Supporting Information: Stray-Field Imaging of a Chiral Artificial Spin Ice during Magnetization Reversal

Marcus Wyss,† Sebastian Gliga,*†¶ Denis Vasyukov,† Lorenzo Ceccarelli,†
Giulio Romagnoli,† Jizhai Cui,¶§ Armin Kleibert,¶ Robert L. Stamps,∥ and
Martino Poggio†

†Department of Physics, University of Basel, 4056 Basel, Switzerland
‡SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
¶Paul Scherrer Institute, Villigen 5232, Switzerland
§Laboratory for Mesoscopic Systems, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
∥Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada

E-mail: sebastian.gliga@psi.ch
Figure S 1: Quantum interference pattern of the SQUID. Current through the nanoSQUID (color coded) versus input voltage V_{bias} and applied magnetic field $\mu_0 H_\perp$ showing quantum interference oscillations with a period (H_p) corresponding to an effective nanoSQUID diameter of 150 nm. The measured feedback voltage (V_{FB}) is proportional to the current flowing through the nanoSQUID. (b) shows the voltage-to-flux ($V - \Phi$) SQUID transfer function at different applied in-plane magnetic field strengths ($\mu_0 H_\parallel$). The transfer functions show the strong influence of the applied in-plane field on the current-to-voltage characteristics (IVC). The black dots show the position of the working point (WP) during the image acquisition using the scanning nanoSQUID.

Figure S 2: Simulated evolution of the stray field patterns as a function of height with respect to the sample. The stray field is generated by the distribution of the magnetic charges in the system. In (a), the simulated magnetostatic charge density, $\rho = -\mu_0 (\nabla \cdot \mathbf{M})$, is plotted, showing that volume magnetic charges are present at the extremities of the nanomagnets, where the magnetization is not uniform. The scale bar represents 500 nm. Images (b-d) illustrate the evolution of the stray field patterns at different heights above the sample. All simulations are performed in the absence of an external field: $\mu_0 H_\parallel = 0$.
Figure S 3: In-plane field hysteresis loop. (a-g), Shows a series of measured magnetic stray field distributions $B_z(x,y)$ of a chiral artificial spin ice system at different in-plane magnetic fields $\mu_0 H_\parallel$. Starting field $\mu_0 H_\parallel = -250$ mT in (a) towards $\mu_0 H_\parallel = 250$ mT in (g). The color bar of (g) corresponds also to (a-g).