

Exercises and Complements for the Introduction to Physics I

for Students

of Biology, Pharmacy and Geoscience

Sheet 4 / September 26, 2017

Discussion of the Exercises: 17.10.2017/18.10.2017

Exercise 14.

4 Cases: is the system in equilibrium or not? Give reasons for your answer.

Exercise 15.

A horizontal flagpole (own weight M=5.2 kg, length l=2.0 m, b=0.5 m) is mounted on a roof overhang as shown in the figure. At the end of the pole a poster is attached which has a mass of m=8.0 kg.

(a) Sketch all the forces which act on this system.

(b) Calculate the supporting force at the position A and B.

Exercise 16.

An object obtains an acceleration of 1.5 m/s^2 while sliding down an inclined plane which has a angle of 20°. How big is the coefficient of sliding friction μ_g ? How big must the coefficient of static friction μ_H be for the limiting case such that the object does not move/slide?

Exercise 17.

Two masses m_1 and m_2 are connected with a thin rope. The dynamic friction of the masses on the support plate is μ_g . A force \vec{F} acts on mass m_2 , see figure.

(a) How big is the acceleration \vec{a} of the masses?

(b) How big is the force $\vec{F_1}$?

Additional Exercise (for students which are looking for a physical challenge - not relevant for the exam)

A mass m is attached to a light string and the string is wound around a solid cylinder with a mass M and a radius r, see figure. The wheel bearing is frictionless and the string is not sliding on the cylinder. Determine the angular frequency of the cylinder as a function of time and sketch it.

Solutions:

Exercise 15. 415.9 N and 286.4 N

Exercise 16. 0.2 and 0.36