM curves calculated from the ferromagnetic Stoner-Wohlfarth model introduced in the
previous chapters (compare also Ref. [31]). There is a difference to the model in ch.(2.2.2.1)
at low fields, where ∆f overshoots to positive values as can be seen in Fig.(2.3) (a) and (d),
but not in the model here. We ascribe this to a difference in methodology, as introducing a
temperature dependence required to use a more complex statistical model. In the previous one
we used a direct energy minimization which represents a more idealized case. In the H ⊥ n
case, the distinction between the

V
- and W-shape of the DCM curve can be used to identify

the para- or ferromagnetic state of a magnetic specimen of the given geometry.
To understand the progression of M with external field and the differences in the curves for

different temperatures, it is instructive to look at the equilibrium probability distribution of
magnetic moments, which is given by

Pe (θm, ϕm) = exp [−H (θm, ϕm) /kbT ]
Z

(2.25)
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Figure 2.6 ∣ Simulation of DCM for an individual, thermally-activated Stoner-Wohlfarth particle at T = 300
and 5 K. Simulated ∆f(H) with (a) H ∥ n, and (b) H�n. Graph is adapted from [79]

Integrating Pe over ϕm and plotting it as a function ofmz =Mz/Ms = cos (θm) for a few values
of the external field, illustrates the difference between the blocked and the superparamagnetic
state, see Fig.(2.7).

For the sake of consistency with Ref. [79] and for didactic reasons, we break with the
convention established in the previous models, that the direction of n is fixed at θn = 90° and
θh is rotated. Instead, we fix the external field at θh = 0 along the z-axis and rotate n. The
established convention of fixing n and rotating θh would not affect the validity of the model
but would require a slightly different description compared to Ref. [79].

In (a), we plot the probability for H ∥ n. For the ferromagnet at 5 K (green), there are
very sharp maxima at mz = ±1 for H = 0. This means that M favors alignment with n, where
parallel and anti-parallel alignment are equally probable. Away from these two peaks, Pe is
essentially zero, i.e. the magnetization is very unlikely to point in any direction other than
along n. Switching on a slight external field (µ0H = 10 mT), the peak at mz = −1 vanishes,
and only mz = +1 is favored (dashed red curve).

Although not obvious in the DCM curves, Pe shows how this behavior differs from the
paramagnetic behavior at 300 K (blue and orange curves). Here, M ∥ n is still favored, but
the probability for M to point in any other direction is not negligible. Switching on a small
external field has a much smaller effect on Pe at 300 K than at 5 K, which explains why the
DCM curve for the paramagnetic case is broader than the ferromagnetic one.

Similar effects can be observed for H�n, see Fig.(2.7) (b). Let’s first look at the ferromagnetic
case: In this situation, n is aligned with the x-axis, while H remains parallel to the z-axis.
Since m ∥ n for H = 0, the probability that m points along z is practiacally zero, which is
reflected by the peak for Pe(mz) at mz = 0.
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Figure 2.7 ∣ Pe for an individual, thermally activated Stoner-Wohlfarth particle with (a) H ∥ n, and (b) H�n.
Graph is adapted from [79]

Applying a magnetic field, the magnetic moment rotates away from n and towards H. This
causes a shift of the peak towards mz = 1, which is reached as soon as the magnetic moment is
aligned with the field. For the paramagnetic case, the situation is very similar, only the peaks
are vastly smeared out, resulting in very broad probability distributions. The macro spin may
in this case fluctuate significantly in a broad range of directions, which appears in the DCM
curve by avoidance of the dips of the W-shape and formation of the

V
-shape.

2.3.2 DCM and susceptibility

In standard laboratory magnetometry, the total magnetization of a sample can be measured
for example via a vibrating sample magnetometer (VSM). VSMs often make use as supercon-
ducting quantum interference devices (SQUIDS) as a sensitive detector. For this metod, a
sample vibrates in a magnetic field between two pick-up coils that are coupled to a SQUID,
which detects the flux variations as a function of the applied field, which can be related to the
magnetization of the sample. The slope of the obtained magnetization curve can in general be
described by a dimensionless tensor called magnetic susceptibility χi,j

χi,j =
∂Mi

∂Hj
(2.26)

In general, the components of M can react differently to the different components of H.
However, in the following, we only consider diagonal entries of χi = ∂Mi/∂Hi of the suscep-
tibility tensor for the sake of simplicity. Typically, the susceptibility is dependent on the
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frequency ωHac of the applied ac magnetic field and one can distinguish between DC and AC
susceptibility.

If this frequency is low enough, e.g. 2π/ωHac << tcmag, where tcmag is the characteristic
timescale on which the magnetization dynamics of the given sample takes place, the magnetic
moment align well with the applied field. If 1/ωHac > t, which e.g. typically happens if phase
boundaries are crossed,the magnetic moments can not follow the oscillating field anymore, the
susceptibility becomes imaginary and the imaginary part χimi,j can be interpreted as a measure
for dissipative processes [81].

The thermodynamic potential for the Gibb’s free energy of a magnetic system is given by
[82]

dG = −SdT + V dP − µ0VmMdH (2.27)

where T is the temperature, S the entropy, P the pressure, V the volume of the thermody-
namic system. The magnetization and susceptibility can be expressed as a derivative of the
magnetic energy with respect to the external field:

Mi = −
∂G

∂Hi
and χi = −

∂2G

∂H2
i

(2.28)

This allows for a comparison of magnetization and susceptibility with the torque and the
frequency shift in DCM, as given by table (2.1). The difference between the two sets of
properties is the fashion in which the external field oscillates. While for M and χ the field is
oscillating linearly, in DCM the field is oscillating around an angle θc, induced by the motion
of the cantilever.

x y

z
H || hard

axis

H || easy
axis

Figure 2.8 ∣ Field direction with respect to the mag-
netic particle for hard and easy axis orientation.

We study the differences and similarities
of the two situations by means of micromag-
netic simulations of a prolate ellipsoid using
Mumax3. As indicated in Fig.(2.8), the long
axis of the ellipsoid is aligned with the x di-
rection of the coordinate system, which, in
the experiment, coincides with the long axis
of the cantilever. The system is in the mag-
netic easy configuration for the external field
parallel to the the x axis with θh = π/2, as
indicated by the blue arrow in Fig.(2.8). Ac-
cordingly, the system is in a hard axis config-
uration, if the field is perpendicular to x.

Note that the direction of the external field
is off by the perfect alignment by 2 and 1 de-
grees in θ and ϕ direction, respectively, in
order to prevent the system from entering
an energetically metastable state. The cal-
culation of ∆f and τ is done as explained in

ch. (2.2.3). For simplicity, we omit the cantilever dependent pre-factor, which only accounts
for a scaling of the absolute value of ∆f .

Although the magnetic energy and the magnetization components are calculated by default
in micromagnetic simulations, it is necessary to also simulate the measurement with a linearly
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oscillating field in order to obtain a valid comparison. Hence, to mimic the VSM measurement,
the magnetic energy is minimized with a small linear field on the order of 2% of the external
field strength added first in positive, then in negative direction of each vector component of
the external field, and with the external field in its main direction in order to calculate the
three magnetization components. Using the difference quotient, we obtain

Mz ≈
Em(δHac) −Em(−δHac)

δHac
(2.29)

for the magnetization and

χz ≈
Em(δHac) +Em(−δHac) − 2Em(0)

(δHac)2
(2.30)

for the susceptibility. In order to verify this procedure, we show in Fig.(2.9) (a)-(b) the results
for the magnetization components for both the magnetic easy and hard direction as calculated
by default from MuMax3 (blue circles) with the results according to eq.(2.29) (orange curve).

(a) (b)

(c) (d)

Easy axis Hard axis

Figure 2.9 ∣ The top row shows mx for both easy (a) and hard axis (b) alignment of the external field
(c.f. Fig.(2.8)). The two curves correspond to the magnetization components as calculated from Mumax3 (blue
circles) and for a linearly oscillating field according to Eq.(2.29). Bottom row shows the corresponding frequency
shift (blue curve) and susceptibility (orange cure). Curves in (c) and (d) are scaled for better comparability.

The field is swept form positive to negative direction, thus representing half a hysteresis
curve. The results match each other perfectly. We can see a sudden jump in the easy axis
curve when the magnetization flips its direction at a coercive field with a negative value. For
the hard axis alignment, where the external field is perpendicular to the x direction, mx is zero
at first, and then rotates smoothly into the easy direction. At negative fields, the rotation is
first continued before it flips direction and approaches zero from negative values.
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Therefore eqs. (2.29) and (2.30) obtain valid results and we now proceed to compare the
frequency shift ∆f with the susceptibility χ, as plotted in Fig.2.8 (c)-(d). The curves have
very similar shape, but are scaled for better comparability. Again, the external field strength is
swept from positive to negative values. For both orientations, χ and ∆f approach a horizontal
asymptote for large values of Hx, differing in their asymptotic value. While the susceptibility
approaches zero from negative values, the value of the asymptote for ∆f depends on the
orientation of the external field, as described in the chapters above. Magnetic switching is
visible equally in both curves. The dips in the hard axis curve in Fig.2.8 (d) correspond to the
rotation of the magnetic moments from the anisotropy axis towards the external field, as the
field is increased (c.f. behavior of mx in (b)).
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Figure 2.10 ∣ Simluated torque and magnetization component for both easy (upper plot) and hard (lower
plot) orientation.

In Fig.(2.10), we plot the simulated static torque for both field orientations. In order to get
a valid comparison, we have to choose the correct magnetization component. In the easy axis
orientation, we compare to the mz component, while for the hard axis, we compare to the mx

component. The curves carry similar information as the magnetization component we compare
them to. One drawback, however, is that the torque curves don’t reflect the orientation of the
external field for high field values. Also, for H = 0 the torque is zero.

In conclusion, the simulations show, that the frequency shift retrieved from DCM can be
regarded as a rotational analog to a susceptibility measurement with a linearly oscillating
magnetic field. The results for the static torque compared to its corresponding magnetiza-
tion components have to be interpreted more carefully, as the curve show some qualitative
disagreements, while still containing similar information.
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2.4 Detecting Phase transitions

2.4.1 Introduction

The theory of thermodynamic phase transitions goes back to 1822 where Charles Caignard de
la Tour characterized the transition between liquid and gas phases in alcohol by a triplet of
values: temperature, pressure and volume [83]. The work of van der Waals 1873 and Pierre
Curie 1895 lead to a first equation of state and the discussion of the transition temperature,
after which ferromagnetism occurs, now known as Curie temperature. Based on the findings
of an unusual phase transition in liquid helium by W.H. Keesom in 1932, Paul Ehrenfest
introduced the first comprehensive scheme for classifying phase transitions, which is today
known as Ehrenfest classification [83, 84] .

Ehrenfest’s classification is based on the description of the Gibb’s free energy G of a given
system and its respective derivative: If a system that passes a phase transition is continuous
in G but discontinuous in its first derivatives, it is classified as a first-order phase transition.
Consequently, if G and its first derivatives are continuous, but not the second derivatives, it
is classified as second-order transition. There is no intrinsic limit on how high an order of a
phase transition can be and while Ehrenfest mentioned higher-order transitions, he studied
only first and second-order [83]. In reality, however, it becomes less and less clear whether it is
still reasonable to think of a phase transition for higher orders, since the discontinuities in the
derivatives becomes less and less significant so that typically only the first and second order
are of interest b. [85].

Essentially, according to Ehrenfest’s work, all information about phase transitions is con-
tained in G. In a thermodynamic framework, magnetization and susceptibility are the first
and second derivatives of the free energy at a constant temperature T . In a similar way, the
specific heat C can be derived as the second derivative of the free energy at constant external
field H and/or constant magnetization M via the internal energy or the entropy, respectively.
We have shown in the previous chapters that, being derivatives of E as well, the torque τ and
the frequency shift ∆f , can be compared to the magnetization and the the magnetic suscep-
tibility with respect to an oscillating magnetic field, induced by the motion of the cantilever.
Consequently, these properties can be linked to other thermodynamic coeffitients like C or χ
via the Ehrenfest relations. This has been done in 2018 by Modic et al. [32] and we follow
their derivation in order to establish a framework for measurements of phase transitions with
DCM.

While phase transitions in ferromagnetic systems have been studied intensively for a long
time, they also play an important role in the more recently discovered class of non-collinear
magnetic systems, such as chiral magnets. Besides ferromagnetic states, these materials can
host magnetic states, where the magnetization is not only aligned parallel anymore, but also
in helices, spirals, cones or wirlpool- like structures called magnetic skyrmions. Mapping out
magnetic phase diagrams of those materials is of interest both for basic science and potential
applications in fields like data storage or spintronics. As we will see in this chapter, DCM
is a powerful tool to detect those transitions. Subsequently, we will compare susceptibility
measurements from the literature to DCM measurements on the same materials in order to
verify the procedure. Note that an introduction to non-collinear magnetism can be found in
ch.(5.2)

bSee Ref [85] for a more detailed discussion of higher order transitions
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2.4.2 DCM properties in a thermodynamic framework

2.4.2.1 Basic example: Susceptibility at paramagnetic to ferromagnetic transition

We establish an understanding of the processes happening at phase transitions by having a
look at the paramagnetic to ferromagnetic transition in a ferromagnetic material with the
Curie temperature Tc. We follow [82], starting at Gibbs free energy

dG = −SdT + V dP − µ0VmHdM (2.31)

We assume the pressure P to be constant and (following the approach of Landau-Lifshitz)
[86] expand for M around Tc:

G = G0 + a(T − Tc)M2 + bM4 (2.32)

where a and b are numbers. The energy is now a function of the magnetization and the
temperature, including Tc as a coefficient. In Fig.(2.11) (a) we plot G as a function of the
magnetization at different temperatures above and below Tc. For T > Tc, the energy has the
shape of a parabola with a minimum at M = 0. Lowering the temperature, it evolves into
a mexican-hat shape with the minima being symmetric around M = 0 after passing Tc. For
an equilibrium state of the magnetization, the energy needs to be minimized, so naturally,
the value of the equilibrium magnetization follows the behavior of the energy minima, whose
positions we find as follows:

( ∂G
∂M

)
T
= 0 = 2a(T − Tc)M + 4bM3 (2.33)

The solutions for this are:

M = 0 and M2 = −a(T − Tc)
2b

(2.34)

Setting M = 1 at T = 0 one can obtain Tc:

Tc =
2b

a
(2.35)

In the following example, we choose a and b such that Tc = 8K, for no particular reason.
The energy minimum at M = 0 for T > Tc indicates that the distribution of the magnetic
moments is such that the overall magnetization cancels out, which is true for a paramagnet.
Passing Tc, the minimum transforms in a maximum and the M = 0 state is not favorable
anymore. The magnetization can now be used as an order parameter for the magnetic state
of the system. Whether the positive or the negative minimum state is realized depends on
different factors such as external fields or anisotropies. In a perfectly isotropic system with no
external influences, this is a process of spontaneous symmetry breaking and realization of each
of the states have the same probability.

The magnetization shown in Fig.(2.11) (b) follows a parabolic curve for T < Tc, as given by
eq.(2.34). Below Tc, the material is in the ferromagnetic phase with the magnetization now
serving as the corresponding order parameter. The onset of the latter causes the material to
exhibit a non-zero susceptibility, which results in a sharp jump from zero to a finite value as the
temperature crosses Tc coming from high temperatures. This is shown in Fig.(2.11) (c). This
behavior is indicative of a magnetic phase transition and can occur not only in paramagnetic to
ferromagnetic transition but also between substates that incorporate a change in susceptibility.
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(a) (c)(b)

Figure 2.11 ∣ Paramagnetic to ferromagnetic transition of a ferromagnet with Tc = 8 K. (a) shows the magnetic
energy as a function of the magnetization at different temperatures. The energy transforms from a parabola
with a minimum at M = 0 to a symmetric mexican-hat shaped curve with a maximum at M = 0. (b) plots
the position of the positive minimum as a function of temperature at H = 0 T. The susceptibility χ = ∂M/H is
shown in (c), exhibiting a sharp peak at the transition temperature.

2.4.2.2 Relation between thermodynamic properties

We can build a thermodynamic potential for a magnet-on-cantilever system similar to eq.(2.31)
by considering the potential energy of a magnet, given by

Umag = −VmM ⋅ µ0H. (2.36)

To build the differential, we consider the change of the potential energy with respect to an
infinitesimal rotation by an angle dθ about some rotation axis η:

dUmag

dθ
= −µ0Vm

dM

dθ
⋅H − µ0VmM ⋅ dH

dθ

= −µ0Vm(η ×M) ⋅H − µ0VmM ⋅ dH
dθ

.

