

Departement Physik Universität Basel Prof. M. Poggio / PD Dr. M. Calame T. Meier / C. Drechsel

tobias.meier@unibas.ch c.drechsel@unibas.ch Büro 3.04 Tel.: 061 207 37 30 http://adam.unibas.ch

Exercises and Complements for the Introduction to Physics I

for Students

of Biology, Pharmacy and Geoscience

Sheet 7 / October 13, 2017

Discussion of the Exercises: 07.11.2017/08.11.2017

Exercise 27.

A mass of m = 1.5 t should be slightly lifted with the use of a hydraulic system (cross section of the pistons $A_1 = 20$ cm², $A_2 = 0.36$ m²), see figure. The mass of the big piston is $m_K = 100$ kg. Compared to that, the mass of the small piston is much smaller and therefore can be neglected. The pistons are at the same height. How big should the force F applied to the small piston be in order to lift m?

Exercise 28.

The transport of water from the roots to the leaves of a tree is realized through capillaries by the use of surface tension. Assume the density of nutrients containing water to be $\rho = 1.01 \text{ kg/dm}^3$, the surface tension towards air is $\sigma = 0.073 \text{ N/m}$ and the angle at the edge is $\theta = 23$ degrees. How big is the maximum diameter of the capillary for a 12 m tall tree?

Exercise 29.

The level of the water in a big open water containing container is kept constant at a height of $h_w=4$ m by continuously adding water. A tube with a diameter of $d_2=60$ mm and a height of $h_r=10$ m gets narrower at the horizontal opening; see figure. There the diameter is reduced to $d_1=40$ mm. The air pressure is constant of 990 mbar. Calculate:

- (a) the flow rate at the exit v_1 (position 1).
- (b) the flow rate v_2 at position 2.
- (c) the pressure p_2 at the entrance (position 2).

Exercise 30.

A reservoir is emptied via four tubes which are positioned next to each other. Each tube is l long and has a radius of $r_0 = 0.1$ m. The four tubes should be replaced by a single tube with a radius of r_1 . The flowing resistance and the length l should be the same for both cases.

- (a) Calculate r_1 .
- (b) The flow of the volume I_v should be equal in both cases. How big is the Reynolds number for the second case (Re_1) compared to the first (Re_0) ?
- (c) For which case is a turbulent flow more probable if you assume that the critical Reynolds number is the same for both cases? Explain your answer.

Additional Exercises (not relevant for the exam)

A wooden cuboid floats in a glass of water, see figure. 90% of its volume enters the water

- (a) Calculate the density of the wood.
- (b) We add oil ($\rho = 0.85 \cdot 10^3 \text{ kg/m}^3$) to the water till the cuboid is completely covered, see figure. Is the volume entering the water bigger, smaller or equal than before? Argue qualitatively.
- (c) Calculate the percentage of the volume which enters the water for the case described in (b).

Solutions:

Exercise 26. 87.2 N

Exercise 27. 2.26 μ m

Exercise 28. (a) 16.57 m/s (b) 7.36 m/s (c) 1.11 bar

Exercise 29. (a) 0.141 m (b) $Re_0/Re_1\frac{1}{2\sqrt{2}}$

Additional Exercise (a) 0.9 * ρ_w , (c) 1/3