

## Exercises and Complements for the Introduction to Physics I

### for Students

of Biology, Pharmacy and Geoscience

Sheet 9 / November 7, 2017

Discussion of the Exercises: 21.11.2017/22.11.2017

#### Exercise 36.

In former times the bell of a church was not electrically driven. This bell can weigh several tons and to made it ring, manual work was necessary. In order to make the bell swing someone pulls on a rope which is connected to the bell. Explain why it is also possible for the little daughter of the bell ringer to make the bell swing.

#### Exercise 37.

After running for 12 h a mechanical pendulum clock is 30 min slow. The pendulum is originally 0.5 m long. To which length l does the pendulum need to be adjusted so that the clock runs exactly?

#### Exercise 38.

A sphere (mass m = 400 g) attached to a wire (length l = 0.2 m) swings against a massless spring (spring constant D = 19.6 N/m) and gets elastically pushed back by the spring (see figure). The maximum angle of deflection  $\alpha_0$  is  $10^{\circ}$ .



- (a) How long are the sphere and the spring in contact?
- (b) Does the contact time depend on  $\alpha$ ?

#### Exercise 39.

A wooden cuboid with height h and a base area A floats in water. It gets pushed once at the beginning and due to this it oscillates up and down.

- (a) Demonstrate that the motion is a harmonic oscillation.
- (b) Derive a term for the period T of oscillation.
- (c) Is the result of (b) also valid for a wooden sphere? Justify your answer.

# Additional Exercise (for students which are looking for a challenge - not relevant for the exam).

A wooden brick is attached to a spring and swings back and forth above a rough surface, see figure. The spring deflection after 5 periods of oscillation is half as big as at the beginning. Each oscillation lasts 3 sec.

(a) How big is the damping  $\delta$ ?

(b) According to the script, the motion of the brick can be described by the following equation:  $x(t) = x_0 \exp(-\delta t) \sin(\omega t)$ . Since  $\exp(-\delta t)$ never becomes zero, the amplitude of the oscillation is exponentially reducing but the brick will never stop moving. In reality the brick stops after a few oscillations. Why?



(c) Is the oscillation made faster or slower by putting soap on the surface?

#### Solutions

<u>Exercise 37.</u> 0.459 m

Exercise 38. (a) 0.32 sec

<u>Additional Exercise</u> (a)  $0.0462 \text{ s}^{-1}$