(2.37)

The term dM
dθ in this equation has be replaced with η ×M. This identity can be found

by using the general formula for actively rotating a vector by an angle θ about η, known as
Rodrigues’ rotation formula:

r′ = r cos(θ) + η(η ⋅ r) [1 − cos(θ)] + (η × r) sin(θ) (2.38)

For an infinitesimal rotation (θ → dθ, cos(dθ)→ 1, sin(dθ)→ dθ), eq.(2.38) reduces to

r′ − r = dr = (η × r)dθ (2.39)

which gives the desired identity by dividing through dθ.
Rearranging the scalar triple product in the first term of the last part of eq.(2.37), and

identifying the magnetic torque τ we get

dUmag

dθ
= −η ⋅ (VmM × µ0H) − µ0M ⋅ dH

dθ

= −η ⋅ τ − µ0VmM ⋅ dH
dθ

.

(2.40)

Multiplying with dθ gives the final result:
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dUmag = −η ⋅ τdθ − µ0VmM ⋅ dH (2.41)

Note that this is true for any rotation axis η. In the following, we choose η = y in consistency
with our experimental setup and thus η ⋅ τ = τy ≡ τ and dθ = θc. The Helmholtz free energy is
obtained by Legendre transformation of dU = TdS − pdV + dUmag and is given by [32]

dF = −SdT − PdV − µ0VmM ⋅ dH − τdθ (2.42)

For the magnetic phase transitions, in which we are interested here, we expect that no change
in volume (or pressure) occurs, so −PdV vanishes. Note that the torque term only exists, if
there is magnetic anisotropy present, and the last two terms correspond to Em as given in
eq.(2.2).
To relate the thermodynamic quantities given in eq.(2.42), we assume a second order phase
transition, so the energy is the same at two points A and B on the phase boundary between
phase 1 with energy F1 and phase 2 with energy F2:

F1 = F2 (2.43)

First we look at a magnetic field driven phase transition, so the temperature is constant:

dF = −µ0VmM ⋅ dH − τdθ. (2.44)

Further, for a second order phase transition the first derivatives do also not change. Let’s
first analyze the magnetization:

(∂F1

∂H
)
θ
= (∂F2

∂H
)
θ
⇔∆MA (H,θ) = 0 (2.45)

where ∆MA = M1 −M2 at point A as given by the derivatives. Moving an infinitesimally
small step along the phase boundary, to point B, this reads as ∆MB (H + dH, θ + dθ). A Taylor
expansion of ∆MB results in:

(∂M1

∂H
)
θ

dH + (∂M1

∂θ
)
H

dθ = (∂M2

∂H
)
θ

dH + (∂M2

∂θ
)
H

dθ (2.46)

Sorting after equal derivatives yields

∆(∂M
∂H

)
θ

dH +∆(∂M
∂θ

)
H

dθ = 0 (2.47)

By using the definition of the susceptibility and the Maxwell relations [87] between the
magnetization and the torque

(∂M
∂θ

)
H
= −( ∂τ

∂H
)
θ

(2.48)

we can rewrite eq.(2.47) as follows:

∆χdH −∆( ∂τ
∂H

)
θ

dθ = 0 (2.49)

This can be done in the same manner for the torque, which gives
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∆( ∂τ
∂H

)
θ

dH +∆(∂τ
∂θ

)
H

dθ = 0 (2.50)

in analogy to eq.(2.47). Solving eq.(2.50) for ∆ ( ∂τ
∂H

)
θ

and inserting into eq.(2.49), we can
establish the following relation between the frequency shift and the susceptibility:

∆f = −∆χ(dH

dθ
)

2

(2.51)

It is a straight forward task to link the susceptibility with the specific heat C using the exact
same path for phase transition with a constant θ. We assume the difference in entropy and
magnetization in the two phases to be a function of the temperature and the external field.
Then we Taylor-expand both properties, and use the Maxwell relation between magnetization
and entropy as well as the identity (∂S/∂T ))H = C/T . Then we can relate the susceptibility
with the specific heat as follows:

∆χ = ∆C

T
( dT

dH
)

2

(2.52)

Inserting this into eq.(2.51) yields the relation between the specific heat and the frequency
shift.

∆f = −∆C

T
(dT

dθ
)

2

(2.53)

Note that eq.(2.53) could have been derived analogous to eq.(2.51) and eq.(2.52) instead.

2.4.2.3 Comparison of phase transition measurements using different methods

The model system in ch.(2.4.2.1) has shown a peak in the susceptibility around the transition
temperature. Given the relations established above, we expect a similar behavior for the
frequency shift and the specific heat. To verify this, we compare measurements on the chiral
magnet MnSi [88] from the literature with data from our lab. The magnetic phase diagram
of this material hosts non-collinear magnetic states such as a helical ground state, a conical
state and a skyrmion lattice state. These magnetic phases and their transition values have
been studied using a large variety of experimental techniques including magnetic susceptibility
and dynamic cantilever magnetometry, and it thus qualifies perfectly as a model system to
compare the data.

Specifically, we compare data from two studies by Bauer et al. using magnetic susceptibility
[89] measurements with data taken in our lab using DCM and published in Mehlin et al. [33].
In both publications, the magnetic phase diagram was mapped out and the values of transition
temperatures and fields compare sufficiently well.

In Ref. [89], the material was investigated measuring real and imaginary part of the magnetic
susceptibility at the same time, both as a function of temperature and external field. We show
the field dependent data in Fig.(2.12) next to similar measurements of a MnSi nanowire, using
DCM [33].

The real part of the susceptibility shows several distinct features at different field values, that
are also dependent on the temperature. The curves between ca. 28 K and 25 K all similarly
show a parabolic behavior during the helical phase below 0.1 T, followed by two peaks around
0.1 T and 0.2 T where the system enters and exits the skyrmion phase. After those peaks, the
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Figure 2.12 ∣ (a) Real and imagninary part of the susceptibility and (b) frequency shift data of a MnSi sample.
Graphs adapted from [89] and [33].

signal has a short linear part where the conical phase is modulated by the external field before
it enters a fully field polarized state. For even lower temperatures, the signal transitions from
the parabolic behavior in the helical phase directly to the linear behavior of the conical phase
before transitional to the field polarized state. The DCM measurements show very similar
features: the signal starts out with an increase to a positive frequency shift in the helical phase
before it exhibits a sharp drop to a negative frequency shift in the skyrmion phase. Then
it jumps back up to a positive value when the magnetization switches back to to a conical
phase. From there it transforms smoothly to a negative value before it shows a kink where the
cones close and it transitions to the field polarized state. The values of the transition fields are
comparable, however need to be corrected due to different anisotropies or crystal directions.

The imaginary part of the susceptibility exhibits some features around the transition in and
out the skyrmion phase, indicating dissipative features and hence magnetic fluctuations in
these regions, typical for magnetic phase transitions. Features like this can be observed in the
dissipation signal Γ (not shown here) and in fact, Γ can be used to investigate phase transitions
(c.f. ch.(2.1.3)). This will be of relevance in ch.(5).
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3 Magnetic Hysteresis of Individual Janus
Particles with Hemispherical Exchange
Biased Caps

3.1 Introduction

The previous chapters have introduced DCM as a sensitive method to measure anisotropic
behavior and phase transitions in individual, nano- to micron sized magnetic particles. Such
particles have become of interest not only in fundamental sciences, but they also offer attractive
applications for example in biomedicine [90] or spintronics [91]. In order to obtain a controllable
behavior of magnetic particles via magnetic fields, the possibility to engineer their anisotropic
properties is a necessity. One way to do this, is by making use of an effect called exchange
bias [92–94], which arises due to the interaction of a ferromagnetic and an antiferromagnetic
material and manifests itself in form of an artificial, unidirectional anisotropy. By changing
the growth parameters and system properties, strength and direction of this anisotropy can
be engineered. As a subgroup of micron and sub-micron sized magnetic particles, which are
discussed as a multi-functional component in lab-on-chip or micro-total analysis systems [2,
3], magnetic JPs, consisting of a hemispherical cap of magnetic material on a non-magnetic
spherical template, allow not only a controlled transversal motion, but also a controlled rotation
by rotating external magnetic fields [4, 5]. Such JPs can be mass-produced via the deposition
of magnetic layers on an ensemble of silica spheres. The transversal and rotary motion of
these particles can be controlled via external magnetic fields, which exert magnetic forces
and torques [6]. This ability to externally actuate magnetic JPs has led to applications in
microfluidics, e.g. as stirring devices [7], as microprobes for viscosity changes [8], or as cargo
transporters in lab-on-chip devices [9–11]. Magnetic JPs have also been proposed as an in
vivo drug delivery system [12]. Although, in general, a transversal controlled motion can be
achieved by both superparamagnetic particles or particles with a permanent magnetic moment,
a control over the rotational degrees of freedom can only be achieved, if the particles possess
a sufficiently large permanent magnetic moment. Streubel et al. [95] analyzed the remanent
magnetic state of magnetic JPs with ferromagnetic (fm) magnetic caps. Their simulations show
that permalloy JPs with diameters larger than 140 nm host a global vortex state at remanence.
Because this flux-closed state has a vanishing net magnetic moment, magnetic JPs hosting such
a remanent configuration are unsuited for applications involving magnetic actuation. Thus,
for JPs larger than this critical diameter, strategies to overcome this limitation need to be
developed.

Here, we apply an exchange bias to the fm layer by adding an antiferromagnetic (afm) layer
beneath the fm layer of the magnetic cap, which is able to prevent the formation of a global
vortex at remanence. In order to verify that this addition leads to a remanent configuration
with large magnetic moment, we measure the magnetic hysteresis of individual JPs with and
without this layer.
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This chapter first gives a brief overview and an intuitive picture of the phenomenology of
exchange bias, and subsequently presents the results on the measurements of the magnetic
JPs, which are adapted from the follwing work:

3.2 Exchange bias as unidirectional anisotropy

When a system in which a layer of ferromagnetic material has an interface with an antiferro-
magnetic material is field-cooled through the Néel temperature TN of the antiferromagnet, the
two layers interact via the exchange interaction between the spins of the two materials at the
interface, and an anisotropy is induced. This effect was first discovered in 1956 by Meiklejohn
and Bean and is called exchange bias [92–94]. Though studied in a multitude of different sys-
tems [96–98] since its discovery, a clear understanding of exchange bias at a microscopic level
is still lacking [93, 99].

Phenomenologically the effects of exchange bias on the hysteresis curve of the magnetic sys-
tem are apparent mainly through a shift along the field axis by an amount Heb = (Hc2 −Hc1) /2
called the exchange bias field and a superimposed broadening of the curve. Hc1 and Hc2 are
the coercive fields. In addition, upon multiple loops through the curves, the magnetic state at
the initial field value will change as a function of how many times the hysteresis loop is cycled.
The effect results in a reduced saturation magnetization and is called training [100, 101]. The
decreased curvature of the loop on the ascending branch of the hysteresis can be attributed
to the fact that the field is pointing along the exchange bias direction and thus the switching
rates of the magnetic moments is enhanced, causing it to rotate earlier as compared to a fully
ferromagnetic system. The magnitude of this, like all exchange bias related effects, is typically
dependent on several system parameters such as the thickness of the involved layers, the ge-
ometry of the magnet, anisotropies and the exchange strength of the materials. Fig.(3.1) (a)
summarizes the effects in a schematic of an exchange-biased hysteresis loop.

Fig.(3.1) (b) displays an intuitive picture of how the shift of the hysteresis loop is generated.
(1) Before field cooling through TN with TN < T < Tc, the spins in the AFM are not ordered,
whereas the FM is already point along the field. (2) After field cooling, the FM is still saturated
but the AFM is in an ordered, antiferromagnetic state. The exchange bias direction is now
aligned with the ferromagnet’s magnetic moments. One can im imagine that the FM is used to
imprint the exchange bias direction in the AFM . (3) if the field direction is inverted, the FM
moments start to turn towards the external field, but are held back by the exchange interaction
with the AFM spins that now points antiparallel with the exchange bias direction, before they
subsequently switch (4) and saturate in the opposite diretction. Note, that the AFM spins
still point in the same direction as in the beginning. (5) Increasing the field and reversing the
field direction again to the original direction, the exchange interaction is again parallel to the
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Figure 3.1 ∣ (a) Schematic of a hysteresis loop of an exchange-biased magnetic system. The main features are
a shift along the magnetic field axis by an amount Heb = (Hc2 −Hc1) /2, which is called exchange-bias field. Hc1
and Hc2 are the coercive fields. On the increasing branch of the hysteresis, the curvature of the loop is decreased
due to alignment of the external field with the exchange bias direction. The difference of the magnetic state
at positive saturation is called training. (b) Intuitive picture of how the shift along the Field axis is generated.
Picture adapted from [93]

external field and thus the switching process happens at much lower field values compared to
a purely ferromagnetic system. The belated switching on the descending branch and the early
switching in the ascending branch ultimately cause the shift in the hysteresis loop.

Micromagnetic simulations that account for local dependence of the magnetization and
mimic the interaction between two materials have been done by De Clerc et al [102] in MuMax3.
Their approach includes two layers of materials, given by two different mesh regions. The “an-
tiferromagnetic” layer is discretized using a Voronoi tessellation with a given number of cell
seeds. Each Voronoi cell includes a number of mesh cells. Subsequently, the Voronoi cells are
devided into two classes of rotatable and pinned magnetizations, with a given ratio. Both types
have their own uniaxial anisotropy constant, given by Krot and Kpin, and their anisotropy axes
are randomly distributed in the xy-plane. The pinned grains cause an unidirectional shift of
the hysteresis loop while the rotatable grains lead to a small enhanced coercivity [103] and are
able to produce the athermal training effect [102]. Relaxing the energy, the “ferromagnetic”
layer in the simulation is subject to the exchange interaction with the pinned cells, which
reproduces the exchange bias. This procedure applies well to systems that can be discretized
using finite difference methods with a cubic mesh. For systems that require finite element
methods and a discretization using a thetrahetral mesh or an analytical approach such as the
Stoner-Wohlfarth model, the method reaches its limit in applicability.

In order to reproduce the effects of exchange bias for a DCM measurement, we rely on a
simplified model where we introduce the preferred direction that is imposed to the magnetiza-
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tion by the exchange bias in form of a unidirectional anisotropy with anisotropy constant Keb.
This method applies in the SW framework as well as in micromagnetic simulations and works
as follows:

We introduce a vector ueb along the exchange bias direction using a set of spherical coordi-
nates {θeb, φeb}. The corresponding energy then reads

Eud = −KebV (m ⋅ ueb) (3.1)

We follow the procedure introduced in chapters (2.2.1)-(2.3.1) to calculate the high field
frequency shift that occurs due to this additional energy term.

∆fud = −
f0V Keb

2k0l2e
⋅ ( cos θu(sin(θh) sin(θeb) cos(ϕu) cos(ϕeb) + cos(θh) cos(θeb))

− sin(θeb)(sin(θu) cos(θh) cos(ϕeb) + sin(θh) sin(ϕu) sin(ϕeb))

+ sin(θu) sin(θh) cos(θeb) cos(ϕu))

(3.2)

Here, (θh, ϕh = 0) define the orientation of the external field, (θu, ϕu) of the axis of the uniaxial
shape anisotropy as defined in Ref. [79], and (θeb, ϕeb) of the unidirectional anisotropy vector.
The latter is oriented first, and rotated by (θu, ϕu) in a second step to be consistent with the
situation in experiment. Cantilever and magnetic parameters are as defined before.
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Figure 3.2 ∣ (a) ∆f(θh) in the high field limit with
shape and unidirectional anisotropy. ∆f(θh) in the SW
model for 3.5 T applied field magnitude, and in the high
field limit from (a).

We evaluate the high-field limit for the sum
of shape and unidirectional anisotropy. How-
ever, we increase Keb significantly to mag-
nify its effects. The angles are set to be
(θu, φu) = (−3°,0°) and (θeb, φeb) = (−90°,0°),
while θh is varied as in experiment. The re-
sult is shown in Fig.(3.2) (a), together with
the individual contributions from shape and
unidirectional anisotropy.

This shows, that the sum of the two contri-
butions may lead to a periodicity that devi-
ates slightly from 180°, which would be given
for pure uniaxial shape anisotropy. Further-
more, the magnitude of maxima and minima
may differ significantly. Here we find 1.9 Hz
for the maxima and 2.4 Hz for the minima,
respectively.

The SW model, as described in ch.(2.2.2),
can be used to calculate ∆f(θh) for a fixed
field magnitude. We set this field value to
3.5 T, in order to be consistent with values

possible in our experiment. This allows to compare the result of the SW model with the high
field limit as discussed above, see Fig.(3.2) (b). The curve of the high field limit follows a
(negative) cosine with 2θh in the argument. In turn, for the SW model at 3.5 T, minima are
deeper and maxima are shallower in ∆f , respectively. However, there is no deviation from
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the 180° periodicity. Further, maxima are wider than minima when the high field limit is not
fully reached, which is a consequence of the fact that positive and negative asymptotes are
approached with a different curvature when ramping up the external field in the SW model.
This can be seen in Fig.(2.3) for both easy axis and easy plane curves.

3.3 Samples and Cantilevers

The magnetic JPs are fabricated by coating a self-assembled template of 1.5µm-sized silica
spheres with thin layers of different materials via sputter-deposition in the group of Prof. A.
Ehresmann at the University of Kassel. The non-magnetic silica spheres are arranged on a
silica substrate using entropy minimization [104], which allows the formation of hexagonal
close-packed monolayers. JPs with two different layer stacks, shown in Fig.(3.3) (b), are
produced.
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Figure 3.3 ∣ (a) Cross-sectional SEM of a JP showing the gradient of the layer thickness. The two investigated
layer stacks of the hemispherical cap are shown in the insets. (b), (c) Definition of the angles setting the
orientation of the unidirectional anisotropy vector used to mimic exchange bias effects (θeb, ϕeb), and the angles
defining the orientation of a JP on the cantilever (θJP and ϕJP).

Ferromagnetic JPs (fmJPs) are fabricated by depositing a 10 nm-thick Cu buffer layer di-
rectly on the silica spheres, followed by a 10 nm-thick layer of ferromagnetic CoFe. The film is
sealed by a final 10 nm-thick layer of Si. A second type of JP, which we denote exchange-bias
JPs (ebJPs), includes an additional 30 nm-thick afm layer of Ir17Mn83 between the Cu buffer
and the fm layer. Layer deposition is performed by sputtering in an external magnetic field
of 28 kA/m applied in the substrate plane, i.e. in the equatorial plane of the JPs, in order to
initialize the exchange bias by field growth. This fabrication process is described in detail in
Tomita et al. [105]. Individual JPs are then attached to the apex of a cantilever for mag-
netic characterization in a last fabrication step, as shown in the scanning electron micrographs
(SEMs) of Fig.(3.4) (a) and (b). This was done using the hydraulic micromanipulator system.
Note that the values given for thicknesses are nominal and that the film thickness gradually
reduces towards the equator of the sphere with respect to the top, as shown in Fig.(3.3) (b),
because of the deposition process [105]. Furthermore, the touching points of the next neigh-
bors in the hexagonal closed packed arrangement of the silica spheres on the substrate template
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Sample f0 [Hz] k0 [µN/m] le [µm]
fmJP 5285.8 249 75.9

ebJP 5739.3 240 75.9

Table 3.1 ∣ Properties of the cantilevers used for each the fmJP and ebJP.

impose a lateral irregularity on the equatorial line of the capping layers. This is best seen in
Fig.(3.4) (a) and (b).

The cantilevers used for this experiment are fabricated from undoped Si. They are 106 µm-
long, 3.5 µm-wide, 0.1 µm-thick with a mass-loaded end and have a 11 µm-wide paddle for
optical position detection. The resonance frequency f0 of the fundamental mechanical mode
used for DCM is on the scale of a few kilohertz. Spring constant k0 and effective length le are
determined using a finite element approximation [106]. The mechanics and behavior of these
types of cantilevers is described in detail in [42–44]. The properties of the cantilevers used here
are given in table (3.1)

3.4 Results and Discussion

3.4.1 Measurements

After attaching the particles to the cantilevers, we first measure ∆fhf as a function of θh, as
described in ch.(2.2.2). Fig.(3.4) (a) and (b) shows false color SEMs of the measured fmJP and
ebJP, respectively, each attached to the tip of a cantilever. The orientation of the particles in
the imaticges can be correlated with the angle θh of the maxima and minima found in the high-
field frequency shift ∆fhf(θh) in dependence of the magnetic field angle θh, shown in Fig.(3.4)
(c). Doing so, we find a magnetic easy direction in the equatorial plane of the particles and a
hard direction along the axis of the pole. The 90° angle between easy and hard direction is a
clear indication that uniaxial anisotropy is the dominant anisotropy in the system. We ascribe
the latter to the shape of the JPs, because no other strong anisotropies are expected.

The field-dependent frequency shift ∆f(H) for H aligned along the easy axis, see Fig.(3.4) (d),
shows the typical hysteretic, V-shaped curve, that approaches a horizontal asymptote for high
field magnitudes. The fmJP shows a symmetric asymptotic behavior for µ0H = 3.5 T and
−3.5 T (blue curve). Magnetic reversal at low fields, µ0H around ±20 mT, is symmetric upon
reversal of the field sweep direction, as shown in Fig.(3.4) (e). This behavior is expected for
a ferromagnetic particle with a magnetic field applied along its easy axis. In contrast, mea-
surements of the ebJP reveal asymmetric asymptotic behavior with ∆fhf values differing by
about 0.9 Hz for µ0H = ±3.5 T, as seen in the brown curve of Fig.(3.4) (d). Furthermore, after
a full hysteresis cycle, we observe a reduction in the difference of ∆fhf at ±3.5 T by about
0.4 Hz, which is evidence for magnetic training. Measurements of the ebJP also show a highly
asymmetric magnetic reversal, which occurs at µ0H = −44 mT when sweeping the field down
and at µ0H = 12 mT when sweeping the field up. All of these findings are characteristic of
an exchange bias imposed on the fm layer by the afm layer and reflects the behavior of the
hysteresis loop described in ch.(3.2).

The field dependent frequency shift was measured for both fmJP and ebJP each in the easy
and hard orientation. Before we proceed to analyze these data in detail, we introduce the
micromagnetic model that we established to reconstruct the frequency shift data.
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3.4.2 Micromagnetic simulations

3.4.2.1 Modelling the DCM curves

1 µm ����������

ebJPfmJP H
(a) (b)

(c)

(d)

(e)

1 µm

H || easy 
axis

H || hard
axis

Figure 3.4 ∣ False color SEMs of the (a) fmJP and
(b) ebJP attached to the tip of a cantilever, respec-
tively. The coordinate system is shown on the right. (c)
∆fhf(θh) measured at µ0H = 3.5 T for the fmJP (blue)
and ebJP (brown). Black circles indicate θh of the hys-
teresis measurements, which are shown in (d), (e), and
Fig.(3.9).

In order to draw conclusions about the mag-
netic state of the JPs, we establish a micro-
magnetic model for each of the two types of
JPs over many iterations of comparison to
measured ∆f(H) and variations of the pa-
rameters for H applied along the magnetic
easy and hard axis, respectively. Due to the
curved geometry of the samples, it is ad-
vantegeous to use a finite-element approach
to model the geometry of the magnetic cap
in order to eliminate simulation errors due
to a staircase effect along the surface, that
would occur by using a cubic mesh in a finite-
differences approach. The calculation of the
frequency shift is according to the proce-
dure established in ch.(2.2.3). The model as-
sumes that the magnetic JPs are made from a
hemispherical shell with a thickness gradient
from the pole towards the equator, which ac-
counts for the gradual reduction of the shell
thickness away from the pole, as shown in
Fig.(3.3) (b). The hemisphere is also trun-
cated [107] by a latitudinal belt of width d
around the equator, reflecting observations
from the SEM images in Figs. 3.4 (a) and
(b). For simplicity, in the simulations, we do
not account for the magnetic film’s irregular
edge at the equator and a possible change in
the crystallographic texturing with respect to
the particle surface as a function of position
within the cap. The orientation of a JP with

respect to the cantilever rotation axis and H is set by inferring the orientation from the SEMs
and followed by an iterative tuning of the angles (θJP, ϕJP), as defined in Fig.(3.3) (d), to
match the measured ∆f(H). The exchange constant is set to Aex = 30 pJ/m [108].

In case of the fmJP, opposing to the SEM image in Fig.(3.4) (a) which suggests a truncation
of the fm layer by about 250 nm, it needs to be set to 350 nm or even more to match the high
field progression of ∆f(H). For the same reason the nominal thickness of 10 nm of the fm layer
needs to be increased to at least 12 nm at the pole, which is then gradually reduced to 0 at the
equator. These two geometric constraints are necessary to keep Ms at a reasonable value below
the bulk value of 1.95 MA/m [109]. This suggests, that significantly more fm material than
anticipated is deposited on the region around the pole of the JPs, which is the most directly
exposed area of the sphere during deposition.
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Sample Ms [MA/m] t [nm] d [nm] (θJP , ϕJP) [°] csmax [nm]

fmJP 1.8 12 350 (91,2) 7.5

ebJP 1.44 10 350 (85,10) 7.0

Table 3.2 ∣ Simulation prarmeters used for modelling of the fmJP and ebJP.

For the ebJP, we slightly adjust the geometrical parameters of the ferromagnetic layer and
add the unidirectional anisotropy term given by eq.(3.1) to the total energy. We set the
unidirectional anisotropy constant to Keb = 22.5 kJ/m3 and the direction of the anisotropy is
set by (θeb, ϕeb) = (−90°,0°). This coincides with the external field when it is aligned with
the easy direction of the particle and hence the effect of the exchange bias is maximized.
Keb thus sets a lower limit for this anisotropy constant. This adjustment is necessary, since
the orientation of the exchange bias direction in the particle is unknown after the fabrication
process, due to the physical movement of the particle from the substrate to the cantilever.
The geometric parameters of the cap have to be adjusted less from their nominal values than
for the fmJP, in order to match between the micromagnetic model to the experiment. This
result suggests that the afm layer, which is deposited before the fm, acts as an adhesive for
the fm, and the ebJP is coated more homogeneously than the fmJP. The common simulation
parameters for each of the particles are given in table (3.2)

3.4.2.2 Shape anisotropy of a truncated spherical halfshell
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Figure 3.5 ∣ (a) Effective demagnetization factor Du
of a truncated spherical halfshell with a gradient shell
thickness in dependence of the truncation d (blue) and
of a full halfshell (orange). (b) Volume and (c) high field
frequency shift ∆fhf of the same geometries as in (a).

We assigned the uniaxial anisotropic behav-
ior of the JP to the shape of the magnetic cap
in the chapter above. In ch.(2.2.2), we intro-
duced the uniaxial anisotropy with the aid
of the demagnetization factor Du as a mea-
sure of the strength of the shape anisotropy
which we used as a parameter in the SW-
model. As mentioned there, the exact calcu-
lation via an analytic model is only possible
for a few specific geometries [110]. However,
no such model is known for spherical caps and
an intuitive understanding of the anisotropy
strength as a function of the geometric pa-
rameters is more complicated than for other
geometries like rectangles.

Using micromagnetic simulations as dis-
cussed above in ch.(3.4.2.1), we can extract
a good approximation to the demagnetiza-
tion factor of a given geometry, without ne-
cessity for an analytical formula by solving
eq.(2.13) for Du and inserting the simulation
parameters. Here, we analyze a generic, trun-
cated spherical halfshell as defined in section

(3.4.2.1) in order to gain some understanding of how Du behaves as a function of d. We find a
minimum Du of approximately 0.25 for the smallest truncation, and Du increases with trunca-
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tion as shown in Fig.(3.5) (a). Hence, shape anisotropy gets stronger as d is increased, which
can be roughly understood as the transformation from a spherical halfshell to a disc.

Note, that a spherical halfshell without thickness gradient and without truncation leads to a
Du just slightly larger than zero, comparable to a sphere of an isotropic material. This implies,
that there is no drastically preferred direction for the magnetization, although there is a small
preference if the field is aligned with the easy direction (compare the orange dots in Fig.(3.5)).

The high field frequency shift, ∆fhf , which is of relevance for extracting anisotropy constants
from experiment [31, 79], first increases with truncation, but later decreases again, see Fig.(3.5)
(c). This is owed to the loss of magnetic material for increasing truncation as seen in Fig.(3.5)
(b).

3.4.3 Ferromagnetic Janus particles

∆f(H), measured for H parallel to the magnetic easy (blue data) and hard axis (orange data),
respectively, are shown in Fig.(3.6) (a). We match the simulated frequency shift to the field
dependent data over many iterations of fine tuning of the geometric parameters of the cap.
For H parallel to the magnetic easy axis, an overall V-shape suggest Stoner-Wohlfarth like
behavior for most of the field range in Fig.(3.6) (a). As seen in the close-up in Fig.(3.6) (b),
magnetic reversal appears to take place through a few sequential switching events at small
negative reverse fields.
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Figure 3.6 ∣ Data for the ferromagnetic Janus particle. (a) Measured ∆f(H) for easy (blue) and hard (or-
ange) alignment of the external field, as well as the simulated magnetic configurations in green (easy) and red
(hard) orientation. (b) Close-up of (a) for low fields. Data with easy orientation is offset by 2 Hz for better
visibility. Colored arrows indicate field sweep directions. Numbers in (a) and (b) denote the field values for the
configurations of the magnetic state.
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The simulated ∆f(H), also shown in Fig.(3.6) (green points) together with a few exemplary
configurations of the simulated magnetic state of the JP, can give more insight into what hap-
pens during the field sweep. Starting from full saturation, most magnetic moments stay aligned
with the easy direction down to very low reverse fields, nicely seen in Fig.(3.6), configuration
1 at 3.5 T and configuration 2 at remanence. The latter is an onion state. This progression
of configurations is consistent with the Stoner-Wohlfarth-like behavior of the experimental
∆f(H). Magnetic reversal takes place through the occurrence of a so-called S-state, for which
the magnetization follows the curvature of the letter S, which is known to appear in magnetic
discs. The reversal is shown in configurations 3 and 4 in Fig.(3.6). Then, until full satura-
tion is reached in reverse field, only magnetic moments in proximity to the equator of the JP
are slightly canted away from the direction of the external field (and the easy plane). This
progression is robust in simulation, even though sometimes, depending on slight variations of
simulation parameters, a vortex appears in reverse field instead of the S-state. The observation
of several, individual switching events during magnetic reversal in experiment may originate
in vortex hopping, or switching of different regions in the JP due to variations in material and
geometric parameters. Magnetic reversal through a vortex rather than an S-state may also ex-
plain the big difference of the coercive fields between experiment (Hc ≈ 32 mT) and simulation
(Hc = 6 mT).

For H parallel to the magnetic hard axis, the experimental data has an inverted V-shape,
and there is no easily identifiable sign of magnetic reversal. Yet, for relatively large fields,
around 1.5 T, switching events that exist up to negative fields of similar magnitude are ob-
served. This contradicts the W-shaped curves typically observed for measurements with the
field aligned with the hard direction, that which can be explained within the SW-model dis-
cussed in ch.(2.2.2) of the theory section. The inverted V-shape can not be explained in the
SW setting, but can be correctly reproduced by the simulations. To understand the reason for
this behavior, the x component of the demagnetizing field Hx

dm within the magnetic layer is
visualized for a cut through the geometry in Fig.(3.7) at high applied field in x direction. It
shows a gradual change of the demagnetizing field magnitude with z position, which is a good
measure of the preferred orientation of a magnetic moment.

0 -1.4e6

A/mz

x

Figure 3.7 ∣ Cut through the geometry of the JP at
the position of the xz plane showing the x component
of the demagnetizing field within the magnetic layer for
H ∥ x̂ and µ0H = 20 T.

The magnetic moments in the top part
with Hx

dm ≈ 0 prefers the x orientation,
whereas the bottom part with maximum Hx

dm

needs a very high external field to be aligned
in x direction. This shows, that magnetic
moments in proximity to the pole need the
smallest field magnitude to be aligned with a
field in x direction. The required field magni-
tude gradually increases the closer a magnetic
moment is situated to the equator. This ex-
plains the gradual change of ∆f with increas-
ing field in this orientation, opposing to what

is evident in the SW model, where all magnetic moments rotate in unison.
The angle between the local surface normal and the direction of the external magnetic field

is different for every polar coordinate of the JP, which leads to a dependence of the local
demagnetizing field on the polar coordinate. In consequence, the magnitude of the external
magnetic field, for which the local magnetic moments start to rotate towards their local easy
direction depends strongly on the position in the magnetic cap. This leads to the observed
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curve shape of ∆f(H). The magnetic progression in simulation for external field alignment
with the hard direction can be summarized as follows: Starting from full saturation, the
magnetic moments start rotating towards the easy plane with decreasing field magnitude due
to the competition between shape anisotropy and Zeeman energy. This takes place for different
magnitudes of H depending on where a magnetic moment is located in the JP, as discussed
above. Configuration 5 in Fig.(3.6) shows a state for which magnetic moments at the pole
have already started to rotate, while magnetic moments in proximity to the equator remain
aligned with the external field. Superimposed to this rotation, a minimization of the system’s
energy by formation of a magnetic vortex localized at the pole for around 1.8 T takes place,
which grows in size with decreasing field, see configuration 6. In simulation, this is a gradual
evolution, and only for fields below about 300 mT jumps in ∆f due to vortex movement are
observed. This process is in contrast to the discontinuities that occur at around 1.5 T in the
experiment, but can be explained by vortex hopping from pinning site to pinning site. The
latter may be present due to fabrication inhomogeneities in the JPs [111]. For zero field the
vortex dominates the magnetic configuration of the JP and has evolved into a global vortex
state, as shown in configuration 7. Configuration 8 shows the vortex in reverse field, which has
changed polarity, and has jumped to a slightly off-centered position. The latter is too small
to be visible in the figure. Further decreasing the field, the vortex sits centrally in the JP
and shrinks in size, and vanishes around −1.82 T. At the same time, the magnetic moments
rotate towards the field direction depending on their position in the JP, as described earlier.
Note, that by slightly changing simulation parameters, we find that features due to vortex
entrance and hopping may manifest themselves in ∆f(H) with strongly differing magnitude
and for different field values. Introducing artificial pinning cites in simulation can be used to
adjust the vortex hopping to match the observed signals more precisely [111], but consumes
vast amounts of computational time and should still be understood only as an exemplary
progression of the magnetic state.

This analysis suggests that a remanent global vortex state, which has a vanishing total
magnetic moment, is realized in fmJPs over time, independent of magnetic history. If we
normalize the magnetic moment of this state by the saturation moment, MsV , we find that
the global vortex state hosted by the fmJP has a moment value of 0.03, precluding the use of
such particles in applications.

3.4.4 Exchange biased Janus particles

The progression of the magnetic state for the ebJP is very similar to the fmJP, yet, there are
crucial differences. See Fig.(3.8) for the DCM data, simulation results, and configurations of
some magnetic states. For the field oriented in the magnetic easy direction the nearly polarized
state, shown in Fig.(3.8) configuration 1, is similar to that shown in Fig.(3.6), configuration 1.
Reducing the field down to remanence, as shown in Fig.(3.8) configuration 2, we find an onion
state just as for the fmJP. Magnetic reversal occurs again through an S-state, rather than
via vortex formation, as shown in configuration 3. However, the reversal is shifted towards
negative fields, and occurs for −15 mT for the down sweep, and for −17.5 mT for the up sweep
of the magnetic field. This does not match the experimentally observed values, especially for
the latter case, for which the switching occurs for positive field. This is no surprise, since the
employed model does not account for the contribution of the exchange bias to the coercivity.
Yet, both simulation and experiment show a shift of the hysteresis loop towards negative fields
as compared to the fmJP. We only observe a single switching event in experiment for the
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Figure 3.8 ∣ Data for the exchange biased Janus particle. (a) Measured ∆f(H) for easy (blue) and hard
(orange) alignment of the external field, as well as the simulated pendants in green (easy) and red (hard). (b
Close-up of (a) for low fields. Data with easy orientation is offset by 2 Hz for better visibility. Numbers in (a)
and (b) indicate the field values for the configurations of the magnetic state shown in (c) for hard and in (d)
for easy alignment.

magnetic reversal, which is consistent with the behavior of the S-state in simulation. For
the alternative magnetic reversal process through vortex formation, we would expect several
switching events due to vortex hopping. We find such a situation e.g. for a few reversal
processes without unidirectional anisotropy, where geometrical parameters of the JPs have
been varied, see appendix in [72]. Yet, it is also possible, that a strong pinning site favors
the formation of a vortex, and keeps it in place for all field magnitudes up to the reversal
point. If the magnetic field is swept from negative saturation up to remanence (not shown
here), an onion state is present, that has its total magnetic moment pointing opposite to the
exchange bias direction. For applications, this is an undesirable state. It is energetically less
favorable than the state of parallel alignment, and if the energy barrier between the two states
is overcome by an external influence, the JP will switch. Superimposed, a local vortex forms at
the pole of the ebJP for an applied field of 1.34 T. As for the fmJP, the vortex occupies more
and more volume of the JP with further decreasing field. However, upon further reducing the
field, the vortex, rather than inhabiting the whole JP as a global vortex centered at the pole of
the fmJP, it prefers to move to the side of the ebJP, as shown in configuration 4 of Fig.(3.8).
Moving down from the pole towards the equator, the vortex exits from the JP through the
equator for 5 mT, and an onion state is formed at remanence, as shown in configuration 5. The
orientation of the onion state is governed by ûeb. For a small reverse field a domain wall state
forms, as shown in configuration 6.
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Figure 3.9 ∣ Measured and simulated ∆f(H) of the
fmJP for H applied along the (a) easy and (b) hard
axis, respectively. A visualization of each correspond-
ing simulated remanent magnetic state is shown on the
right. The same set of data for the ebJP is shown in (c)
and (d).

With further decreasing field, the domain
wall is rotated with respect to the polar axis
of the JP. This state seems to be a precur-
sor of the vortex state, and the wall is subse-
quently replaced by the vortex, sitting again
in the center of the JP, as shown in config-
uration 7. The vortex vanishes for -1.36 T.
Whether such a domain wall state is indeed
realized in the ebJPs for reverse fields, or if
a vortex enters from the equator and moves
back to the center of the JP, as seen for simu-
lations of smaller JPs (see appendix in [72]),
remains an open question. The DCM sig-
nal shows in both experiment and simulation
many irregularities for the lower field range,
which does not allow us to draw clear con-
clusions on the magnetic state present in the
JPs. Nevertheless, the simulations clearly
suggest that an onion state should be real-
ized at remanence, irrespective of the states
present during the hysteresis. This situation
is markedly different than that of the fmJP
and is a direct consequence of the presence of
exchange bias.

For the simulations of the ebJP we find a
total magnetic moment at remanence, nor-
malized by its maximum value of MsV , of
0.89 and 0.71 depending on whether H is ap-
plied along the hard or easy direction of the
external field, respectively. This remanent
moment represents an increase of more than
one order of magnitude compared to the re-
manent moment of the fmJP. Hence, introducing exchange bias to magnetic JPs, if strong
enough, succeeds in stabilizing a high-moment onion state in remanence.

3.5 Summary and Conclusion

In this chapter we have introduced the concept of exchange bias as a uniaxial anisotropy. This
can serve as a means for tuning the magnetic state of nanomagnets at remanence, a feature that
allows for the use of such structures in technical or biomedical applications. This was done in
the context of the investigation of magnetic Janus particles in the form of silica spheres capped
with an antiferromagnetic/ferromagnetic or purely ferromagnetic thin film, which have been
mass produced through a sputter-deposition process. The particles were attached to the can-
tilever and we have investigated the magnetic reversal and remanent magnetic configurations
of individual specimens of these JPs using DCM and corresponding micromagnetic simulations.
The simulations use an energy term that introduces a unidirectional anisotropy to the system

41



and the simulated frequency shift could be matched with the data by fine tuning the geometric
parameters and the direction as well as the strength of the exchange bias. In experiment,
the knowledge about this direction is lost, and we set the direction such that the influence of
the effect is maximized, and the unidirectional anisotropy constant Keb = 22.5 kJ/m3 can be
interpreted as a lower boundary of possible values. The simulations also allow to study the
behavior of the uniaxial anisotropy constant Du for a spherical cap, a geometry for which no
analytic model exists to calculate a precise value for this property. Further analysis of generic
Janus particles and how the exact geometric properties influence the curve shape and magnetic
moment at remanence can be found in the appendix of [72]. We investigate the frequency shift
both as a function of direction and magnitude of the external field, finding a clear indication
of a uniaxial anisotropy with the hard direction pointing towards the pole of the cap. We
also analyze the progression of the hysteresis curve and associate the switching behavior to
different possible magnetic states, retrieved from the simulations. The results of this study are
summarized in Fig.(3.9). Although the fmJPs host a global vortex state in remanence with a
vanishing magnetic moment, the addition of an antiferromagnetic layer in ebJPs changes the
remanent configuration to a stable high-moment onion state.
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4 Magnetic Anisotropy of Individual
Maghemite Mesocrystals

4.1 Introduction

Magnetic anisotropies can have several different contributions, each having their own origin
within the investigated material. Crystalline anisotropies can contribute in a different way than
shape anisotropy with the resulting effective anisotropy being the sum of each. In the chapter
above, we have seen that artificially induced, e.g. a unidirectional anisotropy caused by an
exchange bias, can be superimposed to the shape anisotropy of a magnetic material. Typically,
in samples with a high aspect ratio such as nanowires or nanotubes [31], the uniaxial shape
anisotropy is the dominant contribution. The situation changes, however, for more symmetrical
samples, where the contribution of the crystalline anisotropy of the material is comparably
stronger. This is the case for example in cubic nanoparticles, such as γ-Fe2O3 (maghemite)
nanoparticles. These particles typically have sizes around a few nanometers to a few tens
of nanometers per side, rendering them too small for most mechanical sensors to detect a
magnetic signal from them.

However, maghemite nanoparticles can now be self-assembled into highly ordered three-
dimensional (3D) superlattice structures up to micrometers in size, which allows for measure-
ments using ultra-soft Si-cantilevers. The well-defined orientational order of the magnetic
nanoparticles in the mesocrystal allows us to unambiguously identify the presence of cubic
magnetic anisotropy, attributed to the crystal structure of the individual maghemite particles.
In order to analyze our measurements, we use the model for the DCM response of a paramag-
net developed in ch.(2.3.1). We find proof of superparamagnetic behavior down to a blocking
temperature T spm

b = 133 K for three different mesocrystals. Furthermore, an exchange bias
and frozen spin state below 90 K provide evidence for a disordered surface spin layer on the
individual maghemite nanoparticles.

This chapter introduces the investigated mesocrystal samples and presents the results by
closely following the corresponding publication:
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4.2 Samples and Cantilevers

The ultrasensitive cantilevers we used here are of the same type as the one for the Janus Parti-
cles, described in the chapter above and differ only in the length, being only 90 µm-long. The
rest of the properties remain the same, the cantilevers are 3.5 µm-wide and 0.1 µm-thick with
a mass-loaded end and a 11 µm-wide paddle for optical detection. The resonance frequency f0

of the fundamental mechanical mode used for magnetometry is between 5 and 6 kHz with k0

and le 314µN/m and 74 µm, respectively. The mesocrystal samples are composed of nanopar-

(d) sample 1

(e) sample 2

(f ) sample 3

Figure 4.1 ∣ (a) SEM image of a mesocrystal showing the superlattice structure from a top view. (b) Zoom
of region shown in (a). (c) Cross-sectional TEM image viewed from the [100] direction of a thinned mesocrystal
layer deposited on a Si single crystal, showing the BCT structure. Nanoparticles in the TEM image appear
as dark circles. (d)-(f) SEM images of the investigated mesocrystals attached to cantilevers. The length
l × width w × height h of the samples are determined from the images to be 1.95µm × 1.87µm × 1.58µm,
1.7µm× 1.89µm× 1.12µm, and 1.55µm× 1.54µm× 1.35µm, for samples 1, 2, and 3, respectively. h is defined to
be along the [001] direction of the BCT crystal structure.

ticles, which are synthesized following a modified version of the metal oleate route [112, 113].
These particles consist of γ-Fe2O3 (maghemite) with less than 10 % Fe3O4 (magnetite) content
[114, 115]. The nanoparticles have an edge-length of 10.9 nm, their atomic structure shows a
crystalline inverse spinel structure, and their morphology can be described by a rounded cube
model [116]. The micron-sized mesocrystals, i.e. 3D superlattices of the maghemite nanocubes
arranged with a high degree of both positional and orientational order, have been carefully
grown using an optimized evaporation-driven self-assembly process [113, 116, 117]. Small angle
X-ray diffraction performed on an individual mesocrystals reveals a body centered tetragonal
(BCT) crystal lattice with an in-plane lattice constant a = 13.47 nm, and an out-of-plane lat-
tice constant c = 15.08 nm [116], cf. Fig.(4.1) (c) for a cross-sectional transmission electron
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microscopy (TEM) image of a thinned mesocrystal layer showing the BCT structure. The
self-assembly process for the mesocrystals is both size- and shape-selective [116, 117], i.e. the
mesocrystals are composed of particles with a size dispersity which is drastically smaller than
that in the initial dispersion [116]. Fig.(4.1) (a) and (b) show scanning electron microscopy
(SEM) images of a typical mesocrystal.

4.3 Results and Discussion

4.3.1 Measurements

We investigate three different mesocrystals, which are each attached in different orientations
to the end of a cantilever, as shown Fig.(4.1). The different orientations allow us to probe
the anisotropy in different planes of the superlattice. The crystals have slightly different sizes,
which we estimate from SEM images and list in the caption of Fig.(4.1).

We investigate the mesocrystals’ magnetic anisotropy by measuring the high field frequency
shift of the 3 samples as a function of θh for (H = 3.5 T), at which the samples are near
magnetic saturation. The bulk value of the saturation magnetization Ms is approximately
3 × 105A/m = 0.38 T/µ0 [118]. In this case, we show ∆fhf(θh) in form of polar plots, which
clearly show evidence of multi-axial anisotropy, most clearly in the case of sample 3. The
measurements are displayed in Fig.(4.2).

We further investigate the full field dependence with the external field aligned with hard
and easy orientation of the uniaxial anisotropy, as well as an intermediate angle in which
the frequency shift is predominantly generated by a cubic anisotropy contribution. These
measurements are displayed in Fig.(4.6). All DCM experiments are first carried out at T =
270 K.

4.3.2 High-field Limit
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Figure 4.2 ∣ Angular dependence of DCM in the high-field limit. (a)-(c) Polar plots of the high-field frequency
shift ∆f(H = 3.5 T/µ0, θh) for sample 1 to 3 (blue dots) and corresponding fits (red, dashed green, and dashed
orange lines). Straight, radial lines indicate the direction of the measurements and calculations in Fig.(4.6),
according to the color code. Gray polar lines indicate ∆f in steps of (a, b) 20 Hz and (c) 10 Hz, with a thick
line for ∆f = 0. In (a) a sketch of the mesocrystal is shown in the background to illustrate its orientation.
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In order to fit the angle dependent high-field measurements shown in Fig.(4.2), we find that
a sum of a uniaxial and a cubic anisotropy is required. In the following, we derive the required
equations analogous to the case of a uniaxial anisotropy.

A material system can exhibit a cubic anisotropy term either because of the crystal symmetry
or the shape of the crystal. For a system with a first order cubic anisotropy, we assume
three anisotropy axes ui with i = (1,2,3), with an effective anisotropy constant Kc1. The
corresponding energy term looks as follows:

Ec = −V Kc1( (m ⋅ u1)2 (m ⋅ u2)2 + (m ⋅ u2)2 (m ⋅ u3)2

+ (m ⋅ u3)2 (m ⋅ u1)2 )
(4.1)

In general, the coordinate system given by the anisotropy axes is linked to the sample
geometry. In the special case where it coincides with the coordinate system of the cantilever,
as is given for samples 1 and 2, it can simply be described by the magnetization components
and reduces to

Ec = −V Kc1(m2
xm

2
y +m2

ym
2
z +m2

zm
2
x) (4.2)

For any other orientation, it can be described by a simple coordinate transformation for the
ui. The full magnetic energy term used here is

Em = − µ0VMsH0m ⋅ h
−Ku1V (m ⋅ n)2

− V Kc1( (m ⋅ u1)2 (m ⋅ u2)2

+ (m ⋅ u2)2 (m ⋅ u3)2

+ (m ⋅ u3)2 (m ⋅ u1)2 )

(4.3)

Following the derivation in ch.(2.2.2.1), we apply a rotation matrix around the y-axis on
the ui as given in eq.(4.1) and calculate ∆f tothf . In addition, we assume that the particle has
uniaxial shape anisotropy with n aligned along the x-axis and that u3 coincides with the z-axis.
We allow u1 and u2 to lie freely in the xy-plane, independent of the direction of n, as would for
example be the case of a ferromagnetic material with cubic crystal anisotropy, which is shaped
in a prolate ellipsoid at some angle between the u1 and u2 axes. To do so, we introduce a set
of spherical coordinates (θu, ϕu) in order to describe u1 with respect to the main coordinate
system given in Fig.(2.1) and keep θu = π/2 all the time, while ϕu is arbitrary. From this, we
obtain u2 by applying a rotation by π/2 around the z-axis on u1. The high-field frequency
shift ∆f tothf now consists of the sum of the contributions from the uniaxial anisotropy and the
cubic anisotropy. The uniaxial contribution ∆fuhf is unchanged and given by eq.(2.13). The
cubic contribution f chf reads as follows:

∆f chf =
f0Kc1V

8k0l2e
(cos(2θh) + 7cos(4θh) − 2(1 + 2cos(2θh))cos(ϕu)sin2(θh)) (4.4)
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Figure 4.3 ∣ (a) Orientation of the cubic coordinate system given by the axes ui, i = {1,2,3} in the SW particle
with respect to the main coordinate system. The rotation of the system is parametrized by the angle ϕu. (b)
∆fchf for ϕu = 0 (blue curve) and ϕu = π/2 (orange curve). As can be seen in eq.(4.4), the amplitude of the
signal is modified by the cosine of the rotation angle ϕu . (c) High-field frequency shift for a SW particle with
cubic anisotropy for ϕu = π/4. Dashed lines show the unaixial (orange) and the cubic (green) contribution to
the full frequency shift (blue).

The effect that a misalignment of the two coordinate systems has on the the frequency shift,
becomes apparent through a modification of the amplitude of ∆f chf , as can be seen in Fig.(4.3)
(b). For ϕu = 0 and other values that maximize the corresponding cosine in eq.(4.4), the
signal has an unaltered sinusoidal behavior. For any other values, the amplitude is decreased
periodically. Adding the uniaxial component to the signal yields the full frequency shift. We
show an example curve calculated from the given model for ϕu = π/4 in Fig.(4.3) (c). The
dashed lines show the uniaxial and cubic contributions, respectively, and the solid line the
total frequency shift. Most notably, both cubic and uniaxial contributions naturally have zeros
periodically. At these points, the frequency shift is generated fully by either one or the other
contribution.

We use eqs.(2.2) and (4.4) as fit functions in order to anlayze the data, with the Ki as fit
parametrs. A quantitative determination of Ku1 and Kc1 is not possible from these particular
fits, since the magnetic fields of up to 4.5 T that are possible in our setup, are not strong
enough to fully satisfy the high-field limit. We can, however, determine the relative weight of
the two contributions to the anisotropy.

Since the mesocrystals consist of a large number of cubic particles, that interact with each
other via the dipolar interaction, we expect the uniaxial contribution to be explicitly due
to the overall shape of the mesocrystal, rather than due to the individual particles. Small
deviations in the cubic shape of the nanoparticles average out due to their large number in the
mesocrystal. In analogy to the shape anisotropy of a continuous magnetic solid, see ch.(2.2.2),
the shape and lattice spacing of the mesocrystal determine this effective shape anisotropy. A
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1D equivalent of such an effective anisotropy has previously been used to describe chains of
iron oxide nanoparticles [119, 120].
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Figure 4.4 ∣ (a) Simulated frequency shift of an indi-
vidual nanoparticle of 11 nm side length multiplied by
2×106 (blue curve), a symmetric 1µm sized cube (orange
curve) and a slightly asymmetric 1 µm sized cube (green
curve). (b) Simulated frequency shift of a BCT lattice of
rounded nanocubes with lattice constants a = c = 14 nm
(blue curve) and a = 14 nm, c = 16 nm (orange curve).

A cubic component of the anisotropy may
be present in the mesocrystals as a result
of the cubic shape of the overall mesocrys-
tal or of the individual maghemite nanopar-
ticles [121], their crystalline anisotropy [122,
123], or their surface anisotropy, as suggested
in Refs. [124–126]. The latter is calculated to
be relevant only for particles with up to about
100 atoms per dimension, which is exceeded
by our nanoparticles.

To quantify the influence of the exact
lattice parameters and the shape of both
nanoparticles and mesocrystal on the uniax-
ial and cubic anisotropy contribution, we use
micromagnetic simulations in Mumax3.

Before investigating the mesocrystal struc-
ture, we analyze the symmetry and magni-
tude of the shape anisotropy of an individ-
ual maghemite nanoparticle by calculating
∆f(θh) for a 11 nm cube. For these simu-
lations, we use perfect cubes, so that the ef-
fect of the cubic shape anisotropy is maxi-
mized. The cube is discretized in cells with
0.2 nm edge length. To estimate the impact
of a single cube’s shape anisotropy on ∆f of
a full mesocrystal, we multiply with the ap-
proximate particle number n ≈ 2 × 106 in a
mesocrystal.

The simulation results are shown in
Fig.(4.4) (a) in blue. The symmetry of ∆f
is cubic, as expected, and the magnitude is
below 0.5 Hz for µ0H = 3.5 T. This is far too
small to explain the observed magnitude of
the cubic component of ∆f (in the tens of
Hz) in experiment. To contrast this result,
we add a cubic crystalline anisotropy with Kc1 = −3 kJ/m3 to the simulation and get a mag-
nitude of ∆f of around 25 Hz, which is on the scale of the experimental results. Note that
the real particles are rounded cubes as compared to a perfectly shaped cube in the simulation,
further reducing the cubic shape anisotropy. We will use this geometry in the simulation for
the mesocrystal later on.

The same modeling procedure is carried out for a perfectly shaped 1 × 1 × 1µm cube, in
order to estimate the contribution of the mesocrystal’s overall shape to the cubic component
of the observed ∆f . We use a cell size of 10 nm, which is well below the exchange length of
13.3 nm for the used material parameters, and have checked with 5 nm cells that the results
are robust against a further reduction of the cell size. The simulation results are shown in
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Fig.(4.4) (a) in orange. Again, the magnitude of this effect is too small to account for the
observed magnitude of the cubic component of ∆f . For comparison, we show the result for a
slightly asymmetric cube (1 × 1 × 0.99µm) in green. The small asymmetry already leads to a
strong uniaxial component in ∆f as compared to the cubic component.

We model the mesocrystal as BCT lattices of cubes with different lattice constants. To avoid
uniaxial contributions to the shape anisotropy, resulting from elongation of the mesocrystal in
one direction, we choose a cubic simulation volume of 112 nm on a side. The cubes themselves
have a side length of 10 nm and rounded edges by intersecting with a 12 nm sphere. As
mentioned before, we chose the rounded cube geometry of the nanoparticles in this case, in
order to bring the simulations as close to the real experiment as possible. We use periodic
boundary conditions in all directions with 4 repetitions on each side of the simulation volume,
so that edge effects are negligible (half- and quartercubes sitting on the edges and corners of
the simulation volume guarantee correct periodicity). In this way, each spatial dimension of
the simulated mesocrystal is equally sized with approximately 1 µm length.

For the simulation of the mesocrystal, two sets of lattice constants are chosen. Set 1 is
a = c = 14 nm and set 2 a = 14 nm and c = 16 nm, where c points in z-direction in the coordinate
system shown in Fig.(2.1). The calculated ∆f(θh) for set 1, which is perfectly symmetric
with respect to all three spatial dimensions, is shown as a blue curve in Fig.(4.4) (b). ∆f
is negligible in all directions compared to the value measured in our experiment. Set 2, for
which the cubes have a slightly larger spacing in z-direction, shows an easy uniaxial ansiotropy
contribution in this direction. However, the magnitude of the effect is around 0.5 Hz, and hence
small compared to the effect of elongations of the mesocrystal in one spatial direction.

The lattice constants of set 2 and their difference are very comparable with the values of
the experimentally investigated samples (a = 13.47 nm and c = 15.08 nm), and we thus expect
a minor contribution of the superlattice structure on the shape anisotropy of the samples.

Our simulations show that the contribution from the cubic shape of the mesocrystals and the
constituent nanoparticles are both at least one order of magnitude too small to account for the
anisotropy observed in our DCM measurements. On the other hand, the crystalline contribu-
tion should appear in our measurements, due to the alignment of the individual nanoparticles
with respect to each other. Indeed, in all three mesocrystal orientations shown in Fig.(4.2),
both the uniaxial and the cubic components of the fitted curves match the expected orientation
of the mesocrystal and its constituent crystalline nanoparticles. Furthermore, the magnitude
of the uniaxial term is seen to scale with the overall shape of the mesocrystals: e.g. sample
3, the most symmetric mesocrystal (cf.caption of Fig.(4.1), shows a nearly vanishing uniaxial
anisotropy. In conclusion, the results of the angle dependent measurements and analysis of the
high-field limit suggest that the cubic component of the effective anisotropy is of crystalline
type, measurable due to the perfect alignment of the cubic nanoparticles in the mesorcystal.
The uniaxial part, in contrast, appears to be a result of the overall shape of the mesocrystal.

4.3.3 Full Field Dependence

In Fig.(4.6), we plot the field dependent measurements of ∆f(H) measured in samples 1 and
3, where the external field is swept between H = ±3.5 T for three orientations of θh. Most
DCM curves show a V- or

V
-shape, depending on the orientation of the applied field. At low

field, well below magnetic saturation, some curves present a W-shape, as seen in the inset.
In this regime, ∆f(H) shows a small hysteresis with a coercive field of µ0Hc ≈ 10 mT for all
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Figure 4.6 ∣ DCM measurements at 270 K. Dark thick lines show measured ∆f(H) in sample 1 for orientations
θh = 112°, 187° (blue and orange) and ∆f(H) in sample 3 for θh = 132° (green). Light thin lines with similar
coloring show the corresponding simulations according to a model for a thermally activated Stoner-Wohlfarth
particle. The inset shows an enlargement around H = 0.

three mesocrystals. At high fields, the curves show an asymptotic behavior, associated with
the external field along the hard or easy direction, as described in the chapters above.

In order to extract quantitative values for the uniaxial and cubic anisotropies and to under-
stand the full field dependence of the measured ∆f(H) curves shown in Fig.(4.6), including the
low-field regime, we rely on the model derived in ch.(2.3.1) for a thermally activated Stoner-
Wohlfarth particle. This is necessary, since we expect the individual maghemite cubes of the
given dimensions to be superparamagnetic at T = 270 K.

Even though the dipolar interaction between the nanoparticles alters the magnetic behav-
ior of the system compared to individual superparamagnetic particles, resulting in a shifted
blocking temperature, hysteresis, or even a suppression of superparamagnetism, the curves in
Fig.(4.6) suggest that the mesorcystal is paramagnetic as well at the given temperature. For
the model, we consider the given mesocrystals to consist of n interacting superparamagnets,
where n is the number of nanoparticles in the mesocrystal lattice. Each obeys an effective
Hamiltonian, which includes both uniaxial and cubic magnetic anisotropy terms.

Because we model the inter-particle interaction with an effective single particle term in
the Hamiltonian, the model has limited validity, similar to approaches relying on mean-field
Hamiltonians [127]. For the model fits shown in Fig.(4.6), we use a temperature of T = 270 K
and a volume of the individual nanoparticles of (9nm)3. We use the same magnitude of
Kc1 = −3.0 kJ/m3 for all mesocrystals, since this term represents the crystalline anisotropy of
the individual maghemite nanoparticles. This value is smaller than the −4.7 kJ/m3 of bulk
γ-Fe2O3, perhaps due to interparticle interactions [128]. Ms is taken to be 3 × 105A/m [118].
Fitting the data also yields Ku1 = 9.7, 20.8l, and 2.1 kJ/m3 or Du = −0.17, −0.37, and −0.04 in
terms of the effective demagnetization factors for samples 1, 2, and 3, respectively.

The cantilever properties are k0 = 314µN/m and le = 74µm, and the angular oscillation
amplitude is θc = 1.5○. n is estimated from the mesocrystal dimensions, as determined from
SEM images and adjusted to match the measurements at high field. We find that n = 1.87 ×
106, 0.83 × 106 and 1.67 × 106 works best in order to match the data. To account for the
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expected presence of a disordered surface spin layer and to adequately fit the data, we model
the individual maghemite particles to be slightly smaller, 9 rather than 10.9 nm on a side.

(a)

(b)

Figure 4.5 ∣ (a) Field cooling data for sample 3. The
graph shows the difference between the frequency shift
for a zero field cooling and a field cooling measure-
ment in µ0H = 125 mT. (b) DCM response vs. external
field with θh = 180° for various temperatures around the
blocking temperature for sample 2. The curves are off-
set for better visibility.

All of these values should be treated as
approximate, given the simpleness of the
model and the uncertainty (up to 20%)
in precisely determining the magnetic vol-
ume of the mesocrystal samples. Calculated
∆f(H) curves are plotted along with mea-
sured ∆f(H) curves for the same field orien-
tations in Fig.(4.6). The model adequately
captures the overall features of the measure-
ments, including V-,

V
-, and W-shapes. This

agreement is evidence that the particles mak-
ing up the mesocrystals are indeed in a su-
perparamagnetic state at T = 270 K. Most
notably, the

V
-shape is observed for a hard

axis alignment of the external field (yellow
curve) and is in strong contrast to the sig-
nature of a ferromagnet. The model also
explains the occurrence of W-shaped curves:
it is a consequence of the opposing sign of
the cubic crystalline and the uniaxial shape
anisotropy contributions for certain orienta-
tions of the external field, e.g. for θh ≈ 135°,
cf. Fig.(4.2) (c). A pure cubic system in
this orientation leads to a relatively broad V-
shape, while a pure uniaxial system leads to
a relatively sharp

V
-shape with a small neg-

ative high-field asymptote. The presence of
both anisotropies and their resultant compe-
tition produces a W-shaped curve. Despite
this agreement, the model predicts high-field
∆f(H) asymptotes that saturate at lower field than in experiment, presumably as a conse-
quence of the interactions between the particles, which we do not fully consider. Furthermore,
in contrast to the experiments, the model does not predict hysteresis as a function of H. How-
ever, introducing strong interactions (e.g. with a mean field approach) or large anisotropies
(increasing the anisotropy constants) to the model leads to ferromagnetic behavior, which in-
cludes hysteresis. We thus hypothesize that the observed hysteresis originates from the presence
of the inter-particle interactions.

4.3.4 Behavior at low temperature

Temperature dependent measurements of the DCM response down to 5 K allow us to extract
further information about the mesocrystals, such as the blocking temperature T spm

b . Typically,
the blocking temperature T spm

b of a superparamagnetic system is identified by comparing FC
to ZFC magnetization measurements [129]. As explained in the theory section, DCM does not
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give access to the magnetization (M ∝ ∂F/∂H), but is rather comparable to the susceptibility
χ of a magnetic particle.

Frequency dependent measurements of χ allow the identification of T spm
b [129]. Although fre-

quency dependent DCM measurements are complicated by the cantilever’s discrete mechanical
modes, we can compare FC and ZFC measurements of ∆f . Fig.(4.5) (a) shows the difference
between these frequency shifts, ∆fZFC − ∆fFC, for sample 3. The mesocrystal is first cooled
in zero field; then ∆fZFC is recorded while the sample is heated to room temperature with
125 mT of field applied.

Figure 4.7 ∣ Two consecutive ∆f hysteresis loops at
5 K for (a) ZFC and (b) FC measurements with θh = 184°
for sample 3.

To measure ∆fFC, the same procedure is
repeated, but with field-cooling in 1 T. For
temperatures above 133 K there is no differ-
ence between ZFC and FC measurements.
Below this temperature, a difference begins
to appear, suggesting that the individual
nanoparticles stop behaving like superpara-
magnets and begin behaving like ferromag-
nets, i.e. they are blocked. Therefore, we
conclude that the blocking temperature is
T spm
b ≈ 133 K for these mesocrystals. This

temperature compares well with data from
ensemble measurements of mesocrystals with
similar sizes [117] (125 K for 9.6 nm and 155 K
for 12.6 nm particles, while the present ones
are 10.9 nm sized). Measurements on a dilute
ensemble of similar-sized maghemite particles
size, but with large silica shells to suppress
inter-particle interactions, show T spm

b ≈ 60 K
[130]. Hence, the interactions between the

particles in the mesocrystal appear to increase T spm
b significantly. Temperature dependent

hysteresis data, recorded for sample 2 and shown in Fig.(4.5) (b), provide further support for
the value of T spm

b . With the magnetic field aligned along the hard axis, the shape of ∆f(H)
drastically changes at T spm

b . Above T spm
b , the data match the predictions of our model of inter-

acting superparamagnets. Below T spm
b , however, the maximum in ∆f at zero field transforms

into a asymmetric
W

-shape with two maxima. From the shape of the DCM curves predicted
by our model for the para- and ferromagnetic states, we can identify the low-temperature onset
of ferromagnetism. Hysteresis loops taken far below the blocking temperature at T = 5 K for
sample 3 show that, at low temperatures not only superparamagnetism is blocked, but a more
complicated magnetic state is present. Depending on the cooling procedure, the measurement
proceeds differently, as can be seen in Fig.(4.7) for measurements with (a) ZFC and (b) FC in
3.5 T.

Three main observations can be made from the low temperature measurements: First, the
hysteresis loops do not saturate even for the highest applied fields. Second, there is exchange
bias present, which can be seen by comparing the positive and negative coercive fields (∆f = 0)
in the insets of the figure. Both statements are true irrespective of the cooling procedure.
Third, we find a highly asymmetric behavior with respect to the sign of the external field for
the FC measurement. The high-field frequency shift differs strongly for positive and negative
field values, which is considerably reduced for a second consecutive hysteresis loop. This means
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that the system can be trained, a typical behavior in an exchange biased system, as introduced
in ch.(3.2).

(a)

(b)

Figure 4.8 ∣ (a) DCM response vs. external field with
θh = 90° for various temperatures around the blocking
temperature for sample 2. The curves are offset for bet-
ter visibility.(b) Hc and Heb vs T for a field cooled mea-
surement in hard anisotropy orientation, and zero field
cooling in easy anisotropy orientation for sample 2 with
θh = 90°.

To further understand these findings, we
analyze temperature dependent hysteresis
data, and extract coercive and exchange field.
A few exemplary hysteresis loops are shown
in Fig.(4.8) (a). The blue line in Fig.(4.8)
(b) shows the temperature dependence of the
coercive field Hc = ∣Hc2 −Hc1∣ /2, where Hc1

(Hc2) is the negative (positive) coercive field
for a ZFC measurement. The coercivity Hc ≈
10 mT is constant above T spm

b , as we may
expect for a superparamagnetic system with
strong interactions. Below T spm

b , Hc starts
to increase, suggesting that the net magnetic
moments of an increasing number of nanopar-
ticles switch collectively with decreasing tem-
perature. Just below 50 K the curve steepens
significantly. This may indicate a magnetic
transition of unknown origin. Hc1 and Hc2

show the same magnitude above 90 K. Below
90 K, Hc1 becomes larger than Hc2 in mag-
nitude. This effect can be quantified by the
exchange bias field Heb = ∣Hc2 +Hc1∣ /2 and is
shown as orange curve in Fig.(4.8) (b). From
this data, we infer a blocking temperature of
the exchange bias effect of T eb

b ≈ 90 K. Below
T eb
b , Heb increases moderately with decreas-

ing temperature. Doing the same experiment
after a FC procedure leads to a significantly enhanced Heb.

Fig.(4.9) shows high-field DCM data, similar to that shown in Fig.(4.2) (a)-(c), measured
at different temperatures under both ZFC and FC. Fig.(4.9) (a) shows measurements of ZFC
frequency shift. While the shape of ∆f(θh) is preserved down to 5 K, its magnitude increases
with decreasing temperature. This behavior indicates an increase of either the anisotropy, the
saturation magnetization, or both. Measurements under FC give similar results as those under
ZFC regardless of the FC field direction for all but the lowest temperature measurements.
Below 90 K, however, the shape, orientation, and magnitude of the signal change for ZFC and
FC. The direction of the maximum in ∆f(θh) is observed to follow the direction of the FC
field. This reorientation of the magnetic anisotropy by the FC field is observed both when
the sample is cooled in an external field applied at 139° and 94°, as shown in Fig.(4.9) (b).
Upon heating above 90 K, the original shape and magnitude of ∆f(θh) is restored. Similar
observations have been made in dilute systems of particles, where inter-particle interactions
are negligible [130, 131].

As in those and similar studies [98, 132, 133], including small angle neutron scattering
measurements [134, 135], we conclude that the individual nanoparticles are likely surrounded
by a disordered system of surface spins. Below T eb

b , these spins freeze, leading to the observed
exchange bias and an additional magnetic anisotropy that can be set and oriented by FC. Given
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the agreement of these previous measurements with our data, we find that frozen surface spins
are more likely to explain the observed exchange bias and anisotropy than frustration of the
core spins in our densely-packed superlattice of nanoparticles. Nevertheless, the configuration
of the core spins at low temperatures remains unknown. States such as superferromagnetic
and superantiferromagnetic [129] ordering or a superspin glass [136] are potentially present.
Further experiments, such as real space imaging or aging experiments are necessary to pin
down the mesocrystal’s low-temperature magnetic configuration. The kink in the temperature
dependence of Hc around 50 K, which is discussed above and shown in Fig.(4.8) (b), may be
an indication of a phase transition of such a superspin state.

4.4 Summary and Conclusion
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Figure 4.9 ∣ High-field frequency shift ∆f(H =

3.5 T/µ0, θh) for sample 3 depending on the external
field direction for various temperatures. The sample
undergoes (a) ZFC and (b) FC. The magnetic field for
FC is applied at the angle indicated by the color-coded
dashed line.

In conclusion, our measurements reveal
the different contributions to the magnetic
anisotropy of a mesocrystal of maghemite
nanoparticles, most notably a cubic compo-
nent, which we attribute to the crystalline
anisotropy of the constituent nanoparticles.
A model considering interacting superpara-
magnetic nanoparticles captures most of our
findings. The system remains in a superpara-
magnetic state down to T spm

b ≈ 133 K. Be-
low T eb

b ≈ 90 K, exchange bias and a frozen
spin state are present in the system, con-
sistent with a disordered layer of surface
spins on the individual nanoparticles, as ob-
served in earlier works.We emphasize that
the observation of cubic magnetic anisotropy
in these nanoparticles is only possible, be-
cause of the combination of two techniques:
the size-selective self-assembly of nanoparti-
cle mesocrystals with a narrow size distribu-
tion and a high degree of orientational or-
der [116, 117], and measurement by DCM,
which is sensitive enough to resolve the mag-
netism of individual mesocrystals. This abil-
ity to isolate the magnetic response of a sin-
gle mesocrystal overcomes the limitations of
measuring ensembles, which are composed of
mesocrystals of varying size, shape, and ori-
entation. This disorder and the potential for
interactions between mesocyrstals complicates the determination of their individual magnetic
properties and those of their constituent nanoparticles, especially anisotropy. In the future,
similar techniques combining self-assembly and DCM may become a powerful means for as-
sessing the magnetic properties of other nanoparticles, which are too small to investigate
individually.
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5 Stability of Néel-Type Skyrmion Lattice
Against Oblique Magnetic Fields in GaV4Se8

5.1 Introduction

Lacunar spinels are composite materials of the chemical formula AB4X8, where A=Al, Ga, Ge;
B=V, Mo, Nb, Ta and X=S,Se, Te. They exhibit a multitude of correlation and spin-orbit
effects [137], as well as more than one type of ordering simultaneously, making them a member
of the family of multiferroics [138]. The material studied here is GaV4Se8, which has a cubic
crystal symmetry at room temperature but undergoes a Jahn-Teller structural transition to
a rombohedral state at T ≈ 42 K. This induces electrical polarization along the main crystal
axes, forming four distinct types of structural domains. In addition, magnetic ordering sets in
at T ≈ 17 K and develops in the polar phase, where each polar domain has its own anisotropy
axis of easy plane type.

The occurrence of multiple anisotropy axes of the same type in a bulk crystal of a material
is itself of interest in the context of this thesis. The magnetic structure of the material is more
complex, however, since the rombohedral phase lacks inversion symmetry and thus enables the
onset of Dzyaloshinskii-Moriya interaction (DMI), allowing for non-collinear magnetic states
such as cycloids and magnetic skyrmions, separated by sharp phase boundaries. Measurements
of phase transitions with the goal to map out the stability phase diagram of GaV4Se8 has been
done using a variety of methods, summarized in Geirhos et al. [137]. In that work, only phase
transitions visible in most of the applied experimental methods are considered. While the main
phase boundaries predicted by theory [139] are clearly visible in those measurements, there
are additional transitions in some of the measurements, which indicate the presence of other
magnetic states, which have not been reported before.

Transition between the magnetic states within a structural domain are induced by a critical
field component along the anisotropy axis and can hence be triggered by a rotation of the
external magnetic field at a given field strength. Mapping the full phase diagram at a given
temperature thus requires measurement of hysteresis curves in small angular steps and reading
out the values for the switching fields for each external field angle. Since multiple uniaxial
anisotropy directions are present at the same time, assigning the features to the structural do-
main of a certain axis is complicated by the fact that the four domain types switch individually,
depending on the field strength and their respective angle with the external field.

This chapter first gives a brief introduction to DMI and non-collinear magnetism before
the DCM contribution to the results given in [137] will be described and placed in context.
Note that we focus on GaV4Se8 in this chapter, even though DCM measurements have been
performed on GaV4S8 as well, with the results of this study reported in [44] and alongside the
GaV4Se8 measurements in the following publication, which this chapter is based on:
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5.2 Non-collinear magnetic structures

The discussion of magnetic structures so far has been under the assumption that, on a mi-
croscopic level, the magnetic moments are preferentially aligned in parallel by virtue of the
exchange interaction. There are, however, crystal structures that allow for an asymmetric
exchange interaction, that tends to align the magnetic moments perpendicularly. This is now
called Dzyaloshinskii-Moriya interaction (DMI) as it was first introduced by Dzyaloshinskii in
1958 in a model to describe weak ferromagnetism [140], with Moriya identifying the mechanism
behind it in 1960 [141]. A prerequisite for DMI is the lack of inversion symmetry, which is
inherent to a set of crystal structures identified by Bogdanov and Yablonskii in 1989 [142].
Among them is also the Cnv (n=1,2,3) class, represented for example by a rombohedral crystal
symmetry. DMI can be described by the following energy term:

EDM = −Dij ⋅ (Si × Sj) (5.1)

where Dij is called Dzyaloshinskii-vector or DMI-vector. The competition between DMI
and exchange interaction results in a slight tilt of the magnetic moments with respect to
their direct neighbors, rather than a fully parallel or perpendicular orientation. As a result,
magnetic states emerge, where the magnetic moments are not oriented in a collinear fashion
anymore, such as spirals, helices, cones or magnetic whirl-pool like structures called skyrmions.
Magnetic skyrmions have become a relevant research topic in both fundamental science and
for applications such as magnetic racetrack memories [29, 143] and spintronic devices [25, 144].

There are two main types of crystalline bulk magnetic systems that host non-collilnear mag-
netic states: the first ones are cubic helimagnets with a B20 crystal symmetry such as MnSi,
FeGe or Cu2OSeO3. Skyrmions in this type of magnets are called Bloch-type skyrmions, in
analogy to the rotation direction of the magnetization in a Bloch domain wall. The magne-
tization rotates perpendicular to the radial direction, as depicted in Fig.(5.1) (a). Typically,
periodic lattices of Bloch skyrmions occur only in a small stability range in a T −H phase
diagram, a pocket shaped region just below the curie temperature of the magnet [88, 89]. In-
dividual or metastable skyrmions of this type have been reported to occur in a much wider
temperature range [146]. The symmetry of the B20 lattice reduces the DM energy to an
isotropic form, with the consequence, that the axis of orientation of Bloch skyrmions always
aligns with the external magnetic field [139]. Two more magnetic phases typically occur in
helimagnets. In the helical phase, which typically is the ground state, the magnetization forms
elongated helices ordered in stripes. Increasing the external field, the helices are modulated
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Figure 5.1 ∣ Schematis of Boch-type (a) and Néel-type skyrmions. Adapted from [145]

and the spins are forming cones by tilting into the field direction, which is called the conical
phase. Further increasing the field slowly narrows the cones, and eventually closes them upon
the transition to a field polarized phase, where all the spins are pointing along the external
field direction.

The other class of bulk materials are polar magnets, as investigated in this chapter, which
host a different type of skyrmions called Néel-type skyrmions, also in analogy to the rotation
sense of the Néel domain wall. For a long time, this type of skyrmions has only been observed
in multi-layered thin films where the DMI arises at the interface of the different layers [147,
148], before it was discovered in GaV4S8 by Kézsmarki et al. in 2015 [145]. In this case,
the magnetization rotates radially from the center, as depicted in Fig.(5.1) (b). Unlike in
helimagnets, the orientaion of the axis of orientation of the skyrmions is associated with the
polarization axes of the crystal, which determines the orientation of the DMI vector. Typically
there is only a cycloidal state observed besides the field polarized state in polar magnets.
Consequently, the T − H phase diagram shows a stabilized skyrmion lattice phase over a
wide temperature and magnetic field range, even down to lowest temperature, which may be
attributed to the absence of a competing conical phase [139, 149]. The cycloidal phase is
comparable to the helical phase, with the magnetic moments rotating perpendicular rather
than parallel to the q-vector of the cycloids. As Geirhos et al. have shown in Ref. [137],
a single polar domain in GaV4Se8 can host multiple directions of q-vectors after zero-field
cooling, which reorient into a single q state upon application of an external field. This is not
reversed if the field is turned off. A multi-q state can be re-initialized only after repeated zero
field cooling.

5.3 Sample and Cantilever

Single crystals of GaV4Se8 are grown by a chemical transport reaction method using iodine
as a transport agent [145]. X-ray diffraction measurements of both sample materials show
impurity-free single-crystals [150]. We attach an individual crystal of GaV4Se8, which is a few
tens of micrometers in size, to the end of a commercial Si cantilever (Nanosensors�TL-cont)
using non-magnetic epoxy, as shown in Fig. (5.2). The cantilever is 440 µm-long, 50 µm-wide,
and 2.3 µm-thick. Unloaded, it has a resonance frequency of about 16 kHz, quality factor
around 5 × 105, and spring constant of 300 mN/m. Due to the additional mass of the samples,
the resonance frequency of a loaded cantilever shifts to around 3 kHz.
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(a) (b)

(c)

c1
c2

c3
c4

Figure 5.2 ∣ Schematics of the measurement setup.
(a) shows the coordinate system and the definition of
β = 90° − θh as the angle between H and x in the top
figure. Below, the rotation plane of H and the definition
of the angles αi is given. (b) The cantilever, its oscilla-
tion angle θc, and the crystalline axes of the measured
sample. Black, red, green, and blue lines correspond to
the four ci. (c) Composite optical and scanning electron
micrograph of the measured GaV4Se8 sample mounted
on the cantilever.

The sample is attached near the free end of
the cantilever with the (001) surface pressed
flat against the Si surface. The orientation
can roughly be estimated from optical and
scanning electron microscope images. The re-
sultant direction of the sample’s crystalline
axes with respect to the cantilever is shown
in Fig. (5.2): specifically the approximate
orientation of the four cubic ⟨111⟩ axes ci
(i = 1,2,3,4) is shown in black, red, green,
and blue.

As mentioned before, GaV4Se8 undergoes a
Jahn-Teller structural phase transition from
a non-centrosymmetric cubic to a rhombohe-
dral structure at 42 K [26, 27, 150, 151]. The
transition is characterized by a stretching of
the cubic unit cell along one of the four cubic
body diagonals ci, resulting in four different
structural domains. The rhombohedral dis-
tortion also gives rise to polarization along
ci, making these the polar axes of the sys-
tem. The multi-domain state is composed of

sub-micrometer-thick sheets of these four different rhombohedral polar domains, which we la-
bel Pi [137, 152]. The polar axis ci also corresponds to the axis of magnetic anisotropy in the
respective rhombohedral domain state, which is of easy-plane type [145, 149, 153] in GaV4Se8.

For any given orientation of the applied field H, there can be up to four different angles,
αi, between H and ci as shown in Fig.(5.2) (a). Note that we define αi modulo π. Due to
crystal symmetry, if αi exceeds 180°, the relevant angle is between H and −ci. The domain
walls (DWs) separating the structural domains need to be mechanically compatible and charge-
neutral. DWs with these properties are normal to ci+cj , the sum of the two polar directions of
the domain states Pi and Pj as shown in Fig. (5.4) [137, 152, 154]. For example, mechanically
and electrically compatible DWs connecting a P1 (black) and a P2 (red) domain are parallel
to (001) planes, cf. Fig.(5.4). The same is true for DWs between P3 (green) and P4 (blue)
domains.

5.4 Results and Discussion

5.4.1 Magnetic phase diagram: In-domain transitions

We measure the frequency shift and the dissipation as a function of the external field magnitude
and the angle β = 90°−θh at a fixed temperature of 12 K. Note that this definition of the external
field angle is made to be consistent with Ref. [46]. The field is rotated roughly in the (1-10)
plane of the sample. By changing β, all angles αi with the given domain directions change
differently. Thus, the value of the external field component along the crystal axes is different
for all ci, which means that the magnetic field strength required to induce a phase transition
in the corresponding domains is different as well. This results in a number of features (peaks
and dips) in the frequency and dissipation curves that need to be assigned to transitions in the
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Figure 5.3 ∣ Magnetic phase transitions measured in GaV4Se8 at T = 12 K. Transitions extracted from DCM
measurement of (a) ∆f(H) and (b) Γ(H) are plotted as circles as a function of β. Black, red, green, and blue
markers correspond to transitions for domain P1, P2, P3, and P4, respectively. Color-coded lines correspond
to phase boundaries for the each color-coded domain as indicated by lines in the phase diagram (d). (c) Angle
αi between corresponding polar axis and the external field H vs β for all four rhombohedral domains, using
the same color code as in (a) and (b). (d) Best-fit magnetic phase diagram for single-domain GaV4Se8 as a
function of field applied perpendicular and parallel to the axis of symmetry. (e) DCM measurement of ∆f(H)

for αi = 26.6° (β = 7.5°) showing the reentrant Cyc phase of domain 1 (black). Transitions from other domains
are not indicated. These measurements corresponds to line-cuts along the dashed vertical lines in (a) and (b)
and the dashed diagonal line labelled αi = 26.6○ in (d).

different domains. The same procedure is described in detail in Ref. [46] for measurements in
GaV4S8. Essentially, we compare all the measurements of ∆f and Γ and associate features that
occur in both measurements at the same external field value with phase transitions. Extracting
those values and plotting against β results in the pattern shown by the circles in Fig.(5.3) (a)
and (b). The color code corresponds to the different domains as given in Fig.(5.4). Knowing the
orientation of the sample and thus the values for αi (compare Fig.(5.3) (c)), we can calculate
the values of β for which the field components H∥ along the domain axes reach the transition
value. Thus, the solid lines in Fig.(5.3) (a) and (b) represent the phase boundary inside the
domains as given in Fig.(5.3) (d).

Using previous measurements made by Bordács et al. along particular crystalline directions
[149], as well as neutron diffraction data by Geirhos et al. [137] for guidance, we assign each
feature to a transition between Cyc, SkL, or FM states for a certain domain and color-code it
accordingly. The overall form of the phase diagram agrees with that suggested by Leonov and
Kézsmárki [139]. Note that the rotation plane of H, contains c1 and c2, but not c3 and c4.

An Euler rotation of the crystal (-14, -1 and 7°) with respect to ideal configuration, shown
in Fig.(5.4), is required such that the phase boundaries corresponding to the different domain
states (P1, P2, P3, P4) collapse onto the single boundary diagram of Fig.(5.3) (d). Features
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assigned to the Cyc-to-FM transition of domain P3 (green) are difficult to distinguish from
those occuring for the same transition in P4 (blue), because they are expected to occur at
nearly the same H and β in Figs.(5.3) (a) and (b). Since this distinction does not affect the
form of the phase diagram in Fig.(5.3) (d), our assignment of all such features to the P3 rather
than P4 transition is unimportant. For the P1 (black) and P2 (red) domains, which are the
only two experiencing sufficient H∥ to reach the SkL phase, the boundaries of the SkL state
appear as prominent rain-drop-like shapes in Figs(5.3) (a) and (b). From the intersection of
the SkL with the Cyc phase boundary in (d), we extract a threshold angle αmax = 31° for the
SkL phase in GaV4Se8 at T = 12 K.

We note the presence of a reentrant Cyc phase for angles 19° < αi < 30°, as predicted by
Leonov and Kézsmárki [139]. For this range of αi, two successive first-order phase transitions
from Cyc to SkL and back occur as a function of increasing field. The signature of this behavior
in DCM is shown in Fig.(5.3) (e).

5.4.2 Magnetic phase diagram: Domain Wall states

Geirhos et al. observed anomalies in various macroscopic thermodynamic properties of GaV4Se8,
emerging exclusively in crystals with polar multi-domain structure. They suggest a possible
scenario for the formation of magnetic states at the structural DWs [137]. Magnetic inter-
actions change stepwise at the DWs and spin textures with different spiral planes, hosted by
neighboring domains, need to be matched there. This can, for example, lead to conical mag-
netic states at the DWs with a different closing field magnitude than bulk magnetic states.
Here, we adapt and modify this model in order to analyze its applicability to anomalies ob-
served in our DCM measurements of GaV4Se8, which cannot be assigned to bulk magnetic
phase transitions. For an arbitrary orientation of the external magnetic field, magnetic states
confined to DWs with different orientations are expected to undergo field-induced transitions,
similarly to the in-domain magnetic states. However, in this case the situation is more com-
plex: The stability of the magnetic states confined to DWs is determined by the orientation
of the field with respect to the magnetic anisotropy axes of adjacent domains and to the DW
itself.

It is reasonable to assume, that the angle, γn, between H and the normal of the DW planes,
given by ci + cj plays a decisive role in setting the angular range, across which confined states
are stable. This leads to three pairs of DWs, as shown in Fig.(5.4), each sharing the same
γn for a given H. For DWs in a pair, however, the relative orientation between the magnetic
anisotropy axes of the two domains involved and H is not the same. For example, consider
the P1P2/P3P4 pair: the rotation plane of H (11̄0) contains the anisotropy axes of P1 and
P2, but not the anisotropy axes of P3 and P4; they span 54° with this plane. We therefore
introduce another angle, γp, between H and the difference of the two polar vectors ci − cj ,
which lies in the DW plane. Both these angles γn (β) and γp (β), plotted in Fig.(5.5) (a) and
(b), respectively, are expected to affect the stability of the DW-confined magnetic states.

In the angular dependent torque measurements, shown in Figs.(5.5) (c)-(f), we observe at
most four anomalies (open circles) for a given field orientation. Since there are six types of
DWs, distinguished by γn and γp, some transitions, which occur simultaneously in different
types of DWs appear as a single anomaly, while some transitions appear not to be experi-
mentally observable. In the following analysis, we take into account an additional anomaly
(crosses) between β ≃ 40 and 130° at field values around 100 mT, which is not present in our
DCM measurements, but has been observed in magnetoelectric measurements [137]. Example
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Figure 5.4 ∣ Schematic for understanding the orientation of the 6 different domain walls types. Left: Directions
of the four possible polar axes, P1-P4, which are parallel to the axes of magnetic anisotropy ci within the
corresponding domains. The transparent blue plane indicates the approximate plane of rotation of the external
magnetic field and the coordinate system indicates the crystal directions. Left center: Mechanically compatible
and charge neutral DWs separating P1 and P2 domains are parallel to the (001) plane, just as DWs between
P3 and P4 domains. The former and latter DWs are referred to as P1P2 and P3P4, respectively. γn, the angle
between H and the normal vector n, which is proportional to ∝ ci + cj, is shown for both DW pairs. γp, the
angle between H and ci − cj, is also shown. Right center and Right: The other two pairs of DWs sharing the
same orientation. The normal vector of the corresponding planes and their labels are indicated for the three
cases, as well as the difference vector ĉi − ĉj , unique to each DW type.

measurements of ∆f and Γ are shown in Figs.(5.5) (g) and (h), where anomalies assigned to
DW states are indicated by vertical dash-dotted lines.

As a first scenario, we suggest the assignment of the observed anomalies as shown in Fig.(5.5)
(c). In this way, both domains adjacent to a DW host the Cyc state and the DW-confined
state emerges due to the matching of these two cycloidal patterns for all observed anomalies.
This is specifically notable for the anomalies meeting at β ≈ 90°. For example, the anomaly
assigned to be a P2P4 DW (orange), would progress above 150 mT for β > 90°, but because
in-domain states within the P4 domain (blue axis) transform from the Cyc to the FM state for
β > 90° and H > 150 mT, this anomaly disappears for larger angles. The same is true for the
other end of this anomaly (β = 12.5°). Similarly, the anomalies assigned to transitions in the
P1P2 DWs are limited by the two skyrmion pockets of the P1 and P2 domains. No anomaly
is observed in angular ranges, where the adjacent domains host magnetic states other than
the Cyc. An alternative scenario is an extension of the one suggested by Geirhos et al. [137],
shown in Fig.(5.5) (d). This scenario allows some DW transitions to persist even when one
of the adjacent domains is in the Cyc phase, while the other one is in the SkL phase. Such a
situation occurs for the P1P2 DW transition, which penetrates both the P1 and the P2 SkL
pockets. In both scenarios, the mirror symmetry expected across β ≃ 90°, as dictated by γn(β)
and γp(β) is fulfilled: the transition lines are either symmetric to this point or they have a
symmetry-related counterpart. The basis for both scenarios is the occurrence of a distinct
magnetic state confined to DWs, and its transition to the FM state at certain critical field,
observed as an additional anomaly in the DCM measurement. The angle of the applied field
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Figure 5.5 ∣ Anomalies in ∆f(H) and Γ(H) assigned to transitions of DW rather than bulk magnetic states.
Arrows at the top indicate from left to right the approximate angle β corresponding to the [111], [001] and
[11 − 1] directions, respectively. (a) Angle γn between the normal vector of a DW and H plotted against β.
The color of the dashed lines shows their correspondence to a DW type in the legend. (b) Angle γp between the
vector formed by the difference of the polar axis vectors of the two adjacent domains of a DW and H plotted
against β. (c) Transitions extracted from both ∆f and Γ that are not assigned to a domain transition (circles).
Crosses show transitions extracted from magnetoelectric measurements [137], scaled by about 0.9 to match
the DCM data. Colored lines show the suggested assignment of the transitions to DW types as denoted in the
legend. Light gray lines show the bulk domain transitions. (d) Same data as in (c) with a different assignment of
transitions. Color map of (e) ∆f(H,β) and (f) − log10 Γ(H,β). (g) and (h) show example DCM measurements
with dash-dotted vertical lines indicating the assigned transition fields. Dash-dotted vertical lines in (c) indicate
the value of β of the example measurements.
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with the DW-normal, γn, and the orientation of its component in the DW-plane, γp, appear
to be important parameters in determining the critical field of the DW states.

5.5 Summary and Conclusion

We use DCM to measure phase transitions in GaV4Se8, a multiferroic polar magnet, which
hosts con-collinear magnetic phases. We extract the magnetic phase diagram as a function
applied field magnitude and direction that is in good qualitative agreement with the theoretical
predictions of Leonov and Kézsmárki [139], confirming the general validity of their model.
This agreement, in turn, provides indirect confirmation that, under oblique applied magnetic
field, the axes of Néel-type skyrmions stay locked to the anisotropy axis while their structure
distorts and their core displaces. The measurements reproduce the overall structure of the
phase diagram, imposing a maximum angle αmax of magnetic field applied with respect to
the anisotropy axis, for which a SkL phase persists. In addition, they show that easy-plane
anisotropy – as found in GaV4Se8 – increases their stability for fields parallel to this axis. Our
results also confirm the existence of a reentrant Cyc phase in GaV4Se8, which was anticipated
to occur for certain values of easy-plane anisotropy. Finally, anomalies in ∆f(H) and Γ(H),
which cannot be explained as bulk domain transitions, are consistent with distinct magnetic
states confined to polar structural DWs and their transition from the Cyc to FM state, as
proposed by Geirhos et al. [137].

Nevertheless, the measured magnetic phase diagram is not in strict quantitative agreement
with the predicted one. Further experimental investigation – especially real-space imaging – of
anomalies assigned to transitions of DW-confined magnetic states is required to characterize
the spin pattern associated with these states.
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6 Conclusion and Outlook

Measuring magnetic properties of nano- to micrometer- sized magnetic particles requires par-
ticularly sensitive methods to overcome the issues of intrinsically weak signals. The results
presented in this thesis show, that this can be achieved using Dynamic Cantilever Magnetom-
etry (DCM), a method in which the specimen is attached directly to the apex of an ultra-
sensitive Si cantilever. We have shown that the measured properties obtained from DCM can
be compared to the real and imaginary part of a susceptibility measurement. DCM not only
allows for the investigation of individual magnets in the nanometer range, the interferometric
read-out scheme also circumvents the need of electrical contacts, which makes it suitable for
the investigation of insulating samples.

We have shown that the frequency shift asymptotically approaches a constant value if the
externally applied field is high enough. In this field regime, which we call the high-field limit,
the value of the asymptote depends on the orientation of the applied field with respect to the
sample’s magnetic anisotropy. This feature, together with the possibility to apply the external
magnetic field with a magnitude of ±4.5 T in an angular range of 117° makes DCM in our setup
a powerful tool to determine strength, direction and type of the magnetic anisotropy of the
specimen. The progression of the frequency shift curve upon reversal of the external field can
give information about magnetic switching, magnetic reversal processes and effects related to
the involved anisotropies.

In order to analyze the data, we reconstruct the signal by employing analytical, as well
as numerical micromagnetic methods. The analytical models rely on the description of the
magnetization as an individual macro spin, as first introduces by Stoner and Wohlfarth. This
method can help to gain an intuitive picture of the behavior of the magnetic moment and can
in some cases deliver numerical values, e.g. for anisotropy constants by fitting the correspond-
ing equations to the high-field limit data. However, the model has its limitations for processes
that include magnetic switching of parts of the magnetization, or in the description of mag-
netic states such as vortices. Numerical micromagnetics, in contrast, considers a distribution
of magnetic moments by discretization of the sample geometry using a suitable mesh. Solving
the Landau-Lifshitz-Gilbert (LLG) equation, a magnetization map is realized that minimizes
the magnetic energy. In both cases, the frequency shift is calculated as the second derivative
of the magnetic energy with respect to the oscillation angle.

We applied these techniques in order to investigate the magnetic hyteresis of individual
Janus Particles (JP) with hemispherical caps. JPs find applications for example in lab-on-chip
devices, drug delivery or as micro robots. Actuation of the particles, however requires the
magnetic cap to exhibit a non-zero magnetic moment at remanence. Typically, the magnetic
remanent state in ferromagnetic caps is a vortex which has almost no net magnetic moment,
therefore preventing the use of the JP in applications. One possibility to overcome this issue
is by adding an antiferromagnetic layer which, upon field cooling, interacts with the ferro-
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magnetic layer and generates a unidirectional anisotropy by virtue of exchange bias. We have
investigated the effects of exchange biased JP and found found that by introducing a uni-
directional anisotropy, the remanent state is no longer a vortex but an onion state, which
carries a non-zero magnetic moment. If we normalize the magnetic moment of a vortex state
by the saturation moment, MsV , we find that the global vortex state hosted by the fmJP
has a moment value of 0.03. For the simulations of the ebJP we find a total magnetic mo-
ment at remanence, normalized by its maximum value of MsV , of 0.89 and 0.71 depending
on whether H is applied along the hard or easy direction of the external field, respectively.
This remanent moment represents an increase of more than one order of magnitude compared
to the remanent moment of the fmJP. Hence, introducing exchange bias to magnetic JPs, if
strong enough, succeeds in stabilizing a high-moment onion state in remanence. We further
determine direction and type of the magnetic anisotropy of the magnetic cap. Using angle-
dependent measurements of the frequency shift in the high-field limit have shown that the
anisotropy is of easy-plane type, with the magnetic hard direction pointing towards the pole of
the cap. We investigated the behavior of the effective demagnetization factor Du for a spherical
cap, a geometry for which no analytic model exists to calculate a precise value for this property.

Maghemite mesocrystals are mircometer-sized structures that consist of a large number
of perfectly arranged cubic maghemite nanoparticles of equal size. In order to describe the
anisotropy of the mesocrystals, a sum of a uniaxial and a cubic term is necessary. We were
able to show that the unixial contribution arises due to the overall shape of the mesocrystal,
whereas the cubic term has its origin in the crystal structure of the nanoparticles. This finding
was only possible due to the perfect arrangement of the nanoparticles. At room temperature,
the mesocrystal behaves like an anisotropic paramagnet, while at lower temperature, the DCM
curves are indicative of a ferromagnetic behavior. This behavior arises due to the small size
of the constituting nanoparticles, which are superparamagnetic above a critical temperature
called blocking temperature TB, which we measured to be at TB = 133 K. At even lower tem-
peratures, around T = 5 K, a more complicated magnetic state is present, which needs to be
identified using sensitive imaging methods such as scanning SQUID magnetometry. We have
further shown, that the direction of the effective anisotropy aligns with the external field upon
field cooling. We attribute this effect to a disordered system of surface spins that surround the
individual nanoparticles.

In another study, we investigated the multiferroic polar magnet GaV4Se8, which belongs
to the family of Lacunar spinels. GaV4Se8 undergoes a Jahn-Teller type structural transition
at T = 42 K, which results in the formation of electrically polarized structural domains along
the main axes of the cubic crystal lattice. Magnetization develops inside the domains below
T = 17 K, being host to different non-collinear magnetic structures such as cycloids and mag-
netic skyrmions. The latter appear in form of a regular lattice which is oriented perpendicularly
to the respective polarization axis Pi. The structural domain walls separating the domains co-
incide with the [100] planes of the cubic lattice. Transitions between magnetic states happen
if a critical value of the magnetic field component parallel to the polarization axes is reached,
resulting in a magnetic stability phase diagram that depends on the angle of the applied field.
Using DCM, we were able to map out this stability phase diagram and identify a critical angle
of αi = 31° that the external field can have with the Pi in order for the skyrmion lattice phase
to be still stable. Also, at αi = 26.6° we confirmed the occurrence of a re-entrant state, where
the magnetic state transfroms from a cycloid, to a skyrmion lattice and again to a cycloid
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before it becomes fully field-polarized. This state was theoretically predicted before but not
experimentally confirmed. Being part of a collaborative effort, the DCM data helped identify
a novel magnetic state embedded in the cycloidal phase of polar multidomain samples that is
correlated to the structural domain boundaries.

The data presented here introduce DCM as a powerful tool to measure the magnetism of
nano- to micrometer-sized magnetic materials. However, the technique has several limitations.
First, the sensitivity and spring constant of the cantilever need to be compatible with the
expected dynamic torque. Even though the design of the ultra-soft cantilevers provides a
broad bandwith of possible samples, the technique is ultimately limited by the availability of
a suitable sensor. Second, the resonance frequency of the magnet-on-cantilever system is typi-
cally on the order of a few kHz, whereas magnetization dynamics tyipcally are on the order of
a few GHz. Thus, there is no transfer function that allows to measure magnetization dynamics.

Losby et al. presented a scheme to circumvent this issue by applying two microwave fields
with frequencies f1 and f2 which are separated in frequency by exactly the cantilever resonance
f0, such that ∣f1 − f2∣ = f0 [155]. In that way, the dynamics of the magnetization is coupled
to the the sensor and by measuring the oscillation amplitude as a function of f1, a magnetic
resonance spectrum can be recorded, which gave the technique the name torque mixing mag-
netic resonance spectroscopy (TMMRS). Attempts to repeat this experiment with a cantilever
have failed so far, presumably because the origin of the cantilever signal can not exclusively be
attributed to magnetic torque, but also to a force acting on the magnetic sample. This makes
it impossible to distinguish between force and torque signals. In their experiment, Losby et
al. used a different kind of torque sensor in the form of a paddle, doubly clamped to two
elongated beams. This ensures that the dominant mode is of torsional type, which suppresses
the contributions of a magnetic force signal.

Future magnetic torque magnetometry or torque mixing experiments can be optimized by
designing paddle resonators according to the needs of the sample of interest. By embedding the
sensor in the middle of a phononic band gap structure possibly reduces the mechanical noise
and boosts the sensitivity, since no viration is transferred to the resonnator and also no energy
can dissipate from the sensor in form of phonons. This specific design possibly also allows for
electrical contact of the sample of interest, which could be of relevance for the emerging field
of two-dimensional (2D) magnets.

2D magnets have emerged as a new frontier in magnetism, both in terms of fundamental
questions – including why such magnetism is stable at all – as well as from the device engineer-
ing point of view. In general, the stacking, twisting, and combining of van der Waals (vdW)
materials with control down to individual atomic layers has started a revolution in heterostruc-
ture engineering. Layer-by-layer control offers a multitude of possible material combinations,
without constraints imposed by lattice mismatch, along with the prospect of making compact
devices, in which large electric fields can easily be applied. These new tools give researchers
unprecedented control of interactions and band structure, as exemplified by the 2018 realiza-
tion of superconducting twisted bilayer graphene. In the realm of magnetism, these methods
can be used to tune the magnetic properties of a material or even to make materials, which are
non-magnetic in the bulk, magnetic in 2D. Most importantly, both in view of understanding
the physics of 2D magnetism and exploiting it for applications, vdW engineering may allow us
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to realize new and useful magnetic phases, which are only possible in 2D. In order to fully take
advantage of these new developments, we must understand the role of anisotropy, disorder, in-
homogeneity, and characteristic length-scales in 2D magnets and their heterostructures. Such
investigations require sensitive local probes and techniques for measuring magnetism in small
volumes. The possibility to measure individual flakes of 2D magnets make torque magnetome-
try a perfect candidate to provide these information, either by using a cantilever or customized
paddle resonators.
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7 Appendix

7.1 Mumax3 code used for simulations in chapter 2.3.2

The simulations in ch.(2.3.2) were carried out using the following code:

// Cantilever properties

fx := 3000;

fy := 3000;

fz := 3000;

kx := 50e-6;

ky := 50e-6;

kz := 50e-6;

le := 100e-6;

// Material redefinition: CoFeB

anisU = vector(1, 0, 0)

Ku1 = .5e6;

Aex = 28e-12;

Msat = 1035031;

alpha = 1; //Set to 1 if no temperature is involved, otherwise 0.007 for CoFeB

// Define geometry parameters

aaxis := 40;

baxis := 40;

caxis := 40;

// Define mesh (square!)

meshsize := 1.0;

SetCellsize(meshsize*1e-9, meshsize*1e-9, meshsize*1e-9);

SetGridsize(aaxis/meshsize - 0, baxis/meshsize + 0, caxis/meshsize + 0);

EdgeSmooth = 0;

// Set geometry

setgeom( ellipsoid(aaxis*1e-9, baxis*1e-9, caxis*1e-9) );

// Define direction of B_ext

phi := 1.0;

theta := 89.0;

// Tiltangles for cantilever oscillations

tiltx := 1.0;

tilty := 1.0;

tiltz := 1.0;

tiltmin := 0.4;

tiltmax := 1.0;

hx := cos(phi * pi/180)*sin(theta * pi/180);

hy := sin(phi * pi/180)*sin(theta * pi/180);

hz := cos(theta * pi/180);

// Tilt field and magnetizaion vector

hx_tiltx := cos(phi*pi/180) * sin(theta*pi/180)

hy_tiltx := -cos(theta*pi/180) * sin(tiltx*pi/180) + cos(tiltx*pi/180) * sin(theta*pi/180) * sin(phi*pi/180)

hz_tiltx := cos(tiltx*pi/180) * cos(theta*pi/180) + sin(tiltx*pi/180) * sin(theta*pi/180) * sin(phi*pi/180)

hx_tiltx_m := cos(phi*pi/180) * sin(theta*pi/180)

hy_tiltx_m := -cos(theta*pi/180) * sin(-tiltx*pi/180) + cos(-tiltx*pi/180) * sin(theta*pi/180) * sin(phi*pi/180)

hz_tiltx_m := cos(-tiltx*pi/180) * cos(theta*pi/180) + sin(-tiltx*pi/180) * sin(theta*pi/180) * sin(phi*pi/180)

hx_tilty := cos(theta*pi/180)*sin(tilty*pi/180) + cos(tilty*pi/180)*cos(phi*pi/180)*sin(theta*pi/180);

hy_tilty := sin(theta*pi/180) * sin(phi*pi/180);

hz_tilty := cos(tilty*pi/180)*cos(theta*pi/180) - cos(phi*pi/180)*sin(tilty*pi/180)*sin(theta*pi/180);

hx_tilty_m := cos(theta*pi/180)*sin(-tilty*pi/180) + cos(-tilty*pi/180)*cos(phi*pi/180)*sin(theta*pi/180);

hy_tilty_m := sin(theta*pi/180) * sin(phi*pi/180);

hz_tilty_m := cos(-tilty*pi/180)*cos(theta*pi/180) - cos(phi*pi/180)*sin(-tilty*pi/180)*sin(theta*pi/180);

hx_tiltz := cos((tiltz+phi)*pi/180)*sin(theta*pi/180)

hy_tiltz := sin(theta*pi/180)*sin((tiltz+phi)*pi/180)

hz_tiltz := cos(theta*pi/180)

hx_tiltz_m := cos((-tiltz+phi)*pi/180)*sin(theta*pi/180)

hy_tiltz_m := sin(theta*pi/180)*sin((-tiltz+phi)*pi/180)

hz_tiltz_m := cos(theta*pi/180)
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// Amplitude of linear oscillation component for susceptibility measurement (%)

mag := 0.02;

// Definitions

OutputFormat=OVF2_TEXT;

MinimizerStop = 3e-6;

// Initialize values

sigB_abs := 1e-9;

E_total_tiltx_minus := 0e-15;

E_total_tiltx_plus := 0e-15;

E_total_tilty_minus := 0e-15;

E_total_tilty_plus := 0e-15;

E_total_tiltz_minus := 0e-15;

E_total_tiltz_plus := 0e-15;

E_total_mag_minus_x := 0e-15;

E_total_mag_plus_x := 0e-15;

E_total_mag_minus_y := 0e-15;

E_total_mag_plus_y := 0e-15;

E_total_mag_minus_z := 0e-15;

E_total_mag_plus_z := 0e-15;

// Standard properties

TableAdd(B_ext);

TableAddVar(sigB_abs, "signed absolute B", "T");

TableAdd(m_full);

TableAdd(geom);

TableAdd(MaxAngle);

TableAdd(E_anis);

TableAdd(E_demag);

TableAdd(E_exch);

TableAdd(E_Zeeman);

TableAdd(E_total);

// Additional properties

// Energies

TableAddVar(E_total_tiltx_plus, "E_total_tiltx_plus", "J");

TableAddVar(E_total_tiltx_minus, "E_total_tiltx_minus", "J");

TableAddVar(E_total_tilty_plus, "E_total_tilty_plus", "J");

TableAddVar(E_total_tilty_minus, "E_total_tilty_minus", "J");

TableAddVar(E_total_tiltz_plus, "E_total_tiltz_plus", "J");

TableAddVar(E_total_tiltz_minus, "E_total_tiltz_minus", "J");

// Frequency Shifts

TableAddVar(fx/(2*kx*le*le)*(E_total_tiltx_plus+E_total_tiltx_minus-2*E_total)/(tiltx*pi/180*tiltx*pi/180), "Dfx", "a.u.");

TableAddVar(fy/(2*ky*le*le)*(E_total_tilty_plus+E_total_tilty_minus-2*E_total)/(tilty*pi/180*tilty*pi/180), "Dfy", "a.u.");

TableAddVar(fz/(2*kz*le*le)*(E_total_tiltz_plus+E_total_tiltz_minus-2*E_total)/(tiltz*pi/180*tiltz*pi/180), "Dfz", "a.u.");

// Torques

TableAddVar((E_total_tiltx_plus-E_total_tiltx_minus)/(2*tiltx*pi/180), "xTorque", "a.u.");

TableAddVar((E_total_tilty_plus-E_total_tilty_minus)/(2*tilty*pi/180), "yTorque", "a.u.");

TableAddVar((E_total_tiltz_plus-E_total_tiltz_minus)/(2*tiltz*pi/180), "zTorque", "a.u.");

// Linear field components for suscetpibility, susceptibility and magnetization

TableAddVar(E_total_mag_plus_x, "E_total_mag_plus_x", "J");

TableAddVar(E_total_mag_minus_x, "E_total_mag_minus_x", "J");

TableAddVar((E_total_mag_plus_x+E_total_mag_minus_x-2*E_total)/(mag*sigB_abs*mag*sigB_abs), "xSusceptibility", "a.u.");

TableAddVar((E_total_mag_plus_x-E_total_mag_minus_x)/(2*mag*sigB_abs), "xMagnetization", "a.u.");

TableAddVar(E_total_mag_plus_y, "E_total_mag_plus_y", "J");

TableAddVar(E_total_mag_minus_y, "E_total_mag_minus_y", "J");

TableAddVar((E_total_mag_plus_y+E_total_mag_minus_y-2*E_total)/(mag*sigB_abs*mag*sigB_abs), "ySusceptibility", "a.u.");

TableAddVar((E_total_mag_plus_y-E_total_mag_minus_y)/(2*mag*sigB_abs), "yMagnetization", "a.u.");

TableAddVar(E_total_mag_plus_z, "E_total_mag_plus_z", "J");

TableAddVar(E_total_mag_minus_z, "E_total_mag_minus_z", "J");

TableAddVar((E_total_mag_plus_z+E_total_mag_minus_z-2*E_total)/(mag*sigB_abs*mag*sigB_abs), "zSusceptibility", "a.u.");

TableAddVar((E_total_mag_plus_z-E_total_mag_minus_z)/(2*mag*sigB_abs), "zMagnetization", "a.u.");

// Field angles

TableAddVar(theta, "Theta", "grad");

TableAddVar(phi, "Phi", "grad");

//Initial state

m = Uniform(hx, hy, hz);

//Hysteresis B in mT

Bstart := 2000;

Binter1 := 0;

Binter2 := 50;

Binter3 := 20;

Bstep1 := 100;

Bstep2 := 5;

Bstep3 := 5;
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// Unit correction

unicor := 1000;

for B:=Bstart; B>=-Bstart; B-=Bstep1{

tiltx = tiltmin + tiltmax*abs(B)/Bstart;

tilty = tiltmin + tiltmax*abs(B)/Bstart;

tiltz = tiltmin + tiltmax*abs(B)/Bstart;

hx_tiltx = cos(phi*pi/180) * sin(theta*pi/180)

hy_tiltx = -cos(theta*pi/180) * sin(tiltx*pi/180) + cos(tiltx*pi/180) * sin(theta*pi/180) * sin(phi*pi/180)

hz_tiltx = cos(tiltx*pi/180) * cos(theta*pi/180) + sin(tiltx*pi/180) * sin(theta*pi/180) * sin(phi*pi/180)

hx_tiltx_m = cos(phi*pi/180) * sin(theta*pi/180)

hy_tiltx_m = -cos(theta*pi/180) * sin(-tiltx*pi/180) + cos(-tiltx*pi/180) * sin(theta*pi/180) * sin(phi*pi/180)

hz_tiltx_m = cos(-tiltx*pi/180) * cos(theta*pi/180) + sin(-tiltx*pi/180) * sin(theta*pi/180) * sin(phi*pi/180)

hx_tilty = cos(theta*pi/180)*sin(tilty*pi/180) + cos(tilty*pi/180)*cos(phi*pi/180)*sin(theta*pi/180);

hy_tilty = sin(theta*pi/180) * sin(phi*pi/180);

hz_tilty = cos(tilty*pi/180)*cos(theta*pi/180) - cos(phi*pi/180)*sin(tilty*pi/180)*sin(theta*pi/180);

hx_tilty_m = cos(theta*pi/180)*sin(-tilty*pi/180) + cos(-tilty*pi/180)*cos(phi*pi/180)*sin(theta*pi/180);

hy_tilty_m = sin(theta*pi/180) * sin(phi*pi/180);

hz_tilty_m = cos(-tilty*pi/180)*cos(theta*pi/180) - cos(phi*pi/180)*sin(-tilty*pi/180)*sin(theta*pi/180);

hx_tiltz = cos((tiltz+phi)*pi/180)*sin(theta*pi/180)

hy_tiltz = sin(theta*pi/180)*sin((tiltz+phi)*pi/180)

hz_tiltz = cos(theta*pi/180)

hx_tiltz_m = cos((-tiltz+phi)*pi/180)*sin(theta*pi/180)

hy_tiltz_m = sin(theta*pi/180)*sin((-tiltz+phi)*pi/180)

hz_tiltz_m = cos(theta*pi/180)

sigB_abs = B/unicor;

// Set fields, minimize energy, store result in corresponding variables

B_ext = vector(B/unicor * hx_tiltx, B/unicor * hy_tiltx, B/unicor * hz_tiltx);

minimize();

E_total_tiltx_plus = E_total;

B_ext = vector(B/unicor * hx + B/unicor * mag, B/unicor * hy, B/unicor * hz);

minimize();

E_total_mag_plus_x = E_total;

B_ext = vector(B/unicor * hx_tilty, B/unicor * hy_tilty, B/unicor * hz_tilty);

minimize();

E_total_tilty_plus = E_total;

B_ext = vector(B/unicor * hx, B/unicor * hy + B/unicor * mag, B/unicor * hz);

minimize();

E_total_mag_plus_y = E_total;

B_ext = vector(B/unicor * hx_tiltz, B/unicor * hy_tiltz, B/unicor * hz_tiltz);

minimize();

E_total_tiltz_plus = E_total;

B_ext = vector(B/unicor * hx, B/unicor * hy, B/unicor * hz + B/unicor * mag);

minimize();

E_total_mag_plus_z = E_total;

B_ext = vector(B/unicor * hx_tiltx_m, B/unicor * hy_tiltx_m, B/unicor * hz_tiltx_m);

minimize();

E_total_tiltx_minus = E_total;

B_ext = vector(B/unicor * hx - B/unicor * mag, B/unicor * hy, B/unicor * hz);

minimize();

E_total_mag_minus_x = E_total;

B_ext = vector(B/unicor * hx_tilty_m, B/unicor * hy_tilty_m, B/unicor * hz_tilty_m);

minimize();

E_total_tilty_minus = E_total;

B_ext = vector(B/unicor * hx, B/unicor * hy - B/unicor * mag, B/unicor * hz);

minimize();

E_total_mag_minus_y = E_total;

B_ext = vector(B/unicor * hx_tiltz_m, B/unicor * hy_tiltz_m, B/unicor * hz_tiltz_m);

minimize();

E_total_tiltz_minus = E_total;

B_ext = vector(B/unicor * hx, B/unicor * hy, B/unicor * hz - B/unicor * mag);

minimize();

E_total_mag_minus_z = E_total;

B_ext = vector(B/unicor * hx, B/unicor * hy, B/unicor * hz);

minimize();

// Save table values and magnetization

tablesave();

save(m);

};
